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ABSTRACT 

We present a direct analytical algorithm for solving transportation problems with quadratic function cost coefficients. 
The algorithm uses the concept of absolute points developed by the authors in earlier works. The versatility of the pro- 
posed algorithm is evidenced by the fact that quadratic functions are often used as approximations for other functions, 
as in, for example, regression analysis. As compared with the earlier international methods for quadratic transportation 
problem (QTP) which are based on the Lagrangian relaxation approach, the proposed algorithm helps to understand the 
structure of the QTP better and can guide in managerial decisions. We present a numerical example to illustrate the ap- 
plication of the proposed method.  
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1. Introduction 

The classical transportation problem (TP) is a well- 
structured problem that has been studied extensively in 
the literature. The TP deals with the distribution of goods 
from m suppliers (sources) to n customers (destinations). 
Each of the m suppliers can ship to any of the n custom-
ers at a shipping cost per unit cij (unit cost for shipping 
from supplier i to customer j). Each supplier has ai units 
of supply and each customer has a demand of bj units. 
The objective is to schedule shipments from sources to 
destinations so that total transportation cost, ∑∑cijxij, is 
minimized. A typical TP is formulated as follows: 
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Like the TP, the quadratic transportation problem 
(QTP) can be stated as a distribution problem where each 
of the m suppliers can ship units to any of the n custom- 
ers at cost fij(xij) and where fij(xij) is a quadratic function 
of xij, the amount shipped from source i to destination j. 
The objective is to minimize the total transportation cost 
while meeting demand at the destinations. 

Mathematically, a QTP is formulated as: 
Problem QTP: 
Minimize  
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One constraint out of Equations (5) and (6) is redun-
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dant if the QTP is balanced, i.e., if Equation (7) is satis- 
fied. Note that, as with a classical TP, we assume non- 
negative conditions and zero value of cost functions at 0. 
As compared with the linear TP, the QTP provides a su- 
perior representation of real live distribution problem 
where the unit cost of transportation is not constant. For 
example, consider the case where the unit cost of trans- 
portation might decrease with the volume of transported 
goods. Conversely, there may be an opposite situation 
where the unit cost of transportation increases with vol- 
ume due to highway congestion. 

There is no efficient direct algorithm to solve Problem 
QTP available in the literature. Some authors have at-
tempted to solve Problem QTP as a quadratic program 
with a quadratic objective function involving (m * n) 
variables subjected to (m + n) linear conditions. The prob- 
lem thus formulated could then be solved using the the- 
ory of Lagrange multipliers. Such a process, however, is 
very cumbersome, as it requires taking partial derivatives 
with respect to each of the (m * n) variables and (m + n − 
1) Lagrange multipliers, and solving the resulting (m * n) 
+ (m + n − 1) equations. This task could be overwhelm- 
ing even for a small QTP. And with a second-degree 
polynomial function, one cannot even be sure whether 
the point obtained is a local minimum or the global 
minimum. Many current software programs for solving 
QTP are based on various algorithm developed in the 
literature based on Lagrange multipliers. Authors ex- 
perimented with some of these: Lindo, Excel, and 
WinQSB. In several instances, the three programs pro- 
vided different results, affirming the inability of these 
algorithms to always provide the global minimum for a 
QTP.  

Quadratic functions are versatile, as they can be used 
as approximations for many other functions, as with re-
gression analyses and have been used to model special 
scheduling problems. In this paper we propose a novel 
direct analytical method to solve a QTP where the cost 
coefficients are quadratic functions. The proposed algo- 
rithm exploits the properties of absolute points developed 
by Adlakha and Kowalski [1] to solve a TP with linear 
costs. It is easy to apply and provide insight into the 
problem, and with this, we are able to critically analyze 
the problem. The algorithm can also be used as a pre- 
processor to reduce the transportation problem size. 

2. Literature Review 

Research on TP has generally addressed situations where 
linear costs are assumed. In such a case, a TP can be 
formulated as a linear program and solved by the regular 
simplex (big-M), the dual simplex method or even an 
interior approach. However, these algorithms require 
additional variables, which complicate the formulation, 
enlarge the tableaux, and increase the number of itera- 

tions. These problems led to the stepping-stone (SS) 
technique, which—as a network-oriented algorithm— 
proved very successful and became the standard tech-
nique for over 60 years. In practice, however, the SS al- 
gorithm encounters major obstacles, including difficul- 
ties in identifying an initial basic feasible solution, re- 
solving SS degeneracy, and enumerating SS paths [2]. 
Literature is filled with efforts to overcome these defi- 
ciencies and improve the SS algorithm [3-8]. Korukoğlu 
and Balli [9] propose a variant of Vogel’s Approximation 
Method (VAM) to obtain efficient initial solutions for 
large scale transportation problems. Other researchers [1, 
10] provide alternative solution algorithms. 

Variations in TP cost functions have been studied by 
many researchers. Szwarc [11] develops a method for 
solving TPs with cost coefficients of the form cij = ui + vj, 
where ui and vj represent nonnegative real numbers, a 
method that has applications in shop loading and aggre- 
gate scheduling. Along the same lines, with applications 
to stock location and information storage, Evans [12] 
considers TPs in which cost coefficients are factorable, 
that is, cij = uivj. Evans demonstrates that if the rows are 
arranged by non-increasing ui, and the columns by non- 
decreasing vj, then the northwest corner rule provides an 
optimal solution.  

A limited number of researchers have worked on 
quadratic programming problems. Hochbaum et al. [13] 
consider a specialized scheduling problem. They formu- 
late the problem as an integer program with a quadratic, 
non-separable objective and transportation constraints. 
Employing methods of real analysis, they prove a tight 
proximity result between the integer solution to that 
problem and a fractional solution of a related polyno- 
mially solvable problem. Megiddo and Tamir [14] con- 
sider separable quadratic problems including separable 
convex QTP with a fixed number of sources. Using the 
technique of Lagrangian relaxation, they provide linear 
algorithms based on the multidimensional procedures 
developed by the authors. Cosares and Hochbaum [15] 
present a linear algorithm for the continuous QTP with 
two source nodes.  

To mention a few other related works, Eduardo et al. 
[16] develop a productivity index for the case of a cost 
model using a quadratic cost function. Wanner et al. [17] 
propose a local search optimizer as an additional operator 
in multi-objective evolutionary techniques, to help find 
more precise estimates of the Pareto-optimal surface with 
a smaller cost-of-function evaluation. The operator em- 
ploys quadratic approximations of the objective functions 
and constraints for the purpose of enhancing local search 
phase. Lu et al. [18] present a long-step infeasible pri- 
mal-dual path-following algorithm for convex quadratic 
programming (CQP) whose search directions are com- 
puted by means of a preconditioned iterative linear 
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solver. 

3. The Quadratic Transportation Problem 

Before we proceed, we reiterate some terminology from 
the TP literature. A location (i, j) is said to be loaded (or 
occupied) if there is a value assigned to it in the solution. 
Location (i, j) is said to be fully loaded if that value 
equals min(ai, bj), i.e., the assignment exhausts supply ai 
at source i and/or demand bj at destination j. Location (i, j) 
is interchangeably referred to as cell (i, j). 

Stepping-stone (SS) chains are commonly used in so- 
lution procedures for TPs. An SS chain at a cell, (q, r), of 
a TP cost matrix refers to an ordered sequence of at least 
four cells such that 1) any two consecutive cells lie in 
either the same row or the same column, 2) no three 
consecutive cells lie in the same row or column, and 3) 
the last cell in the sequence has a row or column in 
common with cell (q, r). Tables 1(a) and (b) provide 
examples of SS chains involving 4 and 6 cells, respec-
tively, where xij denotes the load at cell (i, j). Note that 
the allocation of any load at cell (q, r) affects the loads at 
all cells in the SS chain at cell (q, r). 

3.1. Absolute Points for the QTP 

Definition 1: An absolute point (AP) is a cell (q, r) in a 
QTP that must be occupied in any optimal solution 
within the interval from 0 to the smaller of the values aq 
and br. 

The procedure for finding an AP is based on the fol- 
lowing assumptions: 
 
Table 1. (a) An Example of an SS Chain of Four Cells; (b) 
An Example of an SS Chain of Six Cells. 

(a) 

 Column r  Column p Supply 

Row k xkr → xkp ak 

 ↑  ↓  

Row q empty ← xqp aq 

Demand br  bp  

(b) 

 Column r  Column j  Column p Supply

Row k xkr →  → xkp ak 

 ↑    ↓  

Row i   xij ← xip ai 

 ↑  ↓    

Row q empty ← xqj   aq 

Demand br  bj  bp  

1) There is a cell (q, r) in a QTP that must be occupied 
in any optimal solution within the interval from 0 to 
the smaller of the values aq and br, i.e., an AP exists. 

2) If such a cell (q, r) were excluded in a given distribu-
tion, i.e., not loaded, then there exists an SS chain 
leading to cell (q, r) from every other cell that is oc- 
cupied. 

Suppose cell (q, r) is an AP. Then this cell (q, r) must 
be loaded with a shipment from supply aq and demand br 
to eliminate the cell (q, r) from future computations. Not 
loading it means that, for every other loading in row q 
and column r, there will be an SS chain leading to cell (q, 
r). So we have to prove the existence of an SS chain 
leading to (q, r) from every other cell in row q and col- 
umn r. If we ignore cell (q, r), we have to load other cells 
in row q and column r, for example cells (k, r) and (q, p), 
to satisfy demand and supply requirements. 

 
 Column r Column p 

Row k fkr(x) fkp(x) 

Row q fqr(x)* fqp(x) 

 
If there is an SS chain leading to a cell (q, r), then, to 

guarantee a gain from this transaction, we must have 

      kr qr kp qp f x f x f x f x    

         or } { 0kr qr kp qpf x f x f x f x     (9) 

For a given q and r, if inequality (9) holds for every k 
= 1, 2, …, m, and every p = 1, 2, …, n, then (q, r) is an 
AP location, and the value {fkr(x) – fqr(x)} is the largest of 
the comparisons between rows k and q. Note that the 
left-hand side of (9) represents the penalty for placing 
assignments at locations (k, r) and (q, p) rather than at 
location (q, r). See Adlakha and Kowalski [1] for details 
on identifying an absolute point for a classical TP. What 
follows are the steps for identifying an AP in a QTP with 
cost functions fij(x). These steps involve pivoting on the 
qth row in the first QTP cost matrix. 

Step AP1: Calculate fij
q(x) = fqj(x) – fij(x), i = 1, 2, … m, 

j = 1, 2, … n. Ignore the qth row as otherwise we would 
be comparing it with itself.  

Step AP2: Draw all n quadratic curves fij
q(x) on the 

same graph, i = 1, 2 … m, i  q. 
Step AP3: Determine the minimum function fi

q(x) 
within the range for each i, i  q. 

Step AP4: An AP exists if the minimum functions in 
each row are in the same column.  

Remark 1: For Step AP2, many software packages are 
easily available to draw the quadratic curves and to study 
the ranges. 

Remark 2: For Step AP3, to determine the minimum 
element fi

q(x), one should simply limit the search to the 
range of 0 to min(aq, bj) for j = 1, 2, … n. There is no 
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need to exceed the range min(aq, bj) as this is the maxi-
mum load that can be assigned at cell (q, j). 

3.2. Absolute Quadratic Algorithm for the QTP 

The algorithm identifies the AP cells, which are loaded 
sequentially, and the QTP is reduced. It is obvious from 
the absolute point theory that if a cell were an AP, load- 
ing it would have no impact on the distribution of the 
remaining loads. Note that once an AP is identified, it is 
clear from inequality (9) that the AP has to be loaded 
with the maximum possible amount. 

Step 1: Look for AP cells along each row. 
Step 2: If none, go to Step 6. Otherwise continue. 
Step 3: For each AP cell (q, r), assign xqr = min(aq, br). 

Change aq  (aq - xqr), br  (br  - xqr). 
Step 4: If modified ai or bj = 0, delete the correspond- 

ing ith row or jth column. 
Step 5: If the above analysis yields a solution, STOP. 

Otherwise go back to Step 1 with the reduced cost ma- 
trix. 

Step 6: Find a solution to the reduced cost matrix using 
any inductive method. 

4. A Numerical Example 

We illustrate the Absolute Point Algorithm for the QTP 
with the example presented in Table 2. 

Step 1: First we search for available APs in the cost 
matrix. Step AP1 provides the following three fij

q(x) = 
fqj(x) – fij(x) matrices by pivoting on rows i = 1, 2, and 3. 
Figure 1 presents fij

q(x) functions and curves corre- 
sponding to Step AP2 directly under each fij

q(x) matrix 
for each i. Since there are only three rows, each fij

q(x) 
matrix has only two sets of differences fqj(x) – fij(x). The 
graphs related to pivoting on row 1 are provided directly 
beneath the fij

1(x) matrix where graph fij
1,i(x) presents the 

set of three quadratic equations in the ith row of fij
1(x),  

 
 fij

1(x)    fij
2(x)    fij

3(x)  

b1 b2 b3  b1 b2 b3  b1 b2 b3 

- - -  –x2 + 2x -x2 2x2 – 3x  x2 + 2x –x2 + x 3x2 – 3x 

x2 – 2x x2 –2x2 + 3x  - - -  2x2 x x2 

–x2 – 2x x2 – x –3x2 + 3x  –2x2 –x –x2  - - - 

 

 

Figure 1. Step AP2: fij
q(x) functions and curves for the example.  
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Table 2. Cost matrix fij(x) for the QTP example. 

 b1 b2 b3 Supply

a1 2x2 + x 3x2 + 2x x2 + 4x 2 

a2 x2 + 3x 2x2 + 2x 3x2 + x 2 

a3 3x2 + 3x 2x2 + 3x 4x2 + x 2 

Demand 1 4 1  

 
and so on. 
1) Step AP3: Looking at the two curves under fij

1(x), we 
find that the smallest function in fij

1,2(x) is  f21
1(x) = 

x2-2x for 0  x  1; and the smallest function in fij
,1,3(x) 

is f31
1(x) = –x2 – 2x for 0 x 1 where min(a1, b1) = 1. 

Step AP4: Since minimum functions f21
1(x) and f31

1(x) 
are in the first column, Step AP5 indicates that cell (1, 
1) is an AP.  

2) Similarly looking at the two curves under fij
3(x), we 

find that the smallest function in fij
3,1(x) is f13

3(x) =3x2 
– 3x for 0  x  1; and the smallest function in fij

3,2(x) 
is f23

3(x) = x2 for 0 x 1 where min(a3, b3) = 1. Since 
minimum functions f13

3(x) and f23
3(x) are in the third 

column, cell (3, 3) is an AP.  
Step 3: 

1) For AP cell (1, 1), assign x11 = min(a1, b1) = 1. 
Change a1  (a1 − 1) = 1; b1  (b1 − 1) = 0. 

2) For AP cell (3, 3), assign x33 = min(a3, b3) = 1. 
Change a3  (a3 − 1) = 1; b3  (b3 − 1) = 0. 

Step 4: Since modified b1 = 0 and b3 = 0, delete the 
corresponding first and third columns.  

Step 6: The remaining supplies are easily assigned to 
the only remaining column—the second column—to 
meet the demand b2 = 4 units. Table 3 presents the re-
sulting solution with a total cost of 30 for shipping 6 
units. 

Note that the conditions for APs for the analyzed for-
mulation are dynamic and depend both on the values of 
the function cost coefficients and on the demand and 
supply values. This means, for example, that a given AP 
location can stop being an AP for a different set of the 
demand and supply values. 

Shadow Prices for the QTP 

Arsham [2] discusses the relationship between the sha- 
dow prices and the optimal solution of a TP. Using a 
similar analogy, we utilize the shadow price theory to 
verify the optimality of a QTP solution. The shadow 
functions and prices are easily obtained from a QTP so- 
lution matrix as follows: 
1) Set ui + vj = fij(xij) for all loaded cells. 
2) Set v1 (or another ui or vj) = 0 and solve the system of 

equations for all ui and vj values. 
3) Compute the shadow function for each unused cell (i, 

j) as ui + vj. 

According to established TP shadow price theory, the 
current QTP solution is optimal if all ui + vj function 
values obtained in step (iii) above are all less than or 
equal to the corresponding fij(xij) values. Table 4 presents 
the shadow functions for the solution obtained in Table 3 
where the loaded cells are marked by *. It is clear that for 
all currently unused cells the value of the shadow func- 
tion/price is less than or equal to the corresponding 
quadratic cost functions from Table 2 if any value 
greater than 0 and less than the maximum possible value, 
min(ai, bj), is assigned at the cell. This confirms that the 
solution obtained in Table 3 is optimal. 

5. Conclusions 

We have developed a direct solution algorithm for solv- 
ing a QTP. The Absolute Quadratic Algorithm is based 
on various intrinsic characteristics of the QTP. It looks 
for cells and routes that will always be used in an optimal 
solution because of cost efficiency, regardless of supply 
and demand constraints. Since an absolute point must 
always be loaded in any optimal solution, loading it ex- 
hausts either a supply or demand. Upon depleting the 
corresponding row or column, the proposed method also 
reduces the dimensions of the cost matrix for the QTP. 
After reductions and eliminations, the solution of the 
QTP is “squeezed” into the remaining cells and may be 
determined logically in the last step. We extend the 
shadow price theory of the TP to the QTP and develop a 
shadow function matrix to verify optimality.  

To the best of our knowledge, besides the very labori- 
ous Lagrangian method, this algorithm is the first for pro- 
viding a direct solution of a QTP. As compared with the 
earlier international methods for QTP which are based on 
the Lagrangian relaxation approach, the proposed algo- 
 

Table 3. Optimal solution for 3 × 3 QTP. 

 b1 b2 b3 Supply 

a1 1 1  2 

a2  2  2 

a3  1 1 2 

Demand 1 4 1  

 
Table 4. Shadow Price Matrix for the QTP Example. 

 v1 v2 v3 ui 

u1 2x2 + x* 3x2 + 2x* 5x2 2x2 + x

u2 x2 + x 2x2 + 2x* 4x2 x2 + x

u3 x2 + 2x 2x2 + 3x* 4x2 + x* x2 + 2x

vj 0 x2 + x 3x2 – x  
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rithm helps to understand the structure of the QTP better 
and can guide in managerial decisions. Future work 
should seek to extend the theory to coefficients repre- 
sented by higher degree polynomials. Because such func- 
tions can have local minima, a gradient-type algorithm 
can fail to obtain the global minimum. It is, of course, 
possible that a QTP may not have any APs. In such a 
case, other methods or estimations, including heuristics, 
can be used, and the shadow price analysis can be used to 
confirm optimality. Future research is needed to develop 
other generally applicable methods. 
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