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ABSTRACT 

This paper advances the collection of statistical methods known as response surface methods as an effective experi-
mental approach for describing and comparing the tool life performance capabilities of metalcutting tools. Example 
applications presented demonstrate the versatility of the power family of transformations considered by Box and Cox 
(1964) in modeling tool life behavior as revealed using simple response surface designs. A comparative analysis illus-
trates a method to gauge the statistical significance of differences in tool life estimates computed from response surface 
models. Routine use of these methods in experimental tool testing is supported by their ability to produce reliable rela-
tive performance representations of competing tools in field applications. 
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1. Introduction 

Experimental, laboratory-based, tool performance testing 
in machining operations is an integral part of the product 
development cycle of metalcutting tools. Ideally, such 
testing provides information-rich data as a basis for 
screening various product designs and evaluating poten- 
tial improvements in existing cutting tool materials, or 
grades. In an iterative product development process, 
testing often ultimately focuses on comparing the per- 
formance qualities of candidate designs to those of com- 
peting grades over a specified application range of cut- 
ting, or operating, conditions. Laboratory testing is thus 
an essential performance review to assure that product 
design and manufacturing process concepts are correct 
prior to field trials in actual applications. 

The need to compare performance qualities over a 
range of operating conditions suggests the use of expe- 
rimental design to efficiently produce the required test 
data. The purpose of data analysis is to provide insight to 
potentially important performance differences influenc- 
ing decisions to pursue further development or field- 
testing. 

A performance quality measure frequently analyzed in 
metalcutting applications is tool life. As varied as the 
field applications themselves, so are the criteria used to 
determine the end of life of cutting tools in these applica- 
tions. In the laboratory, a definition of tool life providing 

a common basis for comparing tool performance capa- 
bilities is required for useful analysis to proceed. The 
definition ordinarily used is the cutting time until the 
wear on the tool reaches a pre-specified level, or the tool 
catastrophically fails. Depending on test objectives, other 
quality measures such as the surface finish of the mate- 
rial being machined (the “workpiece” material), the abil- 
ity to control chip formation during machining, power 
consumed, and the magnitude of various cutting forces 
may be analyzed as well. 

This paper presents a statistical approach to describe 
and compare the tool life capabilities of metalcutting 
tools using response surface methods, a coordinated sys- 
tem of experimental design, regression analysis, and 
graphic presentation. A mathematical approximation mo- 
del, often termed a response surface model, expressing 
tool life in terms of selected machining variables, whose 
settings define the range of cutting conditions of interest, 
is developed using test data from a designed experiment. 
Examining the model using contour plots provides a 
simple analysis of tool performance capabilities with 
respect to changes in these variables.  

2. Empirical Models of Tool Life Behavior 

Consideration of the dominant features of tool life data is 
basic to proper model formulation. Over sufficiently 
wide ranges of cutting conditions, tool life tends to ex- 
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hibit non-linearity of relationship and changing variabil-
ity as illustrated in Figure 1 adapted from Fung [1]. 
Power transformations of the response are often effective 
in modeling such behavior. Therefore, we tentatively 
assume that the relationship between tool life, y, and k 
independent machining variables, 1 2, , , kξ ξ ξ , can be 
adequately represented by 

( ) ( ) ,i iy gλ ε= ξ θ i+ ,             (1) 

where  if ,  if , i
( )y yλ λ= 0λ ≠ ( ) ( )lny yλ = 0λ = ξ  

is a vector of independent variable settings determining 
the ith experimental test condition,  is a vector of pa-
rameters to be estimated from data, g is a low-order po-
lynomial in the 

θ

ξ ’s, and the i  are statistical errors 
that follow, at least approximately, the usual linear model 
assumptions. 

ε

As noted in Balakrishnan and DeVries [2], many re-
searchers have advocated the use of a linearized tool life 
model of the form 

( ) ( )0ln lni j ji
j

y θ θ iξ ε= + + ,        (2) 

or an extension including second-order terms in the loga- 
rithms of the ξ ’s. The model in (2) is a linearized gen- 
eralization of the tool life-cutting speed relationship 
proposed by F. W. Taylor for high-speed steel cutting 
tool materials in the early 1900s. While in some applica- 
tions these models may be useful, there does not seem to 
be any particular reason why model adequacy and sim- 
plicity of relationship will always be achieved in the lo-
garithms. The form given in (1) thus provides a flexible 
alternative starting point for the modeling process. 
 

 

Figure 1. Schematic of tool life variability at three cutting 
conditions with an end of life wear criterion w0. 

3. Applications 

3.1. Application 1: A Power Family Model of 
Tool Life 

3.1.1. Description of Application and Experimental 
Design 

Metalcutting tools are designed and manufactured in 
various sizes and shapes to service a wide range of ma- 
chining applications. In addition, various geometric “chip 
control” designs may be shaped on the tool surface in 
manufacturing to control workpiece chip formation dur- 
ing cutting operations, and to enhance tool life. This ap- 
plication is part of a larger evaluation aimed at charac- 
terizing the effects of three variables, cutting speed, feed 
rate, and depth of cut, on the tool life performance of 
tools produced with certain chip control designs. 

The tool life data given in Table 1 are the results of a 
completely randomized experiment for a cutting tool 
grade manufactured with a commonly used chip control 
design. The machining operation was turning a medium- 
carbon steel workpiece material on a lathe (Figure 2). A 
central composite test design with the axial points lo- 
cated at the center of each face of the unit cube (Figure 3) 
was used to produce the required tool life data. A desir- 
able characteristic of this design is its ability to estimate 
higher-order effects with only three levels for each factor. 
Also, this design provides protection from having fea- 
tures of fitted models strongly influenced by one or a few 
test results remotely positioned in the factor space—as 
may occur say in using a rotatable central composite de- 
sign having unreplicated axial points located outside the 
unit cube. Replications at locations other than the design 
center were run to reveal the approximate variance pro- 
file across the operating range, and so obtain more realis- 
tic estimates of tool life uncertainty. As is common in 
practice, the levels of the three factors are coded giving  
 

 

Figure 2. Schematic of a turning operation in machining. 
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Table 1. Cutting conditions and test results. 

Speed (sfm) Feed (ipr) Depth of Cut (in) Tool Life (min)

650 0.010 0.050 49.4 

650 0.010 0.050 31.5 

650 0.010 0.050 50.0 

800 0.010 0.050 22.0 

800 0.010 0.050 30.0 

800 0.010 0.050 31.9 

650 0.026 0.050 10.0 

650 0.026 0.050 8.1 

650 0.026 0.050 6.5 

800 0.026 0.050 3.2 

800 0.026 0.050 1.4 

800 0.026 0.050 2.3 

650 0.010 0.200 32.2 

650 0.010 0.200 29.1 

650 0.010 0.200 40.2 

800 0.010 0.200 13.5 

800 0.010 0.200 14.1 

800 0.010 0.200 14.6 

650 0.026 0.200 1.4 

650 0.026 0.200 1.5 

650 0.026 0.200 1.5 

800 0.026 0.200 0.5 

800 0.026 0.200 1.1 

800 0.026 0.200 0.6 

650 0.018 0.125 9.1 

800 0.018 0.125 3.0 

725 0.010 0.125 27.5 

725 0.026 0.125 2.9 

725 0.018 0.050 12.3 

725 0.018 0.200 4.2 

725 0.018 0.125 7.1 

725 0.018 0.125 8.6 

725 0.018 0.125 4.2 

Note: Speed is in units of surface feet per minute (sfm), feed in inches per 
revolution (ipr), depth of cut in inches, and tool life in minutes. Tool life is 
determined by the first occurrence of 0.015 inch uniform flank wear, 0.004 
inch crater depth, 0.030 inch localized wear, or catastrophic failure. 

 

Figure 3. Central composite design used in Application 1. 
 
as predictors x1 = (speed − 725)/75, x2 = (feed − 0.018)/ 
0.008, and x3 = (depth − 0.125)/0.075. 

3.1.2. Response Surface Model Selection 
The adequacy of the model 

0.2
1 2

2
2 3 2 1 2 3

 1.4479 0.1270 0.3823 0.1308

0.0416 0.1143 0.0431

y x x 3x

x x x x x

= − − −

− + + x

)

  (3) 

is easily established. The “hat” notation is used to denote 
predicted values determined by the estimated regression 
equation. 

A normal probability plot of the residuals and a plot of 
the residuals against the fitted values show the success of 
transformation as a remedy for error pattern inadequacies 
characteristic of fits in the original response scale. The 
estimated coefficients are highly significant (maximum 
p-value for the individual t-tests of significance is 0.007) 
and a large proportion of the total variation in the trans-
formed tool life values is explained by the fit (R2 is 
0.975). Lack of fit is not indicated by either the pure er- 
ror test or the Minitab Statistical Software data subsetting 
test [3]. 

In this application, an initial model screening was car- 
ried out using stepwise variable selection for chosen  
over the interval −1 to +1. Subsequent ranking of various 
models terminating the stepwise algorithm was based on 
computing 

λ

( 2ˆPRESS i i
i

y y−= − .          (4) 

Here,  is the predicted value of yi from a fit using 
all of the data except the ith case (the ith tool life observa-
tion and its associated independent variable settings). 
Better models have relatively small values of PRESS. 
Allen [4] gives a computational form for PRESS easily 
adapted to the class of models considered in (1). 

ˆ iy−

From this heuristic evaluation, several candidate mod- 
els were selected for further analysis to evaluate ade- 
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quacy of fit. There appears to be little difference between 
response scales regarding simplicity of relationship for 
these data. The need to include interactions and, in some 
cases, a quadratic effect in models to describe tool life 
behavior was evident for all transformations tried. The 
model in (3) has a PRESS of 649, which is slightly larger 
than the smallest found (a model with the square root of 
tool life as the response with a PRESS of 641 was found). 
The model given in (3) was ultimately chosen over that 
with the slightly smaller PRESS as a result of its some- 
what more pleasing residual patterns. 

Contour plots (not included) displayed in the original 
units of the response show the loci of cutting conditions 
giving specified estimates of the median of the predictive 
distribution of tool life. Overlaying such contour plots 
generated from the approximation models of several chip 
control designs provides a simple means to simultane-
ously compare performance characteristics. 

3.2. Application 2: A Comparative Tool Life 
Analysis 

3.2.1. Description of Application and Experimental 
Design 

This application is part of a larger metalcutting product 
performance evaluation. The test objective was to obtain 
a tool life comparison of two competing cutting tool 
grades, Grade A and Grade B, in turning a medium-car- 
bon steel workpiece material on a lathe. Tests for each 
grade were set up using a 22 factorial plus center point 
design with the factors cutting speed and feed rate. The 
test runs were collectively randomized and the tool life 
for each grade recorded as shown in Table 2. In this ap-
plication, the levels of the factors are coded giving as 
predictors x1 = (speed − 650)/150 and x2 = (feed − 
0.021)/0.006. 

3.2.2. Preliminary Remarks 
Inspection of the test data suggests that statistically (and 
likely practically as well) meaningful differences in tool 
life level favoring Grade A may exist at and about the 
center of the factor space. Without formal statistical 
treatment of the data, a benefit of using the experimental 
design is immediately realized. That is, important relative 
performance information may have remained concealed 
if testing was limited exclusively to say near the center, 
or near an extreme, of the factor space. 

3.2.3. Response Surface Model Selection 
For each respective tool grade, ranking of the first-order 
and first-order plus interaction fits based on PRESS for 
chosen  over the interval −1 to +1 was carried out to 
provide guidance in model selection. A complete listing 
of computational results is not given. To summarize, the 
models found to have the smallest PRESS for Grade A  

λ

Table 2. Cutting conditions and test results. 

Tool Life (min) 
Speed (sfm) Feed (ipr) 

Grade A Grade B 

500 0.015 67.0 84.4 

500 0.015 101.9 91.2 

500 0.015 63.6 66.7 

800 0.015 23.5 16.0 

800 0.015 17.6 15.2 

800 0.015 21.3 17.6 

500 0.027 17.9 24.6 

500 0.027 25.3 15.3 

500 0.027 25.4 30.4 

800 0.027 0.4 1.1 

800 0.027 0.6 0.5 

800 0.027 0.5 0.9 

650 0.021 21.4 11.8 

650 0.021 19.2 8.9 

650 0.021 22.6 10.6 

Note: Speed is in units of surface feet per minute (sfm), feed in inches per 
revolution (ipr), and tool life in minutes. Tool life is determined by the first 
occurrence of 0.015 inch uniform flank wear, 0.004 inch crater depth, 0.030 
inch localized wear, or catastrophic failure.  

 
and Grade B respectively are the first-order fit with  
of 0.5 (PRESS of 1607) and the first-order plus interac-
tion fit with  of −0.1 (PRESS of 983). However, the 
PRESS value for the first-order plus interaction fit for 
Grade B with  of 0 is not very different from the 
smallest found. Thus, the suitability of this fit as a model 
of the tool life performance for Grade B is examined. 

λ

λ

λ

A likelihood-based procedure for estimating  from 
the data is given by Box and Cox [5]. Its application via a 
Minitab Statistical Software macro for the first-order and 
first-order plus interaction model forms for Grades A and 
B respectively indicates general agreement with the 
rankings based on PRESS. Moreover, in the case of 
Grade B, tests for lack of fit suggest that the interaction 
term is not removable by transformation. 

λ

A normal probability plot of the residuals and a plot of 
the residuals against the fitted values for the first-order 
plus interaction fit with the logarithm of Grade B tool life 
as the response indicate no model inadequacy. These 
diagnostic plots for the first-order fit with the square root 
of Grade A tool life as the response are not as satisfying, 
seemingly due in part to the effect of the largest observa- 
tion. However, to avoid suppressing variation at a condi- 
tion expected to show sizable response variation, we re- 
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tain this case and select a model otherwise fitting the data 
well. The first-order model with the square root of tool 
life as the response appears to fit well and is selected. 
Soothing the decision to retain this observation is that a 
later test at this condition resulted in a tool life of nearly 
two hours. 

A comparative performance analysis will thus be 
based on the following models for Grade A and Grade B 
respectively: 

0.5
1 4.6726 2.0653 1.9582Ay x= − − 2x

1 2

        (5) 

( )
1 2ln 2.4778 1.2363 1.0724 0.4384 .By x x= − − − x x  (6) 

3.2.4. A Comparative Analysis Method 
A simple comparative analysis may be carried out by 
superimposing contours of the estimated response sur-
faces and observing the relative position of contours of 
equal estimated median tool life. Figure 4 shows the 
superimposed contours of 10, 30, and 50 minutes median 
life. The apparent effect that Grade A is capable of oper- 
ating at higher and more productive cutting conditions, 
while yielding the same median life as Grade B, is most 
prominent near the center of the factor space. That is, 
meaningful performance differences favoring Grade A 
are likely to exist in this region. However, without an 
indication of the variability associated with these esti- 
mates, differences that are statistically important, or sig- 
nificant, are not discernible. 

An ad hoc, but useful analysis approach that incorpo- 
rates the variability of model estimates in comparing 
performance differences is to form the surface that is the 
difference of the two tool life models standardized by a 
measure of uncertainty. A contour plot of this surface is 
useful in identifying regions of test conditions where the 
differences in estimated median response are large rela- 
tive to uncertainty. 

A slight complication occurs in cases such as this 
where the models are fit using different response trans- 
formations. Sensible choices of a common scale in which 
to compare differences include that of either model, or 
the original response scale. In any case, a first-order 
propagation of error approximation can be used to esti-
mate variability in an alternate scale. 

In this application, an analysis in the logarithmic scale 
may be carried out by plotting contours of the surface 
(Figure 5) 

( ) ( ) ( ){ } ( )0.50.5
1 2,  2ln lnA B Ax x y y V Vδ  = − +   B , (7) 

where ( )  (2
0.5 0.54 VarA AV y y =   

)A  and  

 ( )Var lnBV  =  By . Var  denotes the estimated variance  

of the indicated argument. 
Loosely speaking, we shall say statistically significant  

 

Figure 4. Selected contours of the estimated tool life sur-
faces for the cutting tool grades in Application 2. 
 

 

Figure 5. Contours of the estimated significance surface. 
 
performance differences exist at test conditions where 
this surface is sufficiently high or low. In practice, condi-
tions with 3δ ≥  have been found to adequately ap-
proximate those exhibiting meaningful tool life differ-
ences in similar field applications. The egg-shaped re-
gion about the center of the factor space shown in Figure 
6 has  indicating a tool life advantage for Grade A. 
It is reassuring to find that analysis in either the square 
root or the original scale identifies essentially the same 
region of tool life advantage for Grade A (Figure 7). 

3δ ≥

Extension of this analysis to more than two independ-
ent variables is straightforward though visualizing the 
results would require multiple contour plots, each gener-
ated with the variables chosen to be “off-axis” fixed at 
desired settings. 

3.3. Application 3: Adaptability to a More  
Complex Testing Situation 

In some situations where appreciable systematic varia-
tion in the test environment is expected, test methods 
may be suitably modified to yield useful performance  
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Figure 6. Significance region superimposed on the contours 
of the estimated tool life surfaces. 
 

 

Figure 7. Significance regions for comparisons in the origi-
nal, square root, and logarithmic scales. 
 
information. For example, consider a situation where a 
tool life comparison of two grades is desired. Expecting 
substantial variation in workpiece material properties 
(e.g., hardness) over the course of testing, consider gen-
erating tool life data as follows: a cutting edge of one of 
the two grades is run for a predetermined “short” cutting 
time, using a machining condition randomly selected 
from those prescribed in the experimental design, and 
tool wear measurements made; an edge of the competing 
grade is run for the same time and wear measurements 
made; the edge first run is run again for the same time 
and wear measurements made; the competing edge is run 
again for the same time and wear measurements made; 
and so on until the end of life is reached for both grades. 
This procedure is repeated at each respective condition. 
Testing in this “back-to-back” manner creates a paired 
data structure. Actual tool life data generated in this fa-
shion are given in Table 3. In this data set, the cutting 
edges resulting in 89.1 and 29.6 minutes tool life were 
run together, 56.9 and 20.5 were run together, 8.4 and 3.5 
were run together, and so on. 

Table 3. Cutting conditions and test results. 

Tool Life (min) 
Speed (sfm) Feed (ipr) 

Grade C Grade D 

400 0.015 89.1 29.6 

400 0.015 56.9 20.5 

700 0.015 8.4 3.5 

700 0.015 10.2 4.3 

700 0.015 5.1 2.5 

400 0.025 34.0 19.0 

400 0.025 24.0 20.1 

400 0.025 22.0 18.2 

400 0.025 24.5 15.6 

700 0.025 1.9 1.3 

700 0.025 1.6 2.0 

700 0.025 1.5 1.1 

550 0.020 10.8 7.6 

550 0.020 11.2 2.7 

550 0.020 8.7 5.6 

550 0.020 12.0 6.6 

Note: Speed is in units of surface feet per minute (sfm), feed in inches per 
revolution (ipr), and tool life in minutes. Tool life is determined by the first 
occurrence of 0.015 inch uniform flank wear, 0.004 inch crater depth, 0.030 
inch localized wear, or catastrophic failure. 

 
For brevity, an analysis of the data in Table 3 is not 

pursued. An analysis approach that has generally pro-
vided satisfactory results in practice involves developing 
an approximation model using the differences between 
paired observations as the response values. Estimated 
differences computed from this model, standardized by a 
measure of uncertainty, can then be used to assess statis-
tical significance over the operating range covered by the 
test. 

4. Summary 

This paper advances response surface methodology as an 
effective experimental approach for describing and com- 
paring the tool life performance capabilities of metalcut- 
ting tools. Such an approach provides a means of identi- 
fying important performance differences between the 
tools tested over a specified range of operating condi- 
tions. Several example applications demonstrate the ver- 
satility of the power family of transformations in model- 
ing tool life behavior as revealed using simple response 
surface designs. A comparative analysis application il- 
lustrates a method to gauge the statistical significance of 
differences in tool life estimates computed from response 
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surface models. Therefore, test conditions producing sta- 
tistically important differences may be identified thus 
approximating operating regions of field performance 
strength or weakness. Routine use of these methods in 
experimental tool testing is supported by their ability to 
produce reliable relative performance representations of 
competing tools in field applications.  
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