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ABSTRACT

In this paper, a hybrid predictive controller is proposed for a class of uncertain switched nonlinear systems based on
high-order differential state observers and Lyapunov functions. The main idea is to design an output feedback bounded
controller and a predictive controller for each subsystem using high-order differential state observers and Lyapunov
functions, to derive a suitable switched law to stabilize the closed-loop subsystem, and to provide an explicitly charac-
terized set of initial conditions. For the whole switched system, based on the high-order differentiator, a suitable swi-
tched law is designed to ensure the whole closed-loop’s stability. The simulation results for a chemical process show the
validity of the controller proposed in this paper.
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1. Introduction

Switched system is a typical hybrid dynamic system
made up of some subsystems and a switched law. In re-
cent years, the stabilization of constrained switched sys-
tems became an attractive research subject [1].

Model predictive control (MPC) is a receding horizon
control (RHC) method to handle constraints within an
optimal control setting [2]. There have been many results
to show the performance of constrained MPC [3]. In MPC
design, the initial feasibility of the optimization problem
is always assumed. Due to uncertainties and constraints
of the practical process, this assumption may not be sat-
isfied. Furthermore, the set of initial conditions, starting
from where a given MPC formulation is guaranteed to be
feasible, has not been explicitly characterized.

In recent years, controller design methods based on
Lyapunov functions have been developed, which can give
an explicitly characterized set of initial conditions from
which the closed-loop system is stable [4]. By embedd-
ing the Lyapunov-based design methods into the MPC
design, we can obtain the set of initial conditions from
where the closed-loop system is stable. In refs. [5,6], two
Lyapunov-based predictive controllers were derived for
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constrained nonlinear systems. In refs. [7,8], two Lyapu-
nov-based predictive controllers were proposed for con-
strained switched systems and constrained switched sys-
tems with uncertainties, respectively. In these papers, the
states of the system are observable.

However, in real processes the system’s states are of-
ten not measurable, and hence, state-feedback controllers
and switched laws cannot be realized. One of the meth-
ods to overcome this difficulty is to construct a state ob-
server to estimate the states for constructing the control-
ler and switched law. In ref. [9], an output feedback
bounded controller was given for a class of nonlinear
systems which was not switched system. In ref. [10], for
a kind of nonlinear switched systems without uncertain-
ties and disturbance, a bounded nonlinear controller was
given. But it was not guaranteed to be optimal with re-
spect to an arbitrary performance criterion which incur-
porates requested performance in the design. In ref. [11],
a hybrid output feedback predictive controller was pro-
posed for a class of switched nonlinear systems without
uncertainties. In papers [9-11], the processes’ states were
estimated using a high-gain observer, but many adjust-
able parameters of the observer need to be chosen expe-
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rientially. Sometimes the wrong selection of parameters
can cause stability problems and an undesired transient
performance of the observer. In refs. [12-14], a high-ord-
er differential state observer was designed to estimate the
states of a nonlinear system. Theoretically the parameters
are chosen according to the performance and stability of
the observer and theoretically few parameters with expli-
cit meanings have to be selected based on the perform-
ance and stability of the observer.

In this paper, an output feedback hybrid predictive
controller is proposed for a class of uncertain switched
nonlinear systems based on high-order differential state
observers and Lyapunov functions. The main idea is to
design a hybrid predictive controller based on Lyapunov
functions and high-order differential state observers, which
switches between a bounded feedback controller and a
predictive controller for each subsystem, and to provide
an explicitly characterized set of initial conditions to sta-
bilize the closed-loop subsystem. Here, we use high-or-
der differentiators as state observers. This high-order dif-
ferential state observer has simple structure with few pa-
rameters. A suitable switched law based on the high-or-
der differentiator is designed to guarantee the whole clo-
sed-loop system’s stability. Finally, the simulation results
for a chemical process show the validity of the procedure
proposed in this paper.

2. Problem Description

Consider the constrained switched nonlinear system
X(t) = f, (X(1))+ Gy (X(1)) Uy (1)
+Wo (x(t))ﬂo(t) (t)
y(t)= h (x)
x(t)e X =cR"u,(t)eU, cR",0, €0, cR

)

where x(t)=[x,,%] € X cR" denotes the vector
of continuous-time state variables, X is the set contain-
ing the states; ;

u, (t)=[uf, (t),--ul (t)} eU_cR™ denotes the vec-
tor of manipulated inputs taking values in a nonempty
compact subset U = {ua eR" :|u,| < ugm} , where |
is the Euclidian norm, and u]™ >0 is the magnitude of
the constraints. ye R denotes the measured output;

h, (x) e R isasufficiently smooth function;

0,(t)= [ﬁi (t),---, 08 (t)] €®_cR" denotes the bounded
uncertain parameter vector taking values in a nonempty
compact subset ©_ = {90 eR%:|0,| < 0};} ;

o [O,oo) — K is the switching signal assuming to be a
piece-wise continuous (from the right) function of time,

i.e., a(tk):tlirp o(t) for all k, implying that only a
il

finite number of switches is allowed on any finite inter-
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val of time, and p is the number of modes of the swi-
tched system. Throughout this paper, we use the nota-
tions tk;n and tkrout to denote the time at which, for the
rth time, the kth subsystem is switched in and out, re-

spectively, i.e., a(tk*m ) = O’(tk'om ) = k. With this notation,

it is understandable that the continuous state evolves ac-
cordingto x = f, (x)+G,(x)u +W,(x)6,,

y=h(x),for t, <t<t Tin:{t t

in — out * in 1
T kp kr kg

} and

g
Tow = {tkom o } denote the set of switching times at
r 1 2

which the kth subsystem is switched in and out, respec-
tively. It is assumed that all entries of the vector func-
tions f, (x), the n x m matrices G, (x) and the n x g
matrices W, (x) are sufficiently smooth and that

£ (0)=0 for all keK. In this paper, the notation

Lfﬁ denotes the standard Lie derivative of a scalar
function h(x) with respect to the vector function

7)1~ | () ano

fmsup 7 (1)) = fim{sup £ (x(7)).

The objective of this paper is to design a nonlinear
output feedback predictive controller based on Lyapunov
functions and a high order differential state observer for
the case where state measurements are not available for
each mode of the uncertain switched nonlinear system
given by Equation (1). Then, for the whole switched sys-
tem, based on state estimations, a suitable switched law
is designed to ensure the whole closed-loop system’s sta-

bility.
3. Preliminaries

3.1. High-Order Differential State Observers

In order to construct an output feedback controller to sta-
bilize the controlled system (1), we use high-order diffe-
rential state observers [12-14] to estimate the unmeasur-
able states of the system (1).

Firstly, we give some assumptions.

Assumption 1: Consider system (1), for every ke K,
there exist an integer r, and a set of invertible coordi-
nates

_ £ - _ h (x) _
¢ érk Lr;kilhk (x)

= =X = 2

LJ Th (%) Tea(X) @
_77n7rk ) Xkt (x)
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where 1 (%), %oy (%) are nonlinear scalar func-
tions of x, such that the system (1) takes the form

§l=§2

érk 1= érk

(3.1)
& =Lih (27 (&m))+Le Lt (27 (&) m,
+ Ly, Ls2h (27 (¢0m)) 0,
=Y (é:""ak)
. (3.2)
77n—rk = lIIk,n—rk (flnlak)
y= 51

where x:;(’l(é‘k,qk,ﬂk),
Le, L (27 (&:1.0,)) %0, vx eR", and

Gy —fk
Wy Wy, are nonlinear functions describing the
corresponding evolution of the kth inverse dynamics
mode,and &, —0, 5, —0 ifandonlyif x—0.

Assumption 2: The dynamical # — subsystem in (3)
=Y\ (en,0,,7)
is input-to-state stable (I1SS) [9], where

T T
”:[Ulv""nn—rkJ and \Pk :[\Pk,l"“'\ljk,n—rkJ .

The following assumptions are given to reduce the in-
fluence of uncertainties.

Assumption 3: There exists a known constant 6,
such that |6 || = 6 -

Assumption 4: For each k e K, a control Lyapunov
function V, exists.

Before designing the output feedback controller, we
have to revise Assumption 1.

Assumption 5: There exists an invertible coordinate
transformation x =y *(&.7;,), such that system (1)
takes the form similar to (3) in which the 7, -subsys-
tem take the following form

n="Y, (5177) )

This formula is different from formula (4) since it does
not depend on the uncertain parameter 6, . We also as-
sume this subsystem is ISS stable.

In order to construct a controller to stabilize the con-
trolled system (1), we use high-order differential state
observers [12-14] to estimate the un-measurable states of
system (1). The high-order differential state observer for
each mode can be described as

(4)

=1

Z:{j}i:yi+l+ak,i(y_yl)l i=1-- ©

5'7rk = a'k,rk (y_ yl)
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¥l :_)/1~ ) - @)
yi+1_yi+l+ak,i(y_yl)l i=1--r-1
where a,; =K, C/ha ™" i=1-1
ra )" T
- ( k k) _ I ®)

((rk _1)ak )rkil (rk _1)rk71

Here C} denotes the combination expression and
only one parameter a, is adjustable, all other parame-
ters a,; can be calculated using r, and a,. Clearly,
y is the only external input of system 2, so we can
obtain ;,¥,,--,y, based on the measured signal y
via (6), and further calculate the estimated derivatives
¥y, ¥, Vvia (7). Note that the HOD is independent of
the model of the original system (1).

Proposition 1. The HOD does not rely on the model of
the estimated system, parameters are chosen using (8),
and has following characteristics:

1) The HOD is an asymptotically stable system.

2) '!Lrggll = y(H) =X, 1=1-1

)

3.2. State Feedback Bounded Controller
Based on Lyapunov Functions

We recall the design of a state feedback bounded con-
troller to obtain the set of initial conditions from which
the system is stable [9].

Define the tracking error variables
e =& vV, (i=1--,r,) and the tracking error vector
g:[el, €y 8 ]T, V:[v, v(l),-n,v(rk’l)]T is the ref-

erence input vector, where v is a reference input and
v s its ith time derivative. Then the &, -subsystem in
system (3) can be re-written as

¢ = fi(e¥)+ G (e, v)u +Hi(e,v),,
k=1 p
where f, (e,v)=Ae+bL% h, ()('1 (e,F)) is a rxl
vector function, G, (e,v)=blg L% (1 (e,¥)) isa
r, xm matrix function,
Hi(e,,v)=bL,, L% *h(y (e, 7)) is a r,xq matrix

function, and

(10)

01 0
0
001 0 :
A=|: : ,b:(') (11)
000 1
1
000 0 fod

T X

The Lyapunov function is chosen as V, =e'Pe,
where the positive-definite matrix P, is chosen to sat-
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isfy the following Ricatti inequality
A"P,+PA-Pbb" P, <0 (12)

Definition 1. «(-):R* —R" is aclass K function
if itis a strictly increasing function satisfying «(0)=0.
Definition 2. Function B:R"xR" — R" is a class
KL function, if vt>0, p(-t) isnon-increasing, and
lim #(s,t)=0; vs>0, A(s,-) isnon-increasing, and

s—0"

limg(s,t)=0.

too
Choose aclass K function &, (-) that satisfies
@, (|x[) <Vi (x) and define the set

Q, (u™)={xeR":V, (x) < 5,}, where 5, <5, ,
is satisfying 3, (&k‘l (65).0) <& (S, ) , where

B (--) isaclass KL function.
The continuous bounded control law is constructed as
follows [9]

u, (x):—kk (x,ukmax)(LGka )T (x) (13)
with
o ( upw)

x)+ (e A
( X)) {1+4/1+( (x))z} 1)

#0

:
0, H(Lckvk) (x)H:O
where

a, (x) =LV,

o) ) 2P| .

(” [2Rel + 2t 2P+

(L V)H

Le Vi (%)= [Lg%Vk,---,LgFVkJ and

k

(x)=

(x): L, Vi + o ||2P e||+;(k
(
Vi (x

)= [Lwlvk,-u,Lka} are row vectors, where
k Wy

g, is the ith column of G, and w, is the ith co-
lumn of W,; p, >0, » >1, 4 >0 are adjustable
parameters.

Remark 1. For convenience, this bounded controller
(13)-(14) is redefined as B, (x).

Remark 2. Here, the Lyapunov functions used in veri-
fying the switching conditions at any given time, V, , are
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based on x. Note that the Lyapunov functions V, are
in general different from V, used in bounded control-
lers. For the systems with relative degree
=n (k=1 p), the choice of V, =V, is sufficient.
Based on this bounded controller (13)-(14), an estima-
tion of the stability region is computed as

Q (W) ={xeR":V, (x)<5,,} (15)

where o, , >0 is the largest number for which
@, (u™) 22, (u™)\{0}, and

) (u;"ax) {xeX:ak( )<u;(“ax,8k(x)}. (16)

The robustness property of the bounded controller in
(13)-(14) is formalized by the following proposition:

Proposition 2. Consider the system (1) for a fixed
value o(t)=k. Under the Assumptions 1-4, compute
the bounded control law of (13)-(14) using the Lyapunov
functions V, and p, >0, and then give the stability
region estimate Q, . Let u, (t) =1, (jA),
jA<t<(]+l)A \where u, (JA) =B, (x(jA)),
j=0,---,00. Then, given any posmve real number d,,
there eX|sts positive real numbers A;,&,, ¢, , such that if
x(0)=x,eQ and A e(O A*] then

x(t)eQ, c X, vt>0, and |ImSUp||x t)|<d
thermore, if V, (x,) <5y, then V, (x(7))<d;,
Vrel0,A);if & <V, (x,)<8,, then
V, (x(r))<-&. Vre[0,A) and the output of the closed-
loop system satisfies: lim suply(t)-v(t)|=0 (The proof

- Fur-

is similar to the proof of Theorem 1 in ref. [9]).

3.3. Output Feedback Bounded Controller
Based on State Estimations and Lyapunov
Functions

In this section, we consider the case when some states of
system (1) are not measurable. The bounded controller
based on state estimations and Lyapunov functions
should be designed and the stable region of initial condi-
tions should be described.

Based on the high-order differential state observer (6)-
(8), the following presents the output feedback controller
used for each mode and characterizes its stability proper-
ties:

Proposition 3. Considering the nonlinear system (1),
for a fixed mode o(t)=k (keK), design the output
feedback controller with a high-order differential state
observer (6)-(8)

u =k (2U) (Lo Ve (%) 2B,(%) (@7

where fc:xk’l(sat(jz)) : )3:[)71,92,'“, A T,
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y= [)71, Vorros Vo, ]T are vectors with dimension r, .
Given &, =fB.(5:,,0), where B, isaclass KL

functionand o, is the maximum value of

H[hk(x), L, h(x), - L%y ( H for V, (X)<6,,,

and L >0, such that if & =1/L,, then, given Q,
there exists &, >0, such that if &, (0, |,
x(0)eQ,, and |7(0)| <, , the origin of the closed-

loop system is asymptotically (and locally exponentially)
stable, i.e., there exists d, >0, such that

limsup|x(t)| <d, . Furthermore, given &, (0,&; | and

t—>o

some real number e, >0, there exists a real number
T'>0 suchthat |x(t)-%(t)|<e,,,for vt>T.. And,
the output of the closed-loop system satisfies
!Lrgsup|y(t)—v(t)| =0 (This proposition is a special case
of Theorem 2 in ref. [9]).

Remark 3. Here, a high order differential state ob-

server is used to provide the estimates of the derivatives
of the output y up to order r, —1, denoted as

mk ?

Y1, Y5+, ¥, » and thus estimates of the variables
&g, (note from Assumption 1 that

i-1
&= ?ﬂif}/, i=1--,r). This high-order differentiator

has only one adjustable parameter. To eliminate the pea-
king phenomenon associated with the high order dif-
ferential states observer, a standard saturation function
sat(-) is introduced to eliminate wrong estimates of the
output derivatives, or alternatively the following formu-
lation can be used [12-14]

V=%, 9; :(yi +ai (Y- yl)>o-kl( ).
=21,
1-exp(- Akt”)
1-exp(-A4t")
Remark 4. The ith closed-loop subsystem can be cast
as a two time-scale system given by

(18)

where o, ;(t)=

é, = Ae, +by(rk)
. ~ m AT
X = fi (%)= G (x)k, (x’uk ax)(LGka (x)) (19)
+Wk (x)ak
where e is a vector of the auxiliary error variables

éi:y(‘*l)—y_i,izl, hoand
-a, 10 -0 .
-a, 01 -0
. L. . 0
Ak = : - o, b= : (20)
A 1 0 1 1
a, 00 0]

Copyright © 2013 SciRes.

ET AL.

Proposition 4 establishes the existence of a set, Q, ,,
such that once the state estimation error is smaller than a
certain value (note that the decay rate can be controlled
by adjusting L, ), the presence of the state is within the
output feedback stability region, Q.

Proposition 4. Given any positive real number &, ,,
there exist positive real numbers e, J,,,and aset

Q,={xeR":V,(x)<3d,,} suchthatif

||x x|| <€ny: ] , then

XeQ  =>xeQ,.

where e, e(O e

1 ¥m,k

4. Integrated Predictive Controller Design
Based on State Estimation and Lyapunov
Functions

4.1. Predictive Controller Design Based on State
Estimation and Lyapunov Functions for
Every Subsystem

A MPC based on the high-order differential state ob-
server and Lyapunov functions will be designed for sys-
tem (1) with a fixed o(t)=k keK in this section.
The control action at time t and state estimation X are
conventionally obtained by on-line solving a finite hori-
zon optimal control problem described as

P(xt):min{J (%t m, ())|m () €S} (21)
yrk :ak,rk (y_y1)
Yi=%
{ywl y|+1+ak|(y_y1)1 i=1,'~~,l’k—l (23)
where
=K C"1 At =1
Ky = () Nl rkrkakr =] (24)
((r-Da) " (r-1)"
=Y (»n), X=x"() (25)
= S ()46 (X () ()0
u (x)eU, cR", 6, €0, cR" (26)
y=h(x), 27)
V.k(fc(:[))s— - z’e[t,t+A) 28)
if v, (X(t))> o
Vk(JAC(T))< o TE[tt+A) 29)
if Vv, (2(t)) <5,
AM



B.L.SU ET AL 37

\/'kC (fcf (2'))<0, TE[t,t+A). (30)

Here ¢,, &, are defined in Proposition 1, e,,x are
defined in Proposition 2 and  x; =[xT,eg ]T.

S, =S, (t.T,) is a family of piecewise continuous
functions (from the right), with period A, mapping
[t,t+T,] into the set of admissible controls U, . T, is
the horizon length and V, is the Lyapunov function

used to design bounded controller. V,© is the Lyapunov
function of the system. A control u,(-) in S, is char-

acterized by the sequence {u, [j]}, u [j]=u (jA) and

satisfies , (t)=mu,[j] for all te[jA,(j+1)A). The
performance index is given by

J(x.tu ()
_ .|':+Tk[£T(s)Qk£(s)+uJ ()R, (s)]ds
and R,

(1)

where Q, are positive semi-definite and

strictly positive definite symmetric matrices, respectively.

The optimal control . (X)eS, is then applied to the
plant over the interval [t,t+A) and the procedure is
repeated indefinitely. This defines an implicit model pre-
dictive control law

M, (x):=argmin(J (2.t ()))=u  (32)

Owing to the existence of parameter uncertainties and
constraints, the initial feasibility of the MPC in (32) is
not guaranteed. If it is infeasible, the control action is
switched to the bounded controller (17). To describe the
whole control action, we cast the kth subsystem (1) as a
switched system of the form

%= £, (x)+G, (x) ' +w, (x)0,
y =h(x)

where i(t):[0,00) —>{1,2} is the switching signal which
is assumed to be a piecewise continuous (from the right)
function of time. When i(t)=1, the control input takes
u (%)= ul! (%), i.e., the MPC is used; and when
i(t)=2, it takes u "V (%)=u? (%)= B, (%), ie. the
bounded control is used.

Proposition 5. Consider the switched nonlinear system
in (33). For a fixed o(t)=k (k € K), the control action
is switched between the model predictive controller (21)-
(31) and the bounded controller (17). Let
x(0)=x, €Q,, [7(0)| <3, . Atthe earliest time
t>0 when the closed-loop system’s states under MPC
satisfy V, (fc(t‘)) =8, Set T =t; at the earliest time

t>0 when the states under MPC satisfy |x(t)|<d,,
set T, =t; at the earliest time t>0 when the states
under MPC satisfy [x(t)—%(t)|<e,,, set T} =t; at

(33)
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the earliest time t>0 when MPC is infeasible, set
Ti:f =t . Define Tskwnch = min{Tsk-Tdvaevai:f ’Tdkesign} J
where T, (0< T <oo) is a designed time arbi-

design

trary. Then, the switching rule

1 0<t<T
i(t)= e (34)
® {2 t>Tg

switch

guarantees the stability of the closed-loop subsystem (see
the proof in Appendix A).

Remark 5. The mixed predictive controller above is
designed and implemented using the following steps:

1) For the subsystem (1) with a fixed
o(t)=k(keK) , design the bounded controller (17),
and compute the stable region

Q, ={xeR":V, (x)<3,,};

2) Design the MPC controller given by (21)-(31);

3) Given initial conditions x, e, , and
||jz(0)||s5k,§, implement the MPC controller given by
(21)-(32) if it is feasible;

4) When the MPC is infeasible (t=T, ), or the state
estimation x of the closed-loop subsystem reaches the
boundary of Q, ,, i.e.,when [%(t)|=5,, (t=T)), or
x satisfies |¥(t)|<d, (t=T)), or
||x(t)—5c(t)||sek'S (t =Te"), the controller switches to
the bounded controller given by (17) until the MPC is
feasible again or until the designed switched time Td"esign ;

5) When another subsystem is switched in, go to step
1).

Remark 6. The purpose of switching to the bounded
robust controller after the time Td“eSign is to ensure con-
vergence and avoid possible cases where the closed-loop
states, under MPC, could wander inside €, , without
actual convergence.

4.2. Integrated Design of the Controller and the
Switched Law for the Whole Switched
System

Consider the constrained switched nonlinear system (1)
with parameter uncertainties and definite switched time

sequences T, ;. ={tkm,tkm,~--} and
! 1 2

Teow = {t N } . Theorem 1 gives the switched law
! kUt ? kg

that ensures the stability of whole closed-loop system.

Theorem 1. Consider the switched nonlinear system
(1) for which there exist control Lyapunov functions V, ,
k=1---,p. Given any initial conditions x(0)eQ,,
and |7(0)|<5,., where 5, was defined in Proposi-
tion 1, and chosen positive real numbers p, ,k =1,---,p,
compute the stable region estimation €, . Choose
Op >0 tocompute €, .Choose M, such that
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|z —z2] <en, = |ch (2)-V(z, )| <M,. Let
Tesign (O < Tesign < oo) be the design time and t satisfy

t, <t<t_. . Assume t, =t, for some mk. The
k! k? m| k?

mixed controller switched between the bounded control-
ler (17) and the MPC (21)-(31) is designed with the
switched law (34), such that if t =t , <o©

J

Vel )

out
kr

Vm(x(t . ))—g*, it j>1V, (x(t . ))>5;
mja mja
J J (35)
<ls if j>1 Vm(x(t . ))s&;
mily
Srn if j=1
jz(t ) if H;(t ) <5,
m| m| s
Pt ,n)— 5 36
y( mj j;(tmi_n) I if Hj;(tmm) >3, (36)
: j’ t in)
mj
Vmc(x(t n ))+2Mm <Vm°(x(t n )J 37)
mj Mmj-1

then the whole closed-loop system is stable (See the
proof in Appendix B).

Remark 7. The controller presented in Theorem 1 can
be implemented using the following steps:

1) Given the system model (1) with constraints on the
inputs, and a control Lyapunov function V, to design
the bounded controller (17) with suitable parameters and
compute the stability regions (15) and (16). Here the sta-
bility regions are only signs, for the states cannot be mea-
sured, and in the controller design only the stable region
estimation Q, (fc) is used. And choose Lyapunov func-
tion V,° for the system (19);

2) Determine suitable parameters to design the MPC in
(21)-(31). Give the size of the ball to which the state is
required to converge, d™, and compute
Ay, k=1---,p such that for every subsystem it has

tlmsup"x(t)”g d™ . Compute A" =min/_ {A;}, and

choose A, e(O,A*] , for a real positive number 1, >0
suchthat t ., —t., =l A, ;

krDUt

3) For time tin (the rth time of switching into the kth
subsystem), consider whether the state estimation be-
longs to the stable region Q, , ;

4) Pick tmijn =t in the switched sequence;

k?ut

5) At the time of switching in the mth subsystem, con-

sider the constraints in Theorem 1, and choose y and
M satisfying (36) and (37), respectively;

m
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6) When the mth subsystem is switched in, the con-
straint V, (fc(tmi_n ))svm (fc(tmiﬁ1 ))_5* is required to

]

be satisfied. If j=1, V, (fc(tmi_n )) =0, ; if the state is

-1

in the neighborhood of origin, then V, (:”c(tmin ))gdr;

)
and xeQ,_ . If constraint (37) is used to ensure
[x(t)-%(t)|<e,,. then xeQ,, and the closed-loop

system is stable according to Proposition 4.

Remark 8. [10]. The time interval between two con-
secutive switches should be long enough to ensure that
the estimation error decreased to a sufficiently small
value such that the closed-loop system is stable. Fur-
thermore, the decision to switch is not based on
x—>Q,,, but rather based on x —Q,, (under state
feedback it was based on x > Q). If x>Q,, at
some early time, a switch is not executed before
[x— | <e, ..

5. Simulation

Consider a continuously stirred tank reactor where three
parallel, irreversible, first-order exothermic reactions of
the form A—% 5D, A—2 U, A—¢ 3R take place,
where A is the reactant species, and D is the desired
product species, U, R denote the by-product species.
Under standard modeling assumptions, the mathematical
model for the process takes the form [8]

. F
Ch= VG(CAO _CA)_ koe(iE/RT)CA
. F —AH
T :—"(TAO—T)+( )koe<*E/RT>cA+—QG (38)
v PC, :
C,=—-—<C, +ke¥rc
D D 0 A

where C, and C, denote the concentration of species
A and D, respectively. T denotes the temperature of re-
actor. Q_ is the rate of heat input to the reactor. V the
volume of the reactor. k,,E,AH denote the pre-expo-
nential constants, the activation energies. And the enthal-
pies of the three reactions, respectively, ¢, and p are
the heat capacity and density of the fluid in the reactor.
o(t)e{L,2} is the switched variable. The values of
these parameters can be found in Table 1.

The control objectives are to: (1) stabilize the reactor
temperature at the open-loop unstable steady state T =
388.58 K of mode 1, and (2) maintain the temperature at
this steady-state when the reactor switches to mode 2.
The control objective is to be accomplished in the pres-
ence of: (1) exogenous time-varying disturbances in the
feed stream temperature, (2) parametric uncertainty in

AM
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Table 1. Process parameters and steady-state values.

39

Process parameters values Process parameters values Process parameters values
% 1000.0 L AH —4.78x10° J/mol T, (0=12) 388.58 K
R 8.314 J/mol - K k, 1.2x10" min™ Cha 3.58 mol/L
Coe 4.0 mol/I E 8.314x10* J/mol C,., 4.55 mol/L
T 300.0 K P 1000.0 g/L Cou 0.42 mol/L
F 3.34x10° L/sec c, 0.231J/g-K Co. 1.0 mol/L
F, 1.67x107° L/sec
the enthalpy of the three reactions, and (3) hard con-
straints on the manipulated inputs. e, £ -V X, =V
Note that, with this requirement, both closed-loop _ v = _
eo‘Z - 552 v - Xi v
modes share the same steady-state temperature but have 0 E (39)
different steady state reactant concentrations. The control €3 Soz —V ——Z X + koe(’E/ RXS)XZ
objective is to be accomplished by manipulating Q pro- v
vided by the jacket, subject to the input constraint (0' :1,2)
|Q| <25 KJ/sec.. : . - .
- Two quadratic, positive-definite functions of the form,
Defining 6, =AH —AH,, 6, =T,y —Tpos. Y = X1, the 1q P
process model of Equation (34) can be cast in the form of V, = - e, V, = ; e2, are then used to synthesize
2T 2T,

Equation (1)

where
——Tx + kme(*E/RXa)X2
f(x)= %(CAO X,)— k,eCERe)x, (c=12),
F (-AH) (E/Re)
o (T, - kel &/
_V ( A 3)"’ c, Xz_

| PGV |
0 0
w, (x)= 0 , Wy (x)=] 0
ke P)x, R

The boundary of parameters is ¢9bl=0.5|(—AHko)|,
6,, =0.03T,,, . For this system, perform the following
coordinate transformation

Copyright © 2013 SciRes.

two bounded nonlinear controllers (one for each mode)
of the form

uy (x)

. LeV; () + 0V, +\/(Lf—i\7i (x)+pV, )2 Jr(uimaX Lfi\7i)4
(L) {1+ 1+(ui’“angi\7)2}

LV,

i=1 2

(40)

Note that these positive-define function is given for
system (39). To estimate the stability regions, the Lya-
punov functions

1 1
V1 - Ecl ((T _Tsl )/Tsl )2 +ECZ ((CA _CAsl )/CASl )2
1
+ECS ((CD _CDsl)/CD51)2
where ¢, =388, c,=10, ¢;=06;and
1 1
V, = EC4 ((T _Tsz)/Ts2 )2 +ECS ((CA —Chus )/CAsZ )2

1
+EC6 ((CD —Cos2 )/CDSZ )2

where ¢, =19.4, ¢, =1.0, ¢, =0.3, are used.

Given initial state x,=[0.5mol/L,2.20 mol/L,300 K]',
and switched time T, =30sec, the parameters of the
high-order differential state observer take as
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a,=0.9, a,=15. Using the hybrid MPC method pro-
posed in this paper, we obtained the following simulation
results:

In the simulation, starting from mode 1, the predictive
controller was first implemented before switching to the
bounded controller at t=21.3sec. At the designed swi-
tched time Ty, =30sec the system turned to mode 2.
In mode 2, the predictive controller was first implement-
ed before switching to the bounded controller at
t=64.56sec, and at t=73.87 sec it was again switch-
ed to predictive controller.

Figures 1 to 4 demonstrate the validity of the control-

ler proposed in this paper.

6. Conclusion
In this paper, a hybrid predictive control method is pro-

400

380 —_— 1

360/ . P -

T(K)

340 ¢/ P P 1

320 1 - P 1

300'.|..‘.I.'1.1.|....'4.1.|A.A.1A
0 21.3 30 64.56 73.87 100

t (sec)

Figure 1. Closed-loop state (the reactor temperature 7) pro-
file.
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Figure 2. Closed-loop state (the reactor concentration Cy)
profile.
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Figure 3. Closed-loop state (the reactor concentration Cp)

profile.
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Figure 4. The input Q profile.

posed for a class of uncertain switched nonlinear systems
with input constraints and unavailable state measure-
ments. The main objectives were to design a hybrid con-
troller which switches between a bounded controller and
a predictive controller based on Lyapunov functions and
a high-order differential state observer with a suitable
switched law to stabilize the closed-loop subsystem, and
to provide an explicitly characterized set of initial condi-
tions. For the whole switched system, a suitable switched
law based on the state estimation was derived to ensure
the whole closed-loop system’s stability. The simulation
results for a continuously stirred tank reactor showed the
validity of the controller proposed in this paper.
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Appendix A
Proof of Proposition 4

The proof uses the result of Proposition 3, if the bounded
controller (17) is switched to, the state estimation of the
closed-loop system resides in €, ., i.e., there exist

5., >0,€,,>0, such that ¥(Tl,)e Q. Here, the

switch

high-order differential state observer is used to estimate
states of the controlled system; it is able to converge to
the state evolution of the controlled system. So we can
have |x(t)-x(t)|<e,,  then Vt=Tk, , using the
result of Proposition 4, we have x(t)eQ,,Vt>T
and |x|<d,.

Therefore, we need only show that under the MPC
(21)-(31), the closed-loop system is stable until the
bounded controller is switched to. In order to do this, we

consider five possible values of T, toshow that

(Thien ) € Q. - Owing to the constraints (28)-(29), if
%(Thien ) € Qo we can have %(t) e Q, . Since

|x(t)-%(t)|<e,,. we can have x(t)eQ,,, so the
closed-loop subsystem is stable.

Now, we show (Tl )€, for all the possible
values of Tk

switch *

Case 1. If TS, =TX (TS is the earliest time when

states under MPC satisfy V, (fc(t’)) = &,.,), then we can

have Sc((TS" )7)6 Q, .. By continuity of the solution of

system (1), we have ¥(T*)eQ, . ie.,
"}(Tsl\jvitch ) € Qk,s '
Case 2. If TX. ., =TS (TS is the earliest time when

states satisfy |%(t)|<d,), as long as dy is small enough,
we can have %(Tj)eQ, e,

';‘\"(Tsl\jvitch ) € Qk,s '
Case 3. If T =Tauign» then from the definition of
Tauien » We Can have T, <T.. We proceed by contra-

diction to prove (T

design

)€ Q- Assume

- k
X (Tdesign

)2 Q. then V, (fc(Tk

design

)) > &, , - Owing to

continuity of the solution and V, (-), also since the fact
%(0)eQ,, ={xeR":V, (x) <5}, there exists a time
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Tj’(Os TH<TK

design

) for which V, (%(T)) =4, Since

TS is the earliest time for which V, (&(Tk’)):ﬁkys, it

S S

must be true that T <T <Tg, . which leads to a

contradiction with Ty, <T). Therefore we can have
i k
x(T itch)Eka‘

SWiI

Case 4 and Case 5. If TX

switch
can prove (Tl )€, similar to Case 3 only need

to replace Ty, by T.,and T, respectively.

By Proposition 4, we have x(t)eQ,, Vt>Tg

switch ?

and | x| <d,. This completes the proof of Proposition 5.

=T or T =Tae , we

switch inf 1

Appendix B

Proof of Theorem 1. (Similar to the proof of Theorem in
ref. [7])

Based on Propositions 3-5, we need only to prove that,
with the switched law (35)-(37), the whole closed-loop
system is still stable.

Let t satisfy tk;" £t<tk?uI and tmijn :tk?m <. For

the active mode k, constraint (35) ensures the initial con-
ditions switched on mode k, using the result of Proposi-
tion 5, we can have the mode k is stable. So we need only
to prove the stability at the switched time.

If V,(x)> &, using the constraint (28), we can have

Vk(fc(tkfu, ))<Vk(5€(tk;n )) While the constraint (35)

ensures that Vk(fc(tkin ))<Vk(5c(tkin )) if this mode is

switched out and then switched back in. So we can have

Vk(fc(tkin ))<Vk(§c(tkin ))<"‘<5k,b- Owing to the fea-
1 1-1

sibility of constraints (28)-(29), then the value of V, (X)
continuously decreases. If this mode is not switched in,
there exists at lease some jel,---, p such that mode |j
is active and Lyapunov function V; continues to de-
crease until V; <¢;. Similar to discussion before, the
constraint (35) ensures that V; continues to be less than

8. Hence, tIimsup"fc(t)"sdmax. The switched condi-

tion (37) ensures the boundedness of [x(t)—(t)| at
switched transition time, so limsup||x(t)] <d™. This

completes the proof of Theorem 1.
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