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Abstract 
 
This paper surveys the field of adaptation mechanism design for uncertainty parameter estimation as it has 
developed over the last four decades. The adaptation mechanism under consideration generally serves two 
tightly coupled functions: model identification and change point detection. After a brief introduction, the pa-
per discusses the generalized principles of adaptation based both on the engineering and statistical literature. 
The stochastic multiinput multioutput (MIMO) system under consideration is mathematically described and 
the problem statement is given, followed by a definition of the active adaptation principle. The distinctive 
property of the principle as compared with the Minimum Prediction Error approach is outlined, and a plan 
for a more detailed exposition to be provided in forthcoming papers is given. 
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1. Introduction 
 
In mathematical theory of data processing and control 
systems, the problem of overcoming a’priory uncertainty 
has a long history. As from the first principles of auto- 
matic optimizing control systems by Draper and Li [1], 
the first approaches to designing such systems by Kal- 
man [2], and from the fundamental works on dual control 
by Feldbaum [3-6], it has been the focus of attention for 
many professionals, giving rise a host of publications in 
journals, conference proceedings and books [7], and thus 
determining the front line research in developing a 
theory and design of systems with the highest capa- 
bilities. The solution to this problem is naturally and 
closely associated with the concept of adaptivity. 

As can be seen from the available literature, in an 
adaptive system the current information is percepted, 
analyzed, and used for the intentional change of the 
system. Thus, the adaptivity is realized here as the triune: 

1) Classification of data percepted by modes of ope- 
ration: the nominal mode or one of faulty modes; the 
corresponding block can be called Classifier.  

2) Identification of the process model and/or mea- 
surement model launched when the faulty mode point is 
detected; the corresponding block is naturally to call 

Identifier.  
3) System modification after the identification stopped 

with the new estimates for model parameters when the 
nominal mode point is detected; the corresponding block 
can be called Modifier.  

These functions are not always broken into the three 
separate processes; in fact however, they are considered 
inherent to any adaptive system. Sometimes, identifi- 
cation is not separate from modification, and then no 
difference is made between these two processes. Such 
one-in-two process of changing the system is called, after 
Tsypkin [8], adaptation and the corresponding block 
adaptor (Figure 1), whereas making decision concern- 
ing modes of operation is sometimes called (for short) 
control over the system mode of operation. This term can 
imply emphasis on solving one of two (or both) subtasks: 
change detection and change point detection where 
“change” means switching from one mode of system 
operation to another. To equip the system with adaptivity, 
the crucial tasks to be solved effectively are the quickest 
change point detection and the unbiased estimation of the 
data source parameters, whose new unknown values may 
result from the change. 

The quickest change point detection is of great impor- 
tance for many applications and has extensive references  
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Figure 1. The generalized block-diagram of an adaptive 
system. FMPD—Faulty Mode Point Detected; NMPD— 
Nominal Mode Point Detected; FMD—Faulty Mode De-
tected. Legend: t —external “reference” signal; td — 
external “desired” signal; 

r
 —uncertainty parameter;   

—suboptimal estimated parameter on which Feedback is 
based; ̂ —current estimated parameter; ˆ* —final value 
of ̂  resulting from identification. 
 
(e.g. [9] and many others). Parameter identification 
methods have also become the topic of a large body of 
research. However, little attention is still being given to 
the study of bias in parameter estimates. The bias in *̂ , 
the final result of identification, with respect to the true 
value †  of the uncertainty parameter   is the most 
difficult to cope with when based on the incomplete 
noisy observations over a closed-loop stochastic control 
[10,11]. As this takes place, the existence of bias is not so 
annoying as its dependence on (unknown) experimental 
conditions [12]. 
 
2. Generalized Principles of Adaptation 
 
The comprehensive and systematic analysis of existing 
system adaptation methods shows that design metho- 
dologies of adaptive filtering (state estimation) and 
stochastic control can be grouped into five large cate- 

gories as follows. 
 
2.1. Bayesian Adaptive Model (BAM) 
 
The whole vector space of unknown model parameters is, 
firstly, partitioned and secondly, approximated by a set 
of design vectors. Based on each of those vectors, the 
optimal system is built, and the conditional (a’posteriori) 
probability density for each design vector is calculated to 
be used as a weighting factor for the system output. The 
approximation for the optimal estimate is computed as 
the weighted mean of outputs over the set of designed 
systems (Figure 2).  
 
2.2 Extended Adaptive Model (EAM) 
 
The state variable vector is augmented with the constant 
subvector of unknown parameters. Formed in this 
fashion, the extended model state equation is used as the 
basis for the optimal system design (Figure 3).  
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Figure 2. Bayesian (partitioned) Adaptive Model (BAM) 
principle:  *
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ip z —a’posteriori probability densities, 
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Figure 3. Extended (state based) Adaptive Model (EAM) 
principle:  ˆˆ ,t tx  —extended model EM  state vector. 
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2.3. Analytical Relations Based Adaptive Model  

(AAM) 
 
The unknown parameters of the optimal system are ex- 
pressed analytically or computationally through statistics 
of one or more chosen processes within the suboptimal 
system structure. These statistics are calculated through 
time averaging over a single sample representing the en- 
semble of samples for the chosen process. The analytical 
relations are then solved for the unknown parameters of 
the optimal system (Figure 4).  
 
2.4. Performance Index Based Adaptive Model  

(PIAM) 
 
In PIAM, the specifications are given in terms of the 
residual between an explicit reference signal and a model 
(predicted) signal. The model parameters are adjusted so 
that the model output would be close to that of real 
system taken as the reference. The mutual proximity of 
these outputs is taken as a performance index (a func- 
tional) to be minimized (Figure 5). Mininum seeking 
methods are designed to provide convergence of the 
adaptive model parameters to the values minimizing the 
performance index. It means that PIAM principle pro- 
vides a closed loop identification scheme, i. e. the scheme 
with the feedback in performance index. The approach 
unites many methods: Minimum Prediction Error (MPE) 
method, Least Squares method, Maximum Likelihood 
method and many others [7].  
 
2.5. Characteristic Matching Adaptive Model  

(CMAM) 
 
An indirect and simplified performance index is intro-  
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Figure 4. Analytical (optimality equation based) Adaptive 
Model (AAM) principle:  ,  —a statistic obtained from 
the sample  ˆ

1 1,t tx z ; —the model optimality 
equation. 

  ,  

duced instead of the original design performance index. 
Usually, it is defined as a deflection of a theoretical value 
of the inner system process characteristic from the cor- 
responding actual value. The adaptation mechanism is 
designed to minimize this deflection (Figure 6). One 
possible technique for that is introducing a fictitious 
noise into adaptive model equations [13,14].  
 
3. Dynamic System and Problem Statement 
 
Consider a linear time-invariant state-space stochastic 
MIMO control system  

       1 = , n
i i i ix t x t u t w t x           (1) 

     = ,  m
i i iy t Hx t v t y            (2) 

     1 = , n
i i ix t x t u t x 
                (3) 
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Figure 5. Performance Index based Adaptive Model (PIAM) 
principle: ( )F  —an even loss function; ( )  —model 
performance index. 
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Figure 6. Characteristic Matching based Adaptive Model 
(CMAM) principle: —theoretical (predited) value of a 
characteristic; 
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—experimental (virtual) value of the 
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     FR= = ,  q
i i iu t f x t Fx t u              (5) 

where , composed of a plant P, Equation (1), a 
sensor S, Equation (2), and a feedback controller FC, 
Equations (3)-(5), realizing Feedback Strategy 

i

 S   as 
shown in Figure 1. 

According to the separation theorem, FC is composed 
of a feedback filter FF, Equations (3)-(4), cascaded with 
a feedback regulator FR, Equation (5). Based on the 
Kalman theory, FF is the one-step predictor, Equation (3), 
coupled with the estimator, Equation (4). Note that in 
signal processing expositions, the process  ix t  in 
Equation (1) is called the useful signal, the process 

 iHx t
 iv t

 in Equation (2) the observation signal and 
 the observation noise. In our case, the available 

data are complemented by control input , and so   iu t 

the observation data are  at every in-    
 1
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i

i

y t
z t
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stant . i

The main assumptions are quite standard as follows. 
The random initial state 

t 

 0x t  is given at some 0t    

with   2

0 <E x t   where  E   denotes the ex-  

pectation of Euclidean norm  ;  and  iw t  iv t  are 
zero-mean mutually orthogonal wide-sense stationary 
orthogonal processes such that  
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 ju t  for all ;  given as a function j i  iu t FR [ ]f    

of  ix t  is wide-sense stationary and   2
<iE u t    

for all . i

As we summarize the specific (but not restrictive) 
theoretical assumptions, we have the following:  

t 

A1 An infinitely long sample of observations  iz t  
is a realization of a stochastic process on a probability 
space  where the measure  on the space 

 is such that a form of ergodicity holds. For the 
purposes of this paper, it is sufficient to require the 
ergodicity in the mean for the inner processes of the 
system that are supposed to be wide-sense stationary. 
According to [15], the ergodicity theorem for wide-sense 
stationary processes states that the sample mean com- 
puted on increasing finite segments  

 , , P   P


   1 1=
TN T T

Nz z t z t

A2 Plant Equation (1) and sensor Equation (2) are 
given by the standard observable model, SOM.  

A3 Four matrices in the system description, namely 
the state transition matrix , actuator matrix   , and 
noise covariances Q  and  in the Equations (1)-(2) 
depend on an uncertainty -component vector 

R
l   , 

as they are marked by the subscript  . Each particular 
value of   specifies a mode.  

Remark 1 The resulting parameterization of x , , y
x  and u  by   has been suppressed for simplicity of 
notation. For the same reason, henceforth we shall write 
 ,  ,  and  without subscript Q R  .  

A4 The charts of the atlas covering the parameter 
manifold   constitute either a finite, countable or a 
continuous set. Thus the system itself can operate in 
several modes (finitely or infinitely many).  

A5   constitutes an identifiable SOM parameteri- 
zation [7], i.e., for all  and all , we have  z , '  

   1 1; = ; =N N ' 'P z P z     

A6 The system is designed to operate with a minimum 
expected control cost  
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x t Xx t u t Uu t

 


   
    (6) 

for each  and some , , and .  > 0N 0fX  > 0U 0X 

   of the data will converge in 
quadratic means (q.m.) to the exact mean given in terms 
of .  P

A7  1 2,Q  is stabilizable,  1 2, X   is detectable, 
 , H  is completely observable, and  is com- 
pletely controllable.  

 , 

A8 For any    the designed system holds its 
property to be  -mean exponentially stable [7].  

A9 A mode switching mechanism is viewed as deter- 
ministic, and yet it is unknown to the observer (like 
controlled by an independent actor) but allows for 
enough time between successive switches to leave no 
doubt that A1 practically holds.  

Assumption A2 is made for simplicity and may be 
omitted if one includes a similarity transformation into 
the inference (thus defining new basis vectors for SOM 
in the state space). Assumptions A3-A5 bring the system 
to the realm of hybrid or multi-mode systems. One value 
of   , denoted by 0 , designates the so called 
adopted operating mode, which is recognized—not 
obligatorily albeit possibly—as a nominal operating 
mode, NOM. The other values 0\ 

= \

 can be viewed 
as specifying some alternative operating modes re- 
cognized—not obligatorily albeit possibly—as faulty 
operating modes, FOMs, FOM 0  . Assumption 
A7 guarantees the existence of the optimal steady-state 
parameters  ,  , K , F  in Equations (3)-(5) for 
any mode. Algorithms to compute these parameters are 
as follows where subscript “ ” corresponds to 0 0 .  
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Algorithm 1 
 

 

Algorithm 2 
 

These algorithms hold when the FR function,  FRf  , 
is chosen to satisfy the second equality in Equation (5). 
In this case, the assumption A8 holds if  
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being the transition matrix for the stackable state vector  

   
T
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  of the given system Equations (1)-(5),  

is such that its eigenvalues lie in the open unit disc. 
The problem is to identify the optimal Steady State 

Kalman Filter (SSKF) for any system mode that appears 
after a mode switch, in order to use the identification 
result *̂  as a substitute for FF ( *ˆ:=   as in Figures 
4, 5 and 6 is assumed). 
 
4. Active Principle of Adaptation 
 
Analyzing possibilities to apply any of the adaptation 
principles considered above in Section 2, we put in the 
forefront the behavioristical aspect of the adaptive part of 
a system. In so doing, we notice that there are two more 
general principles of (or two approaches to) adaptation to 
be contrasted to each other: 
 Passive Principle: Adaptation based on following 

some foremade prescriptions and so free of any 
tracking (and, as a sequel, without any guarantee of) 
the desired quality of system and its small 
deflection from the point of optimum, and  

 Active Principle: Adaptation based on tracking 
(and, as a sequel, with certain guarantee of) the 
desired quality of system and its small deflection 
from the point of optimum.  

Viewed from this perspective, BAM, EAM and AAM 
are passive, whereas PIAM and CMAM are active. Natur- 
ally, there may exist combinations of these behavioristical 
features in one adaptive system; however we focus on the 

active type of adaptation as using PIAM of Section 2 for 
MIMO control systems desribed in Section 3. 

Original performance indices: Let  ˆ
iESTx t  and 

 ˆ
iESTx t  be a one-step predicted and a filtered estimate  

of  ix t , correspondingly. Evidently,  and  i
e t  ie t   

being the errors committed by those estimators,  

     ˆ
i i ESTe t x t x t

i

               (7) 

     ˆ
i i ESTe t x t x t

i

               (8) 

are not available in practice. They are useful in theory 
only when the corresponding original performanse in- 
dices (OPI) given as the limiting mean square error cost 
in one of two equivalent forms  

      1
o 1= E ,lim

T
i i j i

j
J e t We t Y t t 




      (9) 

or  

      2
o = E ,lim

i i

T
j i

j
J e t We t Y t t 


      (10) 

whose domain includes all time-invariant one-step 
predicting estimators 

iEST  x̂ t  or filtering estimators 

 ˆ
iESTx t  of  ix t , conditioned on the knowledge of all 

preceding measurements extracted from the above 
closed-loop system, are minimized, where  

       1, = |
T

j i j j iY t t y t y t y t
        (11) 

is the standard notation for a stackable vector composed 
of column vectors  jy t  through  iy t , , and 

 is a symmetric semi-positive definite ( ) 
weighting matrix. 

>i j
WW 0

Problem of active principle: Given the original per- 
formance index as (9) or (10). The minimum of (9) or, 
equivalently, (10) is achieved for all  if and  0W 
only if  ˆ

iESTx t  is identical to  ˆ
i

x t  and  ˆ
iESTx t  is  

identical to  i
x̂ t  where  ˆ

i
x t  and  ˆ

i
x t  are esti-  

mates generated by the steady-state optimal (Kalman) 
filter  
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      (12) 

           ˆ ˆ ˆ,  
i i ii iy t Hx t t x t x t K t       i    (13) 

In (12) and (13), =fG K ,   1
= T TK H H H R


    

and   satisfies the algebraic Riccati equation  

  1
= .T T TH H H R H Q

           
   (14) 

However, (9) or (10) are unfit for use in minimum 
seeking methods (for example, in stochastic approxi- 
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mation or any others used in PIAM) by virtue of (7) and 
(8) being unavailable. The core of our method is to form 
an auxiliary performance index (API), using the 
available values  and  iu t  iy t  only, so that nece- 
ssary and sufficient conditions for its minimum are 
equivalent to those for minimum of (9) or (10). 

Note that MPE methods use a performance index to be 
minimized, too, in the process of system (better to say, 
model) adaptation. However, they predict not the exact 
state vector  ix t  as  ix t

 i

 is inaccessible, but the 
measurement vector y t , and this is the difference 
between our approach and the MPE approach. 

An intermediate discussion: In the Equations (7) and 
(8), the first operand,  ix t , can be called the hidden 
reference model output, while the second operand is the 
explicit adaptive model output to be fitted to  ix t . The 
name “hidden” comes from the fact that the “reference 
model output”  ix t , which is subject to Equation (1), 
is unavailable. 

Alternative forms of OPI: If we make use of the well- 
known innovation representation (12)-(13) of Data Source 
(1)-(2), then we can consider the following resi- duals  

     ˆ ˆ
i i ESTr t x t x t  

i



i



          (15) 

     ˆ ˆ
i i ESTr t x t x t             (16) 

instead of errors (7)-(8). In (15)-(16), the first operand 
again represents the hidden reference model, in this case 
described by (12)-(13). Correspondingly, one can take 
the original performance indices in the altertative forms  

     3
o 1= E ,lim

i i

T
j i

j
J r t Wr t Y t t 




      (17) 

or  

     4
o = E ,lim

i i

T
j i

j
J r t Wr t Y t t 


       (18) 

equivalent to (9)-(10) in the sense that minimization of 
any of these performance indices leads to the optimal 
parameter values of the adaptive model labeled as an 
estimator by subscript EST . 
 
5. Conclusions 
 
In this paper, the author formulates a new approach 
called The Active Principle of Adaptation. It is intended 
for one class of systems, whose original performance 
index can be used only as a theoretical one, namely for 
linear time-invariant state-space stochastic MIMO filter 
systems, possibly included into Feedback Strategy of sto- 
chastic control or considered independently, for example, 
in communication systems where filtering or detecting 

signals is a priority. 
The approach is focused on constructing an auxiliary 

performance index which would have two properties: 
 accessibility for direct use in adaptation algorithms;  
 equimodality with the original performance index.  
The latter notion means that API and OPI have the 

same minimizing arguments. This is necessary and su- 
fficient to guarantee (theoretically) nonbiasedness of pa- 
rameter estimates. The direct way for these properties to 
hold is as follows: 
 to form an available auxiliary process  it  as a 

substitute for any process (7), (8), (15), (16), and 
then  

 to form the API as  

      a 1= E ,lim
T

i i j i
j

J t W t Y t t  


 

a o= conJ J  st  

with oJ  taken as o
kJ ,  from (9), (10), 

(17), (18).  
= 1,2,3,or 4k

Such a novel set-up provides a new, broad look at this 
field of reasearch. Our plan for further research consists 
of solving the following tasks:   

1) Forming the auxiliary performance index for MIMO 
control systems desribed in Sect. 3.  

2) Studying some particular cases with different and 
progressively increasing levels of uncertainty, in order to 
determine the level, for which the API approach still 
remains workable.  

3) Numerical experimental testing the approach and 
demonstrating its applicability to different applications.  

4) Elucidation of the numerical properties of this 
approach and using the modern efficient computational 
techniques for its computer implementation.  
 
6. Acknowledgements 
 
I would like to thank Prof. B. Verkhovsky for his most 
helpful input, Dr. A. Murgu for his useful comments, and 
an anonymous reviewer for a number of corrections that 
improved the style of this paper. 
 
7. References 
 
[1] C. S. Draper, “Principles of Optimalizing Control Sys-

tems and an Application to the Inertial Combustion En-
gine,” ASME Publications, Mawson, 1951. 

[2] R. E. Kalman, “Design of a Self-Optimizing Control 
Systems,” Transactions of ACME, Vol. 80, 1958, pp. 
468-478. 

[3] A. A. Feldbaum, “The Theory of Dual Control I,” Auto-
mation and Remote Control, Vol. 21, No. 9, 1961, pp. 
874-883.  

Copyright © 2011 SciRes.                                                                                IJCNS 



I. V. SEMUSHIN 
 

Copyright © 2011 SciRes.                                                                                IJCNS 

23

[4] A. A. Feldbaum, “The Theory of Dual Control II,” 
Automation and Remote Control, Vol. 21, No. 11, 1961, 
pp. 1033-1039.  

[5] A. A. Feldbaum, “The Theory of Dual Control III,” 
Automation and Remote Control, Vol. 22, No. 1, 1962, pp. 
1-12.  

[6] A. A. Feldbaum, “The Theory of Dual Control IV,” 
Automation and Remote Control, Vol. 22, No. 2, 1962, pp. 
109-121. 

[7] P. E. Caines, “Linear Stochastic Systems,” John Wiley 
and Sons, Inc., Hoboken, 1988. 

[8] Y. Z. Tsypkin, “Adaptation and Learning in Automatic 
Systems,” Nauka Publications, Moscow, 1968. 

[9] T. L. Lai, “Sequential Changepoint Detection in Quality 
Control and Dynamical Systems,” Journal of the Royal 
Statistical Society, Series B (Methodological), Vol. 57, 
No. 4, 1995, pp. 613-658. 

[10] P. Ansay, M. Gevers and V. Wertz, “Closed-Loop or 
Open-Loop Models in Identification for Control?” In: P. 
Frank, Ed., CD-ROM Proceedings of 5th European Con-

trol Conference, Karlsruhe, 31 August-3 September 1999, 
File F0544. 

[11] O. Grospeaud, T. Poinot and J. C. Trigeassou, “Unbiased 
Identification in Closed-Loop by an Output Error Tech-
nique,” In: P. Frank, Ed., CD-ROM Proceedings of 5th 
European Control Conference, Karlsruhe, 31 August-3 
September 1999, File F0792. 

[12] L. Ljung, “Convergence Analysis of Parametric Identifi-
cation Methods,” IEEE Transactions on Automatic Con-
trol, Vol. AC-23, No. 5, 1978, pp. 770-783. doi:10.1109/ 
TAC.1978.1101840 

[13] A. H. Jazwinski, “Stochastic Processes and Filtering The-
ory,” Academic Press, Cambridge, 1970. 

[14] H. Kaufman and D. Beaulier, “Adaptive Parameter Iden-
tification,” IEEE Transactions on Automatic Control, Vol. 
AC-17, No. 5, 1972, pp. 729-731. doi:10.1109/TAC.1972. 
1100111 

[15] H. Cramér and M. R. Leadbetter, “Stationary and Related 
Stochastic Processes. Sample Function Properties and 
Their Applications,” John Wiley and Sons, Inc., Hoboken, 
1967. 

 

http://dx.doi.org/10.1109/TAC.1978.1101840
http://dx.doi.org/10.1109/TAC.1978.1101840
http://dx.doi.org/10.1109/TAC.1972.1100111
http://dx.doi.org/10.1109/TAC.1972.1100111

