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ABSTRACT 

In this paper, a hybrid predictive controller is proposed for a class of uncertain switched nonlinear systems based on 
high-order differential state observers and Lyapunov functions. The main idea is to design an output feedback bounded 
controller and a predictive controller for each subsystem using high-order differential state observers and Lyapunov 
functions, to derive a suitable switched law to stabilize the closed-loop subsystem, and to provide an explicitly charac- 
terized set of initial conditions. For the whole switched system, based on the high-order differentiator, a suitable swi- 
tched law is designed to ensure the whole closed-loop’s stability. The simulation results for a chemical process show the 
validity of the controller proposed in this paper. 
 
Keywords: Switched System; Lyapunov Function; High Order Differentiator; Control Constraint; Output Feedback; 
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1. Introduction 

Switched system is a typical hybrid dynamic system 
made up of some subsystems and a switched law. In re- 
cent years, the stabilization of constrained switched sys- 
tems became an attractive research subject [1]. 

Model predictive control (MPC) is a receding horizon 
control (RHC) method to handle constraints within an 
optimal control setting [2]. There have been many results 
to show the performance of constrained MPC [3]. In MPC 
design, the initial feasibility of the optimization problem 
is always assumed. Due to uncertainties and constraints 
of the practical process, this assumption may not be sat- 
isfied. Furthermore, the set of initial conditions, starting 
from where a given MPC formulation is guaranteed to be 
feasible, has not been explicitly characterized. 

In recent years, controller design methods based on 
Lyapunov functions have been developed, which can give 
an explicitly characterized set of initial conditions from 
which the closed-loop system is stable [4]. By embedd- 
ing the Lyapunov-based design methods into the MPC 
design, we can obtain the set of initial conditions from 
where the closed-loop system is stable. In refs. [5,6], two 
Lyapunov-based predictive controllers were derived for 

constrained nonlinear systems. In refs. [7,8], two Lyapu- 
nov-based predictive controllers were proposed for con- 
strained switched systems and constrained switched sys- 
tems with uncertainties, respectively. In these papers, the 
states of the system are observable. 

However, in real processes the system’s states are of- 
ten not measurable, and hence, state-feedback controllers 
and switched laws cannot be realized. One of the meth- 
ods to overcome this difficulty is to construct a state ob- 
server to estimate the states for constructing the control- 
ler and switched law. In ref. [9], an output feedback 
bounded controller was given for a class of nonlinear 
systems which was not switched system. In ref. [10], for 
a kind of nonlinear switched systems without uncertain- 
ties and disturbance, a bounded nonlinear controller was 
given. But it was not guaranteed to be optimal with re- 
spect to an arbitrary performance criterion which incur- 
porates requested performance in the design. In ref. [11], 
a hybrid output feedback predictive controller was pro- 
posed for a class of switched nonlinear systems without 
uncertainties. In papers [9-11], the processes’ states were 
estimated using a high-gain observer, but many adjust- 
able parameters of the observer need to be chosen expe-  
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rientially. Sometimes the wrong selection of parameters 
can cause stability problems and an undesired transient 
performance of the observer. In refs. [12-14], a high-ord- 
er differential state observer was designed to estimate the 
states of a nonlinear system. Theoretically the parameters 
are chosen according to the performance and stability of 
the observer and theoretically few parameters with expli- 
cit meanings have to be selected based on the perform- 
ance and stability of the observer. 

In this paper, an output feedback hybrid predictive 
controller is proposed for a class of uncertain switched 
nonlinear systems based on high-order differential state 
observers and Lyapunov functions. The main idea is to 
design a hybrid predictive controller based on Lyapunov 
functions and high-order differential state observers, which 
switches between a bounded feedback controller and a 
predictive controller for each subsystem, and to provide 
an explicitly characterized set of initial conditions to sta- 
bilize the closed-loop subsystem. Here, we use high-or- 
der differentiators as state observers. This high-order dif- 
ferential state observer has simple structure with few pa- 
rameters. A suitable switched law based on the high-or- 
der differentiator is designed to guarantee the whole clo- 
sed-loop system’s stability. Finally, the simulation results 
for a chemical process show the validity of the procedure 
proposed in this paper. 

2. Problem Description 

Consider the constrained switched nonlinear system 
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where  denotes the vector 
of continuous-time state variables, 

   T1, , n
nt x x X R x 

X  is the set contain- 
ing the states; 

     
T1 , , mt u t u t U R      u m  denotes the vec- 

tor of manipulated inputs taking values in a nonempty 
compact subset  max:mU R u     u u , where   
is the Euclidian norm, and  is the magnitude of 
the constraints. 

max 0u 
y R

R

 , , q qt R    

 denotes the measured output; 
 is a sufficiently smooth function;     th x

  1t tθ        denotes the bounded 

uncertain parameter vector taking values in a nonempty 
compact subset  :q bR      θ θ ;  

 : 0, K    is the switching signal assuming to be a 
piece-wise continuous (from the right) function of time,  
i.e.,  for all , implying that only a     lim

k
k

t t
t t


  k

finite number of switches is allowed on any finite inter- 

val of time, and  is the number of modes of the swi- 
tched system. Throughout this paper, we use the nota- 
tions in

rk
 and out

rk
 to denote the time at which, for the 

rth time, the kth subsystem is switched in and out, re-  

p

t t

spectively, i.e.,    in out
r rk k

t t k    . With this notation,  

it is understandable that the continuous state evolves ac- 
cording to      k k k k  x f x G x u W x θk ,  

 ky h x , for in out
r rk k
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1 2

, ,in in in
rk k k

T t t 

 
1 2

, ,out out out
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T t t   denote the set of switching times at  

which the kth subsystem is switched in and out, respec- 
tively. It is assumed that all entries of the vector func- 
tions  kf x , the n × m matrices  and the n × q  
matrices 

 kG x
 xkW  are sufficiently smooth and that 

 k 0 0f  for all k K . In this paper, the notation  

L hf  denotes the standard Lie derivative of a scalar 
function  h x  with respect to the vector function 

 f x :    h
L h

 
   
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f x f x . 

The objective of this paper is to design a nonlinear 
output feedback predictive controller based on Lyapunov 
functions and a high order differential state observer for 
the case where state measurements are not available for 
each mode of the uncertain switched nonlinear system 
given by Equation (1). Then, for the whole switched sys- 
tem, based on state estimations, a suitable switched law 
is designed to ensure the whole closed-loop system’s sta- 
bility. 

3. Preliminaries 

3.1. High-Order Differential State Observers 

In order to construct an output feedback controller to sta- 
bilize the controlled system (1), we use high-order diffe- 
rential state observers [12-14] to estimate the unmeasur- 
able states of the system (1). 

Firstly, we give some assumptions. 
Assumption 1: Consider system (1), for every k K , 

there exist an integer  and a set of invertible coordi-
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       (2) 
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where 
kk k n r  are nonlinear scalar func- 

tions of x, such that the system (1) takes the form 
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where ,   , ,k k kx ξ η θ

  1 1 , ,h χ ξ η θ 0,  k

k k

r n
k kL L R  G f x , and 

,1 , kk k n r  are nonlinear functions describing the 
corresponding evolution of the kth inverse dynamics 
mode, and   if and only if . 

, , 

k ξ 0, 0k η 0x
Assumption 2: The dynamical subsystem in (3) η

 , , ,k ke    η θ                 (4) 

is input-to-state stable (ISS) [9], where 
T

1, ,
kn r     η  and 

T

,1 ,, ,
kk k k n r      . 

The following assumptions are given to reduce the in- 
fluence of uncertainties. 

Assumption 3: There exists a known constant bk  
such that k bk  . 

Assumption 4: For each k K , a control Lyapunov 
function  exists. k

Before designing the output feedback controller, we 
have to revise Assumption 1. 

V

Assumption 5: There exists an invertible coordinate 
transformation 1 ,k kx    , such that system (1) 
takes the form similar to (3) in which the -subsys-k  
tem take the following form 

 ,k   ξ η                    (5) 

This formula is different from formula (4) since it does 
not depend on the uncertain parameter k . We also as- 
sume this subsystem is ISS stable. 

In order to construct a controller to stabilize the con- 
trolled system (1), we use high-order differential state 
observers [12-14] to estimate the un-measurable states of 
system (1). The high-order differential state observer for 
each mode can be described as 
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where   , 1 , 1, ,
kk i k r k ka K C a i r  

 
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k k

k 1k

r
k k k k

k r r

kk k

r a r a
K

rr a
  



r

        (8) 

Here i
jC  denotes the combination expression and 

only one parameter k  is adjustable, all other parame- 
ters ,k i  can be calculated using k  and k . Clearly, 

 is the only external input of system , so we can 
obtain 1 2 kr

a
a r a

y 
, , ,y y  y   based on the measured signal  

via (6), and further calculate the estimated derivatives 

1 kr

y

ˆ ˆ, ,y y  via (7). Note that the HOD is independent of 
the model of the original system (1). 

Proposition 1. The HOD does not rely on the model of 
the estimated system, parameters are chosen using (8), 
and has following characteristics: 

1) The HOD is an asymptotically stable system. 

2)                (9)  1ˆlim , 1, ,i
i i

t
y y x i r


    k

r

3.2. State Feedback Bounded Controller  
Based on Lyapunov Functions 

We recall the design of a state feedback bounded con- 
troller to obtain the set of initial conditions from which 
the system is stable [9]. 

Define the tracking error variables  
  1 , 1, ,i

i i ke v i    
T

 and the tracking error vector  
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erence input vector, where  is a reference input and 
 is its ith time derivative. Then the 

v
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system (3) can be re-written as 
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The Lyapunov function is chosen as T
k kV  e P e , 

where the positive-definite matrix  is chosen to sat- kP
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isfy the following Ricatti inequality 
T T 0k k k k  A P P A P bb P           (12) 

Definition 1.  is a class   : R R    K  function 
if it is a strictly increasing function satisfying  0 0  . 

Definition 2. Function  is a class : R R   R

KL  function, if , 0t   , t   is non-increasing, and  

 
0

, 0
s

s t


lim ; , 0s   ,s   is non-increasing, and 
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


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   k kV x x  and define the set  

   max
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, ,, 0k k k b k k x       , where  

 ,k    is a class KL  function. 
The continuous bounded control law is constructed as 

follows [9] 
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 are row vectors, where  
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lumn of ; 

h

kW
kG i

kw thi
0k  , 1k  , 0k   are adjustable 

parameters. 
Remark 1. For convenience, this bounded controller 

(13)-(14) is redefined as .  kB x
Remark 2. Here, the Lyapunov functions used in veri- 

fying the switching conditions at any given time, , are 

based on . Note that the Lyapunov functions 

kV

x kV  are 
in general different from k  used in bounded control- 
lers. For the systems with relative degree  

V

 ,kr n p1,k  , the choice of k k

Based on this bounded controller (13)-(14), an estima-
tion of the stability region is computed as 

V V  is sufficient. 

    max
,k k xu R V   x:nxk k

,k x

        (15) 

where 0   is the largest number for which  

     max max \ 0k k k kuu  , and 

      x max: k ku X u    ma
k k

1
kx x x .    (16) 

The robustness property of the bounded controller in 
(13)-(14) is formalized by the following proposition: 

Proposition 2. Consider the system (1) for a fixed 
value  t k  . Under the Assumptions 1-4, compute 
the bounded control law of (13)-(14) using the Lyapunov 
functions k  and V 0k  , and then give the stability 
region estimate k . Let ,     k kt j u u

 1j t j     , where ,    u B   k kj jx
0, ,j   . Then, given any positive real number k , 

there exists positive real numbers 
d

, ,k k k   , such that if 
 0 : 0 k x x  and 0, k

    , then  

 t ,X 0tk   x , and  limsup t k
t

d


x . Fur- 

thermore, if  0k kV  x , then   k kV   x ,  

 0,   ; if  0 ,xk k kV   x , then  

  k kV    x ,  0,    and the output of the closed-  

loop system satisfies:    limsup 0
t

y t v t


   (The proof  

is similar to the proof of Theorem 1 in ref. [9]). 

3.3. Output Feedback Bounded Controller 
Based on State Estimations and Lyapunov 
Functions 

In this section, we consider the case when some states of 
system (1) are not measurable. The bounded controller 
based on state estimations and Lyapunov functions 
should be designed and the stable region of initial condi- 
tions should be described. 

Based on the high-order differential state observer (6)- 
(8), the following presents the output feedback controller 
used for each mode and characterizes its stability proper- 
ties: 

Proposition 3. Considering the nonlinear system (1), 
for a fixed mode    t k k K   , design the output 
feedback controller with a high-order differential state 
observer (6)-(8) 

      
Tmaxˆ ˆ,

kk k k k kk u L V Gu x x B x̂

where 

       (17) 

  1ˆ ˆk satx y ,  χ
T

1 2ˆ ˆ ˆ ˆ, , ,
kr

y y y   y ,  
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T

1 2, , ,
kr

y y   y  y  v n r are ectors with dimensio .  

Given 

k

 , , 0k  , where max,k    is a clas  KLs
function a

 
nd ,k  is the maximum value of  

    
T1, , , k

k k

r
k k kh L L h  f fx x x  for h  k kV x ,b ,  

and , such that if 0kL  1k kL  , given then,  ,b k ,  

there exists k  , such that if k
* 0  *0,k    ,  

 and   ,0 k bx   ,0 ky , f the c
loop system ptotically (an pon

the r o osed
s asym d locally ex entially) 

., there exists 

o igin l - 
i

stable, i.e 0d  ,k  such that  

 limsup k
t

t d


x . Furthermore, given  *0,k k     and  

some real number s a real nu , 0m ke  , there exist mber  

0kT   such that b     ,m kex x , for kt T  . And, 

the out  sy m sati

ˆt t 

d-loop ste

b

put of the close sfies 

   limsup 0
t

y t v t


   (This proposition is a special case 

of Theorem 2 in ref. [9]). 
Remark 3. Here, 

server is used to provide the 
a high order differential state ob- 

estimates of the derivatives 
of the output y up to order 1rk  , denoted as 

1 2ˆ ˆ, , ,
kr

ŷ y y , and thus estimates of the variables  

1, ,
kr

   (note from Assumption 1 that  
1di y

1
,  

di i
i

t
  tiator  

has only o inate the pea- 
king phenomenon as
ferential states observer, a standard saturation function 

1, , kr  ). This high-order differen

ne adjustable parameter. To elim
sociated with the high order dif- 

 sat   is introduced to eliminate wrong estimates of the 
output derivatives, or alternatively the following formu- 
lation can be used [12-14] 

    

where 

1 1 , 1 ,ˆ ˆ, ,

2, ,

i i k i k i

k

y y y y a y y t

i r

   



  


    (18) 

 
 
 

2

, 2

1 exp

1 exp

i
k

k i i
k

t
t

t






 


 
. 

Rem
as a two

ark 4. The ith closed-loop subsystem can be cast 
 time-scale system given by 

  (19) 

where e  is a vector of the auxiliary error variables 
, and 

 

  
 

ˆ

k

k

r

k

k k

y

L V



G x

W x θ

     
0 0

Tmaxˆ ,

k

k k k kk u

 

 





e A e b

x f x G x x

0
 1ˆ ˆ ,  1, ,i

i ie y y i r   
a

 

k

,2

, 1

,

1 0 0

0
,

0 0 1
1

0 0 0
k

k

k

k

k r

k r

a

a



  
   
  

   
   



    




A b  

,1
0

0 0
k

a

 
 

    (20) 

Proposition 4 establishes the existence of a set, 

1  

,k s , 
an a 

rolled

r 

such that once the state estimation error is smaller th
certain value (note that the decay rate can be cont  
by adjusting ), the presence of the state is 
output feedb  stability region, 

Propositio Given any po e real numbe

kL
ack
n 4. 

within the 

,k b . 
sitiv ,k b , 

there exist positive real numbers ,m ke ,k s
 ,  , and a set  

  , ,: :n
k s k k sR V    x x  such that if  

,ˆ m ke x x , where , ,0,m k m ke e   , then  

, ,ˆ k s k b x x . 

4. Integrated Predictive Controller Design 

Functions 

4.1. Predict troller Desig  on State  
Estimation and Lyapunov Functions for  

 
ser  
tem fixed

Based on State Estimation and Lyapunov 

ive Con n Based

Every Subsystem 

A MPC based on the high-order differential state ob-
ver and Lyapunov functions will be designed for sys-
 (1) with a   t k   k K  in this section. 

The control action at time t  and state estimation x̂  are 
conventionally obtained by on-line solving a finite hori  

optimal control problem described as 
-

zon 

       ˆ ˆ, : min , , k k kP t J t S  x x u u        (21) 

 1  1,y y i

 
1 ,

, 1

,  , 1
:

k k

i i k i k

r k r

y a r

y a y y

    
 

  
 

y
    (22) 

1 1ŷ y

  

 1 1 , 1ˆ ,   1, ,i i k i ky a y y i r 


1      y
 




    (23) 

where  
1 1

, 1 , 1, ,
k

i i
k i k r k ka K C a i r 

    

 
    1

11

k k

k

r r
k k k k

k r

kk k

r a r a
K

rr a
 


 

1kr        (24) 

  1ˆ ˆ ˆ, ,k k    y η x χ y               (25) 

       
 

ˆ ,

ˆ ,

k k k k

m q
k k k kU R R

  

   

x f x G x u x W x θ

u x θ
 

k
   (26) 

 ky h x ,                          (27) 

   
  

ˆ ,  ,

ˆif 

k k

k k

V

V t

  



 ,t t   



 x

x
 


         (28) 

    
 

ˆ ,  , ,

ˆif 

k k

k

V t

V t

   t

 k

   x

x 
           (29) 
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    ˆ 0,   ,c
k fV t     x .t             (30) 

Here k , k   are defined in Proposition 1,  are  

defined in Proposition 2 and .  

 is a family of piec
fu e right), with period , mapping 

0 ˆ,e x
TT T

0,f    x x e

 ,k k kS S t T
nctions (from th

ewise continuous 
 

 , kt t T  into th
e horizon lengt

es n b

e set of admissible c
h and  is the 

a
rol  in ar- 

ontrols kU . kT  is 
Lyapunov function th

us
kV

ed to d ig ounded controller. c
kV  is the L nov 
 

y pu
chfunction of the system. A cont kS  is 

acterized by the sequence 
k u

   k ju ,   k kj ju u  and 

satisfies   
 

k kt ju u  for all   , 1t j j    . The 
perform nce index is given by  

  
       T T

ˆ, ,

ˆ ˆk

k

t T

k k kt

J t

a

dks s s s s




   

x u

x Q x u
   (31) 

R u

where kQ  and kR  ar tiv  and e posi e semi-definite
itive de e c matrices, respecstrictly po  symmetri tively. 

The optimal control  0 ˆk k

s finit
x Su  

al  ,t t  
is define

is then applied to the 
plant o he in and the procedure is 
repeated efin s an implicit mo
dictive control law 

ver t
 ind

terv
itely. Th

 
del pre- 

       1ˆ ˆ: min , , :k k kJ t  x x u u     (32) 

Owing to the existence of parameter uncertainties and 
constraints, the initial fe  of the MPC in (32) is 
not guaranteed. If it is infeasible, the control action is 
switched to the bounded controller (17). To describe the 
whole control action

argM

asibility

, we cast the kth subsystem (1) as a 
switched system of the form 

       
 

i t
k k k k k

ky h

    



x f x G x u W x θ

x
      (33) 

where      : 0, 1, 2i t    is the switching signal which 
is assumed to be a piecewise continuous (from the right) 
function of time. When  i t 1 , the control input takes 

i.e., the MPC is used; and when       ˆ ˆi t
k k
   u x u x ,  1

  2i t 
bounded c

, it takes         2ˆ ˆi t
k k k
    u x u x B x

 used. 
ˆ

ontrol is
osition 5. Consider t

, i.e., the 

Prop he switched nonlinear system 
in (33). For a fixed    t k k K   , the control action 
is switched between the m redictive controller (21)- 
(31) and the bounded con 17). Let  

odel p
troller (

   0 , ,0 k0 ,  k b  x x
w oop system’s states un

y . At the earliest time 
0t   hen the closed-l der MPC  

satisfy   ˆV t ,k k b x , set k
sT t ; at the earliest time 

0t   when the states atisfy 

 

 under MPC s  ˆ kt dx , 
set k

dT t ; at the earliest time 0t   when the states 
under MPC satisfy     ,ˆt t e x x , set k

k s eT t ; at 

the earliest time 0t   when MPC is infeasible, set 
k

infT t . Define  , , , ,k k k k kmink
switch s d e inf designT T T T TT  , 

where   0k k
design designT T    is a designed time arbi-

trary. Th  rule en, the switching

 
1    0

2    

k
switch

k

t T
i t

t T

   


             (34) 

guarantees the stability of the closed-loop subsystem (see 
f in Appendi

Rem dictive controller above is 
designed and implemented usin

switch

). 
xed pre

g the following steps: 
with a fixed  

the proo
a

1) Fo

x A
e mi

stem (1) 

rk 5. Th

r the subsy
   k K   

pute the sta
t k

and com
, desi
ble re

gn the boun
gion  

ded controller (17), 

  , ,:n
k b k k bR V    x x ; 

2) Design the MPC controller given by (21)-(31); 
3) Given initial conditions 0 ,k bx  and  
  ,0 k  , implement the MPC conty roller given by

inft T , or the stat
ubsystem reaches th

 

e 
bounda

(21)-(31) if it is fe

ry of ,k b

asible; 
4) When the MPC is infeasible  k e 

estimation x̂  of the closed-loop s
 , i.e., when   ,ˆ k bt x   k

st T , or  

x̂  satisfies  ˆ kt dx   k
dt T , or  

    ,ˆ k st t e x  x  k
et T , th roller sw

ed
e co es to 

the bound

witched i

. T itching n
ller after t  ensure con

ve avoid pos  closed-loop 
states, under MPC could w

4.
Switched Law for the Whole Switched 

nt itch
 controller given by (17) until the MPC is 

feasible again or until the designed switched time k
designT ; 

5) When another subsystem is s n, go to step 
1). 

Remark 6 he purpose of sw  to the bou ded 
ro - bust contro he time k

design is to
rgence and sible cases where the

T  

, ander inside ,k b  without 
actual convergence. 

2. Integrated Design of the Controller and the 

System 

Consider the constrained switched nonlinear system (1) 
with parameter uncertainties and definite switched time  

sequences  
1 2

, ,in ink
t ,k in k

T t  and  

 
1 2

, , ,out outk out k k
T t t  . Theorem 1 gives the switched law

ensures the stability of whole closed-loop syste
heorem 1

  

that m.  
T . Consider the switched nonlinear system 

(1) for which there exist control Lyapunov functions kV , 
1, ,k p  . Given any initial conditions   ,0 k bx  

and   ,k0 y , where ,k   was d
tion 1, and numb

efine
 positiv ers 

d in Prop  
, 1,

osi-
,k pchosen e real k   , 

com lepute the stab
0

 region estimation k . Choose 

,k b   to compute ,k b . Choose kM  such that  
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   1 2 , 1 2m k k k k

 0design designT T    be the design time and t satisfy

ut
r

. Assume in out
j rm k

t t  for some  

mixed controller switched between the bounded control-
ler (17) and the MPC (21)-(31) is designed with the 
switched law (34), such that if out in

r jk m
t t   

c ce V V M    z z z z . Let  

  

rk
. The  



m

in ok
t t t   ,m k

 
 f  1,  

1

in
j

m m

m

V t

V t j V  
1 1

,  iin in
j j

mm m
t

 
1

,

,  if 1,  

,  if 

in
j

m m mm

m b

j V t

j

 

 




 

  

  
 
      

 
x   



x

x


        
 

x
(35) 

 
   
     

,

,
,

,  if 

,  if 

in in
j j

in
j

in in
j j

in
j

jm m

jm
jm m

m

t t

t
t t

t











 


 





 


 



y y

y
y y

y

   (36) 

   
1

2in in
j j

c c
m m mm m

V t M V t


     
  

x x  


           (37) 

then the whole closed-loop system is stable (See the 
proof in Appendix B). 

Remark 7. The controller presented in Theore
be implemented using the following steps: 

1) Given the system model (1) with constraints on the 
inputs, and a control Lyapunov function  to design 
the bounded controller (17) with suita
compute the stability regions (15) and (16). Here the sta- 

ller design only th able region 
est

h 

m 1 can 

 V

e st

k

ble parameters and 

bility regions are only signs, for the states cannot be mea- 
sured, and in the contro

imation  ˆk x  is used. And choose Lyapunov func- 
tion c

kV  for the system (19); 
2) Determine suitable parameters to design the MPC in 

(21)-(31). Give the size of the ball to whic the state is 
required to converge, maxd , and compute  

,  1, ,k k p    such that for every subsystem it has 

  maxlimsup
t

t d


x . Compute  1min p
k k

 
   , and 

choose rk
   , for a real positive number 0

rkl   
such that out in r rk k

 

 0, 

r rk k

4) Pick 

5) At the time of switch e mth subsystem
onstraints  and

t t l   ; 

3) For time in
rk

t  (the rth time of switching into the kth 
subsystem), consider whether the state estimation be- 
longs to the stable regi ; on ,b k

t  in the switched sequence; in out
j rm k

t

ing in th , con- 
sider the c in Theorem 1, and choose  y

mM  satisfying (36) and (37), respectively; 

n the mth subsystem is switched in, the con- 

st

6) Whe

raint    
1

ˆ ˆin in
j j

m mm m
V t V t 



       
   

x x  is required to 

be satisfied. If 1j

 

 , V  ˆ t
1

,in
j

m m bm


 
   x ; if the state is 

in the neighborhood of origin, then  ˆ in
j

m mm
V t    

 
x  

and ,ˆ m s

 

x . If constraint (37) is used to ensure  

    ,ˆ m st t e x , then ,m bx  and the closed-loop  x

ing to Proposition
rk 8. [10]. The time interval b

es sho ld be long enough to
ecreased to a suff

value such that the closed-loop system is stable. Fur- 
ased on  

, bu state 
t w  at 

me, t

system is stable accord  4. 
Rema etween two con- 

secutive switch u  ensure that 
the estimation error d iciently small 

thermore, the decision to switch is not b

,k bx
k i

some early ti

t rather based on ,ˆ k sx  (under 
feedbac as based on x ). If ˆ x,k b ,k s

 a swi ot executed before ch is n

,ˆ m se x x . 

5. Simulation 

Consider a continuously stirred tank reactor where three 
parallel, irreversible, first-order exothermic reactions of 
the form 31 2,  ,  kk kA D A U A R    take place, 
where A is the reactant species, s the desired 
product species, U, R denote the by-product species. 
Under standard modeling assumptions, the mathematical 

and D  i

model for the process takes the form [8] 

   

     

 
0

e

e

E RT

p p

E RT
D D A

V
HF Q

T T T k C
V c c V

F
C C k C

V

 








   

  





 (38) 

where AC  and 

0 0

0 0

e E RT
A A

A A

C k C

 

 A A

F
C C

DC  denote the concentration of species 
A and p T denotes the temperature of re- 
actor. 

D, res
Q

ectively. 

  
e of the

tial con

is th f heat input to the reactor. V the 
volum denote the pre-expo- 
nen stants, the activ ergies. And the e
pies of the thre ectively, 

e rate o
 reactor. 

e reactions, 

0 , ,k E H  
ation en
resp

nthal- 

pc  and   are 
the he  fl  the or. at capacity and density of the uid in  react
   t

these parame
1,2  is e swi able The val es of 

ters ble 1
con jec

 K 
he reacto

ur n
feed stream temperature, (2) parametric uncertainty in 

 th
ca

tched vari
n be found in Ta

. 
.  

u

The trol ob tives are to: (1) stabilize the reactor 
temperature at the open-loop unstable steady state Ts = 
388.58 of mode 1, and (2) maintain the temperature at 
this steady-state when t r switches to mode 2. 
The control objective is to be accomplished in the pres- 
ence of: (1) exogenous time-varying dist bances i  the 
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ers
 

Table 1. Process paramet

Process parameters values Process parameters

 and steady-state values. 

values Process parameters values 

V  1000.0 L  H  44.78 10 J mol    1,2sT     388.58 K  

R  8.314 J mol K  0k  4 11.2 10 min  1AsC  3.58 mol L  

0A sC  4.0 mol l  E  48.314 10 J mol  2AsC  4.55 mol L  

0A sT  300.0 K    1000.0 g L  1DsC  0.42 mol L  

1F  33.34 10 L sec  pc  0.231 J g K  2DsC  1.0 mol L  

2F  31.67 10 L sec      

 
the enthalpy of the three reactions, and (3) hard con- 
straints on e manipulated inputs

Note th , with this requiremen th closed-loop 
modes share the same steady-state temperature but have 
different steady state reactant concen ations. The control 

bjective is to be accomplished by manipulating Q pro- 

th . 
at t, bo

tr
   

 

3

1 1 3

2 2 1

1
3 3

1 0 2

,  

e

1, 2

E Rx

e v

o
vided by the jacket, subject to the input constraint 

25 KJ secQ  . 
Defining 1 0 ,H H      2 0 0A A sT T   , y = x1, the 

process model of Equation (34) can be cast in the form of 
Equation (1) 

               t t t

        t t

t     

x t f x t G x t u t   

W x t t 



 θ

y t h x

 

where 

 

 

   

     

 

3

3

3

1 10 2

0 2 0 2

3 0 2

e

e ,

e

E Rx

E Rx
A

E Rx
A

p

F
x k x

V
F

f x C x k x
V

HF
T x k x

V c


















 
  
 


   
 
 

 


, 1, 2







   1 2

0

0

1

p

g x g x

c V

 
 
 
  
 
 
  

,    1 2 1h x h x x  ,  

 
 3

1

0 2

0

0

e E Rx

x

k x




 
 

  
 
 

,  2

1

0

0xw

F

 
   
  

. 

The boundary of parameters is 1 0.5b H   , 0k

s2 00.03b AT 
coordinate tran

. For this system, perform the following 
sformation 

x v

e v v

e Fv x k x
V

 

 

 










x

 
    
          
      

    
 



   (39) 

Two quadratic, posi e-definite fun ons of the form,  tiv cti

2 2
1 1 22 2

1 2

1 1
,

2 2s s

V e V
T T

  2e , are then used to synthesize  

tw ne for each mode
of the form 

o bounded nonlinear controllers (o ) 

 

      
   

2 4max

2 2max1 1

,

1,  2i

ii i

i i

i

k

i i i i i g if f

g i g

g

L V x V L V x V u L V

L V u L V

L V

    
 

    
 

 

Note that these positiv

u x

 

(40) 

e-define function is given for 
system (39). To estimate the stability regions, the Lya- 
punov functions 

     

  

2 2

1 1 1 1 2 1 1

2

3 1 1

1 1

2 2
1

2

s s A As As

D Ds Ds

V c T T T c C C C

c C C C

   

 
 

1 38.8c  , 2 1.0c  , 3 0.6c  ; and where 

     

  

2 2

2 4 2 2 5 2 2

2

6 2 2

1 1

2 2
1

2

s s A As As

D Ds Ds

V c T T T c C C C

c C C C

   

 
 

where 3 4 319.4,  1.0,  0.3c c c   , are used. 
Given initial state  T0 0.5 mol L,2.20 mol L,300 Kx  , 

and switched tim 30 secdesignT e , the parameters of the 
high-order differential r take as  state observe
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1 20.9,  1.5a a  .
posed in this paper, 

 Using the hybrid MPC method pro- 
we obtained the following simulation 

results: 
In the simulation, starting from mode 1, the predictive 

first implem ted before ching to the 
d controller at A esigned swi- 

tched time  turned to mode 2. 
In mode 2, roller was first implement- 
ed before d controller at 

it was again switch- 
ed to predictive controller. 

res 1 to 4 demonstrate the validity of the control- 
le r. 

controller was en swit
bounde 21 t the d.3 sect  . 

sec  the system
ictive cont

the bounde
73.87 sect 

30designT 
 the pred
 switching to 
ec,  and at 64.56 st   

Figu
r proposed in this pape

6. Conclusion 

In this paper, a hybrid predictive control method is pro- 
 

 

Figure 1. Closed-loop state (the reactor temperature T) pro- 
file. 
 

 

Figure 2. Closed-loop state (the reactor concentration CA) 
profile. 
 

 

 

Figure 4. The input Q profile. 
 
posed for a class of uncertain switched nonlinear systems 
with input constraints and unavailable state measure- 
ments. The main objectives were to design a hybrid con- 
troller which switches between a bounded controller and 
a predictive controller based on Lyapunov functions and 
a high-order differential state observer with a suitable
switched law to stabilize the closed-loop subsystem, and 
to provide an explicitly characterized set of initial condi- 
tions. For the whole switched system, a suitable switched 
law based on the state estimation was derived to ensure 

 of the controller proposed in this paper. 
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Appendix A 

Proof of Proposition 4 

The proof uses the result of Proposition 3, if the bounded 
controller (17) is switched to, the state estimation of the 
closed-loop system resides in ,k b , i.e., there exist  

, ,0,  0k s m se   , such that   ,ˆ k
switch k sT x . Here, the  

high-order differential state observer is used to estimate 
states of the controlled system; it is able to converge to 
the state evolution of the controlled system. So we can 
have     ,ˆ m bt t e x x , then k

switcht T 
  ,k bx

, using the 
result of Proposition 4, we have  
and 

, k
switcht t T 

kdx . 
Therefore, we need only show that under the MPC 

(21)-(31), the closed-loop system is stable until the 
bounded controller is switched to. In order to do this, we 
consider five possible values of k

switchT  to show that  

  ,ˆ k
switch k sT x . Owing to the constraints (28)-(29), if  

  ,ˆ k
switch k sT x , we can have . Since    ,ˆ k st x

    ,ˆ m bt t e x x , we can have , so the 
closed-loop subsystem is stable. 

  ,k bt x

Now, we show   ,ˆ k
switch k sT x  for all the possible 

values of k
switchT . 

Case 1. If k k
switch sT T k ( sT  is the earliest time when  

states under MPC satisfy    ,kV tˆ k b x ), then we can  

have    ,ˆ k
s k sT


x . By continuity of the solution of  

system (1), we have   ,ˆ k
s k sT x , i.e.,  

  ,ˆ k
switch k sT x . 

Case 2. If k k
switch dT T
 

 (  is the earliest time when  k
dT

states satisfy ˆ t dx k

k s

), as long as dk is small enough,  

we can have , i.e.,    ,ˆ k
dT x

  ,ˆ k
switch k sT x . 

Case 3. If k k
switch designT T , then from the definition of  

k
switchT , we can have . We proceed by contra- kT  kT

s

design s

diction to prove . Assume    ,ˆ k
design k sT x

  ,ˆ k
design k sT x , then    ,ˆ k

k design kV T x . Owing to  

continuity of the solution and , also since the fact   kV 
:V x    ,ˆ 0 n

k s k k sx x R   

 0k k k
s s designT T T    for which    ,ˆ k

k s kV T s x . Since 

k
sT  is the earliest time for which    ,ˆ k

k s kV T s x
k

, it  

must be true that k k
s s desiT T T 
k k

design sT T
gn , which leads to a 

contradiction with  . Therefore we can have 
  ,ˆ k

switch k sT x . 

, , there exists a time  

Case 4 and Case 5. If k k
switch eT T  or k k

switch infT T , we  

can prove   ,ˆ k
switch k sT x

k k

 similar to Case 3 only need  

to replace  by , and , respectively. design e

By Proposition 4, we have , 
and 

T T k
infT
x   , ,  k

k s switcht t T  
kdx . This completes the proof of Proposition 5. 

Appendix B 

Proof of Theorem 1. (Similar to the proof of Theorem in 
ref. [7]) 

Based on Propositions 3-5, we need only to prove that, 
with the switched law (35)-(37), the whole closed-loop 
system is still stable. 

Let t satisfy in out
r rk

t t t
k

   and . For  in out
j rm k

t t  

the active mode k, constraint (35) ensures the initial con-
ditions switched on mode k, using the result of Proposi-
tion 5, we can have the mode k is stable. So we need only 
to prove the stability at the switched time. 

If  ˆkV k x , using the constraint (28), we can have  

     ˆ ˆout in
r r

k kk
V t V tx x

k
. While the constraint (35) 

ensures that   
1

ˆ inkV t


x   ˆ in
r r

kk
V tx

k
 if this mode is  

switched out and then switched back in. So we can have  

     
1

,ˆ ˆin in
l l

k kk k
V t V t k b


 x x  . Owing to the fea- 

sibility of constraints (28)-(29), then the value of  ˆkV x

j

 
continuously decreases. If this mode is not switched in, 
there exists at lease some  such that mode  
is active and Lyapunov function 

1, ,j  p

jV  continues to de-
crease until j jV   . Similar to discussion before, the 
constraint (35) ensures that jV  continues to be less than  

j  . Hence,  ˆlimsup


x maxt d
t

. The switched condi- 

tion (37) ensures the boundedness of    ˆt tx x  at  

switched transition time, so   maxlimsup
t

t d


x . This  

completes the proof of Theorem 1. 
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