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ABSTRACT 

As cancer therapy has progressed dramatically, its goal has shifted toward cure of the disease (curative therapy) rather 
than prolongation of time to death (life-prolonging therapy). Consequently, the proportion of cured patients (c) has be- 
come an important measure of the long-term survival benefit derived from therapy. In 1949, Boag addressed this issue 
by developing the parametric log-normal cure model, which provides estimates of c and m where m is the mean of log 
times to death from cancer among uncured patients. Unfortunately, traditional methods based on the proportional haz- 
ards model like the Cox regression and log-rank tests cannot provide an estimate of either c or m. Rather, these methods 
estimate only the differences in hazard between two or more groups. In order to evaluate the long-term validity and 
usefulness of the parametric cure model compared with the proportional hazards model, we reappraised randomized 
controlled trials and simulation studies of breast cancer and other malignancies. The results reveal that: 1) the traditional 
methods fail to distinguish between curative and life-prolonging therapies; 2) in certain clinical settings, these methods 
may favor life-prolonging treatment over curative treatment, giving clinicians a false estimate of the best regimen; 3) 
although the Boag model is less sensitive to differences in failure time when follow-up is limited, it gains power as 
more failures occur. In conclusion, unless the disease is always fatal, the primary measure of survival benefit should be 
c rather than m or hazard ratio. Thus, the Boag lognormal cure model provides more accurate and more useful insight 
into the long-term benefit of cancer treatment than the traditional alternatives. 
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1. Introduction 

In recent decades, as more cancer victims have enjoyed 
long-term, relapse-free survival, cure has become a real- 
ity for both patients and clinicians. Thus, the primary 
goal of cancer therapy has shifted toward cure of the 
disease rather than prolongation of time to death. To 
achieve a cure, selecting the best regimen is vital. This is 
especially true with children, for whom curative treat- 
ment can yield many years of healthy life, while prolon- 
gation of life offers only a limited benefit before relapse 
takes the child’s life. Furthermore, cured patients are 
saved from cancer-associated sufferings, which could be 
more unbearable to patients than death itself. Hence, the 
proportion of cured patients (cure rate) has become an  

important measure of long-term survival benefit. 
As early as 1949, Boag [1] addressed this issue by de- 

veloping a parametric cure model that allowed him to 
estimate the cure rate (c) and the mean of log failure 
times (m) among uncured patients (failure time means 
time to death from cancer under study). Twenty-three 
years later, Cox [2] published the proportional hazards 
model, which uses the hazard ratio to measure the sur- 
vival difference between groups. Since then non-pa- 
rametric or semi-parametric methods based on his model 
(e.g., log-rank test and Cox regression) have remained 
the mainstay of cancer survival analysis. Hereafter these 
methods will be referred to as “standard survival analy- 
sis”. The purpose of our paper is to compare the useful- 
ness of the Boag and Cox models, whose primary pa- 
rameters are the cure rate and the hazard ratio, respec-  *Corresponding author. 
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tively, and also to confirm the validity of the Boag model 
using the data from breast cancer and other neoplastic 
diseases. 

2. Survival Models and Results of Their  
Applications 

2.1. Proportional Hazards Model 

In 1972, Cox [2] developed a unique model, paying spe- 
cial attention to the hazard, which is the probability that 
survivors at the beginning of a unit interval will die dur- 
ing that interval. He assumed that at any point in time the 
hazard in one group is proportional to the hazard in a 
second group at the same time point. It is important to 
note, however, that the absolute hazard may vary over 
time while the hazard ratio (HR) between the two groups 
remains constant. This single constant allows us to com- 
pare survival between groups. For example, if the aver- 
age HR between the two groups is 0.5, it is presumed that 
the mortality in one group is one half of the mortality in 
the other group. 

2.2. Relationship between Cure Rate and Hazard  
Ratio 

It is generally assumed that, provided the proportional 
hazards model holds, the proportion of patients cured 
(i.e., saved from the event) can be estimated by 1-HR 
[3-5], which in turn is calculated from standard survival 
analysis. For example, consider a trial that compared 
adjuvant chemotherapy with or without trastuzumab and 
found a HR of 0.67 in HER2-positive breast cancer pa- 
tients [6]. This result can be summarized either as “tras- 
tuzmab therapy is associated with a 33% (= 1 − 0.67) 
reduction in the risk of death”, or as “trastuzumab ther-
apy prevents 33% of the deaths that would occur without 
the therapy”. Such statements are commonly found in 
leading medical journals [3,4,6,7]. Hence, given this in- 
formation, most patients would believe their chance of 
being cured could be increased with the treatment if it 
shows a HR less than 1. 

However, according to Peto et al. [8] and Clark et al. 
[9], 1-HR is not the proportion of patients whose deaths 
(or relapse) are prevented by treatment, but the propor- 
tion of deaths that are either prevented or delayed. Thus, 
as will be seen, the HR cannot distinguish between treat- 
ments that prevent death (curative treatment) and those 
that merely delay it (life-prolonging or death-delaying 
treatment).  

Moreover, the relationship between the cure rate and 
HR became even more questionable when we read the 
Cox original paper [2], where he used the data from the 
Acute Leukemia Group B [10] as an example. Between 
1959 and 1960, this group had conducted a randomized 
controlled trial to estimate the effect of 6-mercaptopurine 

(6-MP) versus placebo on steroid-induced remission of  
patients with acute leukemia (most were children with 
acute lymphoblastic leukemia). 

When we re-analyzed the data using the Cox model, 
the HR of 6-MP versus placebo was 0.22 (95% CI: 0.10 
to 0.49) [11].  If the relationship between the cure rate 
and HR were valid, this finding would indicate the fol- 
lowing: 78% (1-HR = 100% - 22%) of the relapse that 
would have occurred in the placebo group were pre- 
vented by 6-MP. On the contrary, further follow-up of 
6-MP-treated children revealed that almost all died from 
relapse [12,13]. 

Although the Cox model is still commonly used in 
cancer survival analysis, Cox [14] himself acknowledged 
the limitations of his model. More specifically, he stated 
that the model is unlikely to achieve the two objectives: 1) 
long-term survival study decoupled from shorter-term 
effects; and 2) provision of patient-specific prognostic 
information for clinician and an individual patient. 

2.3. Parametric Cure Model 

The Boag log normal model incorporates the cure rate as 
one of its parameters [1]. He assumed that a fraction (c) 
of the patients with a specific cancer are cured of the 
disease by treatment, while the remaining incurable pa- 
tients will eventually die of the disease (Figure 1) unless 
they succumb to other causes. He further assumed that 
log failure times among uncured patients follow a normal 
distribution with mean (m) and standard deviation (s). In 
the era when computers were not available, Boag manually 
estimated these three parameters for various tumors such 
as cancers of the breast, uterus, lung, head and neck, etc.  

In 1977, Farewell [15] modeled the parameter c as a 
dependent variable in a logistic regression, while in 1994 
Gamel and McLean [16] expressed all three parameters 
of the Boag model as multivariate regressions on various 
covariates. This allows clinicians to determine the effects 
of treatment and other prognostic factors on both c and 
m—information that cannot be obtained with the hazard 
ratio in the Cox model.  

The multivariate model was then extended to allow the 
analysis of grouped data where information on the cause 
of death for individual patients may not be available 
[17,18] (http://survillance.cancer.gov/cansurv/). 

When the nultivariate Boag model was applied to the 6 
MP data, we found that the chemotherapy failed to cure 
the disease (Wald P = 0.99), but rather prolonged time to 
relapse 3.8 times longer (95% CI: 2.07 to 7.15) than in 
the placebo group [11]. However, since 1960 the propor- 
tion of clinically cured children with acute lymphoblastic 
leukemia has steadily increased to 80% due to progress 
in anticancer regimen (Figure 2) [19].  

These results show that at least two types of anticancer 
treatments are available: a curative one that increases the  
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Figure 1. Three curves derived from the Boag model. c: cure rate; m: mean log failure time; em: median failure time. 
 

 

Figure 2. Results of chemotherapy for childhood acute lymphoblastic leukemia before and after 1960. By permission of Pedi-
atric Clinic of North America and New England Journal of Medicine. 

 
fraction of patients cured of the disease and a life-pro- 
longing one that merely delays tumor-related death. To 
illustrate the differential effects of these two regimens on 
survival and hazard curves, these curves were simulated 
by increasing one of the two parameters (either c or m) of 
the Boag model (Figure 3). 

The red curves show the base-line values of the control 
group (Group 1), while the blue curves represent the ef- 
fects of therapies (Group 2). The middle and right panels 
show the effects of curative and life-prolonging regimens, 
respectively. 

It is readily seen that increase in parameter m alone  
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Figure 3. Survival and hazard curves derived from the Boag model and Cox model. Red: control (Group 1); blue: test treat-
ment (Group 2); c: cure rate; m and s: mean and standard deviation of log failure times in month. To meet the Cox propor-
tional hazard assumption, non-mixture model29 was used (left side panels). Thus, the survival rates were estimated as cF(t), 
where c represents the cure rate; F(t) the cumulative lognormal distribution, and the hazard rate is estimated as ln(c) F(t) . 

 
from 2.5 to 3.0 results in crossing of the hazard curves 
(right lower panel), so the proportional hazards assump- 
tion does not hold. The left panels show the survival and 
hazard curves satisfying the proportional hazards as- 
sumption. Note that these curves are very similar to the 
corresponding ones derived from the Boag model (mid- 
dle panels) in which the parameter c alone is increased 
from 0.3 to 0.4 while m is kept unchanged.  

2.4. Cox Model versus Boag Model in  
Randomized Controlled Trials of  
Cancer Therapy 

To further illustrate the difference between these models, 
two examples of randomized controlled trials will be 
shown in which both models are applied. 

2.4.1. Effect of Adjuvant Chemotherapy for Stage 2  
Breast Cancer 

Using the three parametric versions of the Boag cure 
model (lognormal, log logistic and Weibul) plus the 
log-rank statistic, Gamel et al. [20] re-analyzed the data 
from five randomized controlled trials. These trials, pub- 
lished from 1981 to 1992 by Bonadona et al. evaluated 
adjuvant chemotherapy for stage 2 breast cancer [21-25]. 
The chemotherapeutic regimens included standard treat- 
ment (i.e., mastectomy alone) or mastectomy plus intra- 
venous CMF (cyclophosphamide, methotrexate and flu- 
ouracil) with or without doxorubicin. 

The results showed that in three of the five trials there 
were statistically significant survival differences between 
the treatment and control groups. However, a curative 
effect was found only in the trial with doxorubicin plus 
CMF, whereas in the other two positive trials (with CMF 
regimens), the treatment merely prolonged the time to 
relapse. The stepwise log likelihood ratio test and 
chi-square statistics showed that the lognormal distribu- 
tion provided the better fit to the pooled data than the 
log-logistic or Weibul versions of the Boag cure model.  

2.4.2. Effect of D2 versus D1 Lymphadenectomy in  
Gastric Resection for Cancer  

From 1989 to 1993, the Dutch Gastric Cancer Group [26] 
conducted a randomized controlled trial to compare the 
effects of limited lymphadenectomy (D1) versus ex- 
tended lymphadenectomy (D2) in 711 patients undergo- 
ing potentially curative gastrectomy for gastric adeno- 
carcinoma. After a median follow-up of 6 years the haz- 
ard ratio for relapse between D2 and D1 groups was 0.84 
(95% CI: 0.65 to 1.09). These findings suggest no sig- 
nificant difference, whereas the postoperative mortality 
and morbidity were significantly higher with D2 dissec- 
tion.  

Such negative results did not agree with the clinical 
experience of Japanese surgeons, so we applied the Boag 
model to the same data. Our findings showed a signifi- 
cant difference in cure rate (11.5%; 95% CI: 3.1 to 20.0)  
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between the two groups [11]. Later the Dutch group, by 
extending their follow-up to a median of 15 years, found 
that D2 lymphadenectomy is associated with a signifi- 
cantly lower disease-related death rate (37% versus 48%) 
with a hazard ratio of 0.74 (95% CI:0.59 to 0.93) [27]. 
This difference in the death rate (11%) is close to the 
difference in cure rate (11.5%) found with the Boag 
model approximately 10 years earlier. 

3. Discussion 

Boag is the first scientist who attached special impor- 
tance to cure in the analysis of cancer-related survival. 
The multivariate extension of his model estimates the 
impact of treatment and other prognostic variables on the 
likelihood of cure, thus providing both patients and clini- 
cians the information they need to make vital decisions 
[28]. Although the hazard ratio in the Cox model is 
closely related to the cure rate in the Boag model [29], 
HR is less comprehensible to non-statisticians than c, 
which more accurately depicts the long-term survival 
benefit of a given treatment.  

In contrast, the parameter m of the Boag model plays a 
subordinate role unless all patients being studied are in- 
curable. If only time to death is studied to assess the ef- 
fect of treatment, this could be likened to counting only 
the coins in a cash transaction while leaving the bills 
uncounted.  

Clinical trials and simulation studies have shown that 
standard survival analysis suffer a number of failings; 1) 
they cannot distinguish between curative and life-pro- 
longing treatments [21,30,31]; 2) they are more sensitive 
to an increase in failure time than to an increase in cure 
rate, especially when the follow-up is limited; 3) as a 
result, they may favor a death-delaying treatment over 
one that is curative; 4) they tend to loose power with in- 
creasing follow-up [30,32,33].  

These limitations are graphically shown in Figure 3. 
In the right lower panel, the two hazard curves repre- 
senting the control (red) and the test treatment (blue), 
respectively, separate at the beginning, but then come 
closer and cross. If follow-up is truncated earlier than 
this crossing (for example, at 2 years), the hazard curve 
of the life-prolonging treatment remains lower than that 
of the control throughout the study. Thus the HR of 
treatment versus control would be overstated, while vio- 
lation of the proportional hazards assumption may be 
missed. For these reasons, standard analysis might mis- 
lead clinicians and patients into selecting a less effective 
regimen. Though pharmaceutical industries may benefit 
from the consumption of such drugs, the welfare of pa- 
tients and their families will suffer; if they were correctly 
informed, they might have refused to have a regimen that 

merely delays death. When Heyland et al. [34] inter- 
viewed 278 elderly patients who were at high risk of dy- 
ing in the next 6 months. Only 12% preferred life-pro- 
longing care. 

On the other hand, the parametric cure models also 
suffer limitations. They are less sensitive to difference in 
failure time during the early period [31], although they 
gain power with longer follow-up. Furthermore, under 
certain conditions, they may provide a poor fit to the ob- 
served data. To avoid this problem, some statisticians 
recommend alternative parametric models. 

However, the cause of the poor fit may not be use of 
the wrong model (misspecification) but misclassification 
of events. For example, patients who actually died from 
therapeutic complications in the early postoperative pe- 
riod may be misclassified as dead from cancer (failure). 
It must be kept in mind, however, that early failure is 
very rare, since most clinical trials in the adjuvant setting 
require that participants are in remission or have under- 
gone potentially curative surgery (i.e., these are the eligi- 
bility criteria for candidates to be enrolled in the trial). So 
it is unlikely that failure occurs shortly after its cause has 
been eliminated.  

Even if the trial is conducted in the non-adjuvant set- 
ting, imminently fatal cases should have been excluded 
from most trials. Consequently, the actual hazard curve 
should begin at zero, rise to a peak and then gradually 
decline to zero (Figure 1). Such a unimodal hazard curve 
is seen only in the lognormal or log-logistic model, but 
not in the Weibul or gamma model. If death occurs very 
early, the cause of death should be checked carefully. If 
the cause is ambiguous, such cases should be classified 
as censored at the time of death. Otherwise, the maxi- 
mum likelihood estimation may fail to converge, or the 
result may be biased toward a shorter estimate of m. 

Another criticism against the parametric cure models 
is that they rely on “extrapolation of a survival curve out- 
side the available data” [5,35]. It is important to note, 
however, that predicting events beyond observed data 
has long served many branches of sciences. An excellent 
example is meteorology, where predicting the course of 
hurricanes has enjoyed great success. In addition, few 
models have been reported to provide a better fit to ob- 
served survival data than the lognormal or loglogistic 
models [1,20,35-39]. Nevertheless, we must continue our 
effort to find a better model using large, accurate, life- 
long follow-up data sets. 

4. Conclusion 

In conclusion, unless the disease is always fatal, the pri- 
mary measure of survival benefit should be the propor- 
tion of patients cured rather than hazard ratio or median 

Copyright © 2013 SciRes.                                                                                ABCR 



S. MAETANI, J. W. GAMEL 124 

time to failure. Thus, the Boag lognormal cure model 
provides more accurate and more useful insight into the 
long-term benefit of cancer treatment than the standard 
non-parametric alternatives. 
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