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ABSTRACT 

It is known that if nA M  is normal  * *AA A A , then AA AA  if and only if T TAA A A . This leads to the 

question: do both AA AA  and T TAA A A  imply that A  is normal? We give an example to show that this is false 
when , but we show that it is true when 4n  2n   and 3n  . 
 
Keywords: Normal Matrix; Matrix Commuting with Its Conjugate and Transpose 

Introduction and Results 

Let A  be an -by-  normal matrix, i.e., n n A  is a 
complex square matrix  n A M , with the property that 

* *AA  A A , where * TA A  is the conjugate-transpose 
of A . The Fuglede-Putnam Theorem tells us that if 

BAAB =  for some n , then BM * *A B BA . Suppose 
that AA  AA , where A  is the conjugate of the matrix 
A  (so we take the complex conjugate of every entry of 
A ). Then taking the transpose gives  

T T T T * T T * T T ,A A A A A A A A AA A A      

from the the Fuglede-Putnam Theorem. In a similar way, 
we see that if T TAA A A , then AA AA , so these two 
statements are equivalent when A  is normal. The ques- 
tion arose in [2], whether the conditions  

T TandAA AA A A AA   

imply the third condition * *AA A A , so that A  is nor- 
mal. 

This is false when . In fact, any matrix of the  4n 

form  where   ,
0
ab cd

ab

I I
A

I

 
 
 

2 2

 ,ab

a b
I

b a

 
   

, , ,a b c d  , ,  and  not both zero, 
has the property that both 

0c d  c d
AA AA

2011). My solution for  appeared in the spring 
2012 issue, but no solution for the case  has ever 
been given. In this paper, we give the solution for the 
case 

2n 
3n 

3n  , and for completeness, we also give the solu- 
tion for 2n  . Specifically we prove:  

Theorem 1 If nA M ,  or , then 2n  3n 
AA AA  and T TAA A A  imply that A  is normal.  

Proof. We need the following preliminary result, 
which is a direct consequence of Theorem 2.3.6 in [3] 
(using the fact that for nA M , A B iC   where  
and  are real then 

B
C AA AA  if and only if  

BC CB ), and stated explicitly in [1,2]. 
Theorem 2 Let nA M , , with 3n  AA AA . 

Then there exists a real orthogonal matrix  nQ M   
such that  is of the form:  TQ AQ

1

2

3

0

0 0

0 0 0 k

A

A

A ,

A

   
   
  
 

 
  

 
 
  

    
 

 

where each iA , 1 i k   (for some ) is a 1-by-1 
matrix or a 2-by-2 matrix.  

k

  and T TA A AA , 
but A  is not normal. In this paper, we prove that if 

nA M  where  or 2n  3n  , then these conditions 
do imply that A  is normal. This result was first pro- 
posed as a problem by the current author in the Interna- 
tional Linear Algebra Society journal IMAGE (fall  

Example 1. Note that if TA Q Q  ,  real ortho- 
gonal, 

Q
AA AA  and T TAA A A  if and only if  

    and T T    . Also note that if TA A  
and AA AA . then A  is normal since *A A  in this 
case. 

with T TAA A ALemma 1 If 2A M  , then A  is 
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ei  

Proof. Suppose that , with 

ther symmetric or of the form b . 

a

, ,
a b

a
b a

 
  

, , , ,
b

A a b c d
c d


  
 

 

T TAA A A , then  
2b a2

2 2

a c bd

ac bd c d

 
   

2 2

2 2

a c ab cd

ab dc b d

  
  

 

ac bd   .  





Hence  and 2 2b c
 b c ,

ab cd
 Case 1.  so that A  is symmetri

r  
c.  

Case 2. c , then ab bd ab bd     o
0

b  
ab bd . If , then  b  A  is symmetric. If 0b  ,  

a  

Prop on 1 If 

a d  nd 
a b

  A
b a


  

.

ositi 2A M  with T TAA A A  and  

AA AA , then A  is al.  norm
Proof. e    From th  Lemma 1, we have two cases. If

a b 
   , ,a b , then A

b a 
A  is normal. On the  

other hand, if A  is symmetric with  AA AA , then 
since *A A  in this case, we must have * *AA A A , 
so A  is al.  

E ample 2. We now look at the case of 
norm

x 3A M . We 
start with a lemma: 

Lemma 2 Suppose 
3A M  with AA AA ,  

T TAA A A  and TA Q Q  

  where 

 for som rthoe real o gonal 

matrix Q 3M    is of one of the two  

forms: see Equ (1). ation 
then A  is normal.  

Proof. Case 1: 

0 0

a b x

b a y



 
    
 

. Now we require 

, so that 

,

T T   

0 0

0 0

0 0 0 0

a b x a b a b x

b a y b a b a b a y

x y x y

a b

  

     
              
              

 







2 2 2

2 2 2

2

2 2

2 2

2 2 2

0

0 .

a b x xy x

xy a b y y

x y

a b ax by

a b bx ay

ax by ay bx x y




  





or  

  
 

  
 
 
  

 

 
   
     

0x y A  is normal.  It follows that  , and 

0

0 0

a x y

b z

c

 
  Case 2: If  
  

0 0 0 0

0 0 0 0 ,

0 0 0 0

a x y a a a x y

b z x b x b b z

c y z c y z c c

 then  

       
                
              

2 2 2

2 2

2

2

2 2

2 2 2

.

a x y bx yz cy

bx yz b z cz

cy cz c

a ax ay

ax x b xy bz

ay xy bz c y z

or  

   
   
 
 

 
 
 

   
    

2 2 0x y  2 2, Hence  x z , , and 2 2 0y z 
x zx iy  ,   , y iz ay cy 0y and also , so    

(giving a cA  normal) or   diagonal and  . Sup- 
pose a c0y  .   so that 

 0x zCase 2(a). If   
ax bx yz y b a

, then 
     x i b a z      so that   and 

 
 0 .

0 0

a i b a b a

b i a b

a

   
     
  

 However, this matrix 

also has the property that    , which gives in 
Equation (2). It follows from equating the entries in the 
(1, 2) position  

2 2 2 2
2 2a b ab a b ab      , or 

2
0a b 

 

,  

, or 0 , ,

0 0 0 0

a b x a x y

b a y b z a b

c

   
          
      

 

, , , , , , (1)c x y z    

 
 

 
 

2 2 2 2 2 2 2

2 2 2 2

2

2 2 2 3

0 2 2 (2)

0 0 0

a i a b ab ab ab a b i a b ab ab ab a b

b i a b ab b i a b ab

a a

               
   
   

          
   
  
  

 

2 2 2

2 2

2

2 2 2 3

0

0

a



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so , and hence is diagonal and a b   A  is normal.  

Case 2(b). This is where 0x z  , and since  
 we have , so that 

and this is treated in a  

si
Propositi

ax bx xy   y a b 
 

 0 ,

0

a i a b a b

b i a b

   
     
 

 

0 a 
milar way.  

on 2 If 3A M   h Twit TAA  A A  and 
AA AA , then A  is normal.  

Proof. We show that every ca
the Lemma 2. From Theorem 

se reduces to the case of 
1, every matrix   with 

TA Q Q   ( Q  real orthogonal) can be chos o be 
 three forms: 

(I) , or (III) 

have dealt with in Lemma 2, s  

Case (II): gives in Equation (3). 

It follows that 2 2 , and 

, so that 

en t
one of the following

0 z  , (II) 
0 0 c
 
   0 0 e

 
  

0 b c     . 

a x   y

b 

0

a x y

d e

 

  

a b x

c d y 

We  Case (I) o consider 
T T     

2 2b x c  , 2 2c y b 
2 2 0x y  x iy 

0 , then 
.  

since Case 1. x iy 
ey

bx dy ey  , 
biy dy  , so  b i d e  . 

Also xe a ives x cy   g xe ax cix  , so th
=c i e a s the form  

at  
 ha, so   

 


0 0

a i e iy

i y

e


   



 e a d
d







e use the faNow w ct that  is gives in E   . Th qua-
tion (4). On ing  3) position we have:  equat  entries in the (1,

   ay y d e ye ay y d e ye         

and simplifying gives    y d a y a d   , so if a d  

we have 
y a d

y a d


 


 

Equating entries in the (2, 3) position gives:  

    ,y e a dy ye y e a dy ye        

and this reduces to:   y d a y d a    , so if a d , 

y a d

y a d


 , contradicting the above. We conclu   


de that

a d  and   is of the form  

 a i a e iy

a e a y

e



  ,

0 0

i

 
    
  

 

 apply Lemma 2. The other possibility is that and we can
0y x  , so that b c    and   is either of the form  

0

0

0 0

a b

b d

e

 
    
  

c b, a symmetric matrix (when ), or of 

the form 

0 0

a y

e

a b iy

b

 
    
  

 (whe  c b  , since in this  n

case a d ).  
Case 2. 0x iy   , then  gives  bx dy ey 

 b i e d   gives  c i a e , and ax cy xe  , so  

that   has the form  

 a i e d iy

e



  .i a e d y

0 0

 
    
  

 

We proce ly as in Ca duceed exact se 1 to re    t
 

2







o the  

2 2 2 2

2 2 2 2 2

2 2

(3)

a b x ac b xy xe a c ab cd ax cy

ac bd xy c d y ey ab cd b d bx dy

xe ax cy xb yd x y e

        
           

    

 

2

2ye e 
 

d

        

        

        
        

2

2

2

2

2

2

0 0

(4)

0 0

a d e e a ia d e id d

ia e a id e a e a d e d y e a dy ye

e

a d e e a ia d e id d e iay iy d e iye

ia e a id e a e a d e d y e a dy ye

e

      
 
          
 
  
         
 
            
 
  

e iay iy d e iye    
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situation of Lemma 2. 

In Case (III), where , we proceed ex-  

actly as in Case (II) to deduce the result. 
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