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ABSTRACT 

Generation and propagation of ultrasonic waves in single layer Graphene Nanoribbon is studied using semi-classical 
approach. When piezoelectric Graphene Nanoribbon (GNR) is exposed to time varying light beam, ultrasonic waves are 
produced which propagate in the medium. At low frequencies, we observed oscillations of the ultrasonic observables, 
velocity change and attenuation which are characteristics of massless Dirac fermions in graphene. Exploiting this oscil-

latory behavior, we estimate graphene’s electronic mobility to be around 5 210 cm V s . Propagating ultrasonic waves 

can be amplified, depending on the electric field amplitude. Specifically, amplification occurs when drift velocity ex-
ceeds sound velocity. This scheme can be employed for efficient ultrasonic amplifier device operation. 
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1. Introduction 

Ultrasonic waves are elastic waves consisting of frequen- 
cies greater than 20 kHz and exist in excess of Tera Hertz 
in graphene. Graphene utilizes ultrasonic waves in wide 
range of applications including acoustics, superconduc- 
tivity and sensing. Ultrasonic velocity and attenuation are 
the important parameters required for ultrasonic tech- 
nique of material characterization. The velocity is related 
to the elastic constants and density of material. Hence, 
information about mechanical, anisotropic and elastic 
properties of a medium can be determined from know- 
ledge of the velocity change. 

The discovery of graphene in 2004 sparked a wide 
range of research endeavors in this thinnest material. 
Despite its rich physics, there has been less exploration 
of acoustic characteristics of graphene. In sharp contrast, 
acoustoelectric properties of conventional two dimen-
sional electron gas systems (2DEGs) has been greatly 
studied. Charge carriers in the 2DEG systems couples 
effectively with sound waves. Propagation and amplifi-
cation of acoustic weaves in piezoelectric semiconduc-
tors was earlier studied theoretically in 1962 [1] and ex-
perimentally under crossed electric and magnetic fields 
[2]. We expect that, both the gapless and linear energy 

dispersion nature might allow graphene carriers to couple 
uniquely with sound waves.  

At present, using semi-classical method to explore ul- 
trasonic properties of graphene has not been studied 
greatly. However, a classical approach using nonlocal 
elasticity theory and incorporating small scale effects 
was employed to analyze ultrasonic wave propagation in 
graphene sheet [3]. We assume our graphene system is 
piezoelectric. This is quite good assumption, because 
acoustoelectric effect occurs in piezoelectric semicon- 
ductors with more than one carrier type, or in a multival- 
ley band having well defined maxima and minima or a 
coaxed graphene consisting of holes with right geometry 
[4].  

In this paper, we employ inverse piezoelectric effect to 
generate ultrasonic waves which interacts with massless 
Dirac fermions in graphene. We will consider, instead of 
just d.c field, a superimposed alternating field with fre-
quency comparable to (or stronger than) the sound fre-
quency. Considering a zero magnetic field, we will in-
vestigate frequency dependence of ultrasonic properties. 
Specifically, amplification characteristics of ultrasonic 
waves through attenuation and velocity change in gra-
phene will be studied employing classical equations. It is 
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often a good approximation to treat the problem of sound 
propagation in graphene as purely a mechanical problem 
once the influence of the relativistic 2D electrons is ig- 
nored. 

2. Model and Propagation Equations 

The model we considered here, which can easily be rea- 
lized experimentally, is an engineered homogeneous pie- 
zoelectric Graphene Nanoribbon (GNR) or a graphene 
nanoribbon resting on piezoelectric substrate. A uniform 
applied time varying light beam 

     0, i tE x t E x   e ,         (1) 

along the ribbon axis generates high frequency traveling 
acoustic waves within the medium. This effect is in-
verse-acoustoelectric effect. The direct effect will only 
be viewed as perturbations in the medium, as we will see 
shortly. In Equation (1),  is an a.c frequency and 0  
is static electric field amplitude. GNR is purely one-di- 
mensional along propagation direction and has com-
pletely frozen out dynamics on the in-plane transverse 
and out-plain flexural modes. Actually, this makes our 
system slightly different from similar treatment using 
nonlocal elasticity theory [3,5,6]. 
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A system of coupled equations governing propagation 
of the generated acoustic waves, consists of Gauss, Pois-
son, and diffusion equations respectively; 
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where   electronic density,    piezoelectric coup- 
ling constant,  dielectric permittivity,  D   electric 
diffusion coefficient defined as n e  , C   elastic 
modulation constant and n   electronic density fluc- 
tuation. An auxiliary equation for the velocity is also 
defined. i.e., 
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The differential Equations (2)-(5) are often solve to 
yield velocity change and attenuation of sound waves in 
a medium, if one considers two cases for the piezo-elec- 
tric coupling; zero and finite coupling. In the following, 
we will show how these limits result in the solution. 

2.1. Limit of Zero Coupling 

For very weak or zero coupling of acoustic waves to the 

carriers, one can set 0  . In addition, the absence of 
any source (such as gate voltage, gv  often used in de-
vice applications) to control the electronic fluctuation 
means that 0n  . It turns out that, as in Equations (2) 
and (3), only plain wave solutions for  are admitted 
and the electric field becomes constant, 0 . However, a 
trial solution 

u
E

   0  plugged in Equa-
tion (5) will produce carrier position with time 
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2.2. Finite Coupling 

Now, for 0   sound waves couple effectively to dy-
namics of the carriers. The traveling ultrasonic waves 
caused by the external field produced perturbations on 
the system parameters. Specifically, a scalar potential 
induced is associated with an electric field    1 0 , 
displacement vector,  1  and number fluctuation, 

   1 0 . In view of these, we search for solutions with 
complex harmonic forms 
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       0 1, iqxn x t n n t  e ,           (8) 

         0 1, eiqxE x t E t E t  .        (9) 

where  0  is the equilibrium number of electrons which 
produces electrical neutrality.  1  is the deviation from 
equilibrium which has been defined as 

n
n

n .  1  is the 
sinusoidal field amplitude due to the ultrasonic wave 
motion in the piezoelectric medium.  1  is the induced 
displacement amplitude.  is the wave vector along 

E

u
q

x —direction. Substituting the harmonic solutions into 
Equations (2)-(5) immediately yields 
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We have defined 2C    and  
2
0v C  . Here, 

we do not make any distinction between longitudinal 
velocity,  0  and surface Rayleigh waves, v sv . In future, 
the product  shall be replaced by unperturbed fre-
quency  0

 0v q
.  Obtaining exact solution to these complex 

coupled Equations (10) and (11) is often difficult. Usu-
ally, the problem is well handled by adopting simplifying 
small signal approximations. For instance, the sound 
wavelength can be taken to be far longer than the elec-
tronic mean free path. Also, we assume a simple time 
dependence,  i texp   for  and  It follows 
that, 

 1n  1u .
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The Bessel functions, 

(12) 
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 are introduced through 
Jacobi-Anger expansions, 
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averaging and retaining only  order. In the argu- 
ment of the Bessel function, zeta can be written as 
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where we have used the relations 2 2B FD k T e v    
and F F F . In the following, we defined system 
parameters such that 
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c  is the dielectric relaxation frequency, D  is the 
diffusion frequency, d  is the drift frequency and   
is the normalized electric field (frequency). In Equation 
(12), we demand that    1 1  so that a non-trivial 
frequency dispersion solution for the ultrasonic waves in 
terms of frequencies 
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2.3. Iterative Solutions 

In this section, we present approximate solution to Equa-
tion (13). The equation is complicated, since both sides 
contain  . We seek an iterative solution by considering 
a situation where 0  . Then, 

   00 .                (15) 

This is a zero order solution. It is very trivial and does 
not present any relevant physics. For second order itera-
tion, the zero-th order approximation is substituted into 
the left hand side of the general solution to find 
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Following this iterative procedure, and taking into ac-
count the fact that 1  , the   approximate 
solution takes the form 
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It is immediately obvious from the preceding equation, 
that the presence of the complex term is an indication of 
wave attenuation in graphene. 

3. Discussions and Conclusions 

The velocity change and absorption of ultrasonic waves 
by Dirac fermions are defined as 
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and  

 

 

 

 2
02

2

.
2

c

N Nc

DN

J q
  
 

 

 
 
 
 
  
   

    

  (19) 

respectively. There are quite a number of system con-
stants appearing in the ultrasonic physical observables of 
Equations (18) and (19). These must be fixed in order to 
proceed with any meaningful discussions. In the next 
section, we will attempt to estimate some of these pa-
rameters. Specifically, the electron mobility which fixes 
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3.1. Numerical Estimates 
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In this section, we estimate electron mobility and the 
minimum electric field required to achieve the maximum 
reported electron mobility of 2230,000 cm V s . In or-
der to do this, it is appropriate that we fix the parameter 
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0Ω 10   that is valid for the conditions  0Ω ,  
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, so that thermal processes are minimal. In this 

limit, interactions of Dirac electrons with ultrasonic 
waves become an intra-band affair. Finally, we used 

10 Bk T

 
4

0 2.1 10v   m s  as sound speed in graphene. 
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(and for Ω 1  ), the argument of the Bessel function in 
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We plot attenuation (absorption) with q  and identi-
fied the roots as points of minimal or zero absorption of 
sound waves. A zero of Equation (19) is obtained at 

2.389q  . This yields mobility of about  
2125,000 cm V s  for  

2
0 . The numerical 

value has the same order as the one measured in [7]. The 
value can go higher for strong a.c frequencies, or for 

10 V mE 

Ω .  Since higher frequencies are possible in gra-
phene as demonstrated in [8,9], where typical acoustic 
wave frequencies range from . The sensi-
tivity of mobility to the electric field parameters indicates 
that 

0.1 -10 GHz

  can actually be tuned by those external factors, 
 and   0E Ω.

3.2. Velocity and Attenuation Change with  
Frequency 

Here, we observe the behavior of physical observables as 
frequency and electric field amplitude are varied. Using 
Equations (18) and (19), we first plot velocity and at-
tenuation with ultrasonic frequency in Figure 1. It is 
clear that at high frequencies velocity and attenuation 
disappears. Also, at small values of electric field ampli- 
tude, where 1  , both observables are critically dam- 
ped. However, as the drift frequency exceeds the sound 
frequency, i.e. 1  , the curves quickly falls before 
beginning to oscillate at very low velocities where 
maximum absorption at low frequencies occur. The rea- 
son for these behaviors may be explain as follows; the 
high fields create electronic bunching which initially 
absorbed more of the sound and slows down the electron 
motion. However, over time there is debauching and the 
ultrasonic waves can now propagate in the system. The 
fact that graphene has unique energy spectrum may be 
responsible for the oscillations of the physical observ-
ables. This unusual feature is missing in conventional 
semiconductors [10] and two dimensional electron gas 
(2DEG) systems. 

3.3. Amplification Scheme 

Apart from the presence of complex term in the disper-
sion (19) which indicates a damped wave, there is also a 
possibility to get amplified waves depending on the value 
of  . To get a feeling of the amplification, we plot ab-
sorption versus   in Figure 2. The question now is 
how does one see amplification? In practical applications, 
amplification corresponds to negative attenuation. How- 
ever, positive absorption will yield damping. From Fig-
ure 2, the region 1   is where   is negative. The 
ultrasonic waves are amplified in this region. Thus, the 
condition for amplification is  0d  . The equality 
holds at the beginning of the process.  

4. Conclusion 

We have studied ultrasonic properties of graphene sub- 

 
(a) 

 
(b) 

Figure 1. Behavior of ultrasonic physical observables with 
frequency. 
 

 

Figure 2. Amplification scheme for ultrasonic waves in gra- 
pheme. 
 
ject to time varying external electric field. We observed 
unique oscillations of ultrasonic dispersion and absorp-
tion in contrast to conventional semiconductors that be-
have monotonically. This is due to the high fields creat-
ing electronic bunching which initially absorbed more of 
the sound energy produced and slows down the motion 
of Dirac electrons. However, debauching sets in after 
some time and the ultrasonic waves now propagate freely 
in the system. The unique electronic spectrum of gra-
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phene may account for such behaviors of the physical 
observables. We utilized the oscillatory nature of the 
absorption and velocity variation to compute electronic 
mobility which agrees quite well with reported values. 
The mobility can be tuned by the applied electric field 
amplitude. It is possible to have amplification of ultra-
sonic waves when drift velocity is larger than the sound 
velocity. An ultrasonic amplifier based on graphene de-
vices and operating at higher frequencies can be very 
attractive. 
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