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ABSTRACT 

We present a novel formulation, based on the latest advancement in polynomial system solving via linear algebra, for 
identifying limit cycles in general n-dimensional autonomous nonlinear polynomial systems. The condition for the ex- 
istence of an algebraic limit cycle is first set up and cast into a Macaulay matrix format whereby polynomials are re- 
garded as coefficient vectors of monomials. This results in a system of polynomial equations whose roots are solved 
through the null space of another Macaulay matrix. This two-level Macaulay matrix approach relies solely on linear 
algebra and eigenvalue computation with robust numerical implementation. Furthermore, a state immersion technique 
further enlarges the scope to cover also non-polynomial (including exponential and logarithmic) limit cycles. Applica- 
tion examples are given to demonstrate the efficacy of the proposed framework. 
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1. Introduction 

A limit cycle, which is represented by an isolated closed 
trajectory in the phase plane, describes a phenomenon of 
oscillation that is widely observed and studied in various 
research fields such as electrical circuits and control the- 
ory [1], chemistry and medicine [2,3], ecological systems 
[4], human population [5], etc. Some research focuses on 
the analysis of properties of limit cycles such as stability 
and period [6,7]. Besides, a variety of theorems on de- 
tecting the existence and the number of limit cycles are 
also developed by many researchers [8-10]. While, be- 
yond these topics, identification of limit cycles remains 
to be a difficult problem. In previous research, different 
methods and theories are established for constructing ap- 
proximated limit cycles (e.g., via harmonic balance, pow- 
er series) [11,12]. However, little development is achiev- 
ed in respect of identifying exact analytical formulas of 
limit cycles for a general system or a family of equations. 

In this paper, we propose a new framework for identi- 
fying the limit cycles of polynomial systems, inspired by 
the latest innovation in multivariate polynomial repre- 
sentation and roots finding by formulating the polyno- 
mial equations via Macaulay matrices [13,14], thereby turn-  

ing the problem into an eigenvalue computation problem. 
In the proposed framework, an equation of semi-in- 

variant that captures limit cycles is formulated via linear 
algebraic representation, by assuming that the limit cycle 
is represented as a multivariate polynomial. Afterwards, 
a two-level Macaulay matrix approach is applied to solve 
the set of equations. First, the semi-invariant equation is 
reformulated by representing multivariate polynomials 
and their multiplications with coefficient vectors and mo- 
nomial vectors, based on the concept of Macaulay matrix. 
A set of polynomial equations are then constructed with 
respect to the coefficients of the limit cycle, whose roots 
are found through eigenvalue computation. This frame- 
work has a general efficacy for polynomial systems of ar- 
bitrary orders and dimensions. 

Moreover, our method is applicable not only to sys- 
tems with polynomial limit cycles, but also to systems 
with non-polynomial limit cycles containing common terms 
such as exponential and logarithmic kernels. We achiev- 
ed this by exploring and flexibly using immersion, a me- 
thod for eliminating non-polynomial terms, to enlarge the 
scope of application. Therefore, the proposed framework 
provides an innovative method for limit cycle identifica- 
tion for polynomial systems. 

The remainder of this paper is organised as follows. *Fund Project No. 
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The concepts related to limit cycles and polynomials are 
introduced in Section 2. Then we present in Section 3 a 
two-level approach based on Macaulay matrix to solve 
for the limit cycle. In Section 4, we review the concept of 
immersion and its novel use to extend our framework to 
non-polynomial limit cycle identification. Section 5 de- 
monstrates the entire procedure with examples. Finally, 
Section 6 concludes this paper. 

2. Theoretical Background 

2.1. Stable Limit Cycles and Semi-Invariants 

Given an autonomous system, 
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where 1, , nf f
 1 n

 are polynomials in the variables  
T

x x  x . If one of its trajectories traces out an 
isolated closed curve, the curve is called the limit cycle 
of the system. If all trajectories in its neighbourhood spi- 
ral towards the limit cycle (outer trajectories shrink and 
inner trajectories spread) as shown in Figure 1(a), then it 
is a stable limit cycle.  

The LaSalle’s theorem in particular [15] can be used to 
capture stable limit cycles: 

LaSalle’s Theorem: Let  be a compact set, 
positively invariant with respect to system (1). Let 

 be a continuously differentiable function 
such that  in . Let 

D 

:V D 
V 0  E  be the set of every 

point in  where . Let  0V  M  be the largest in- 
variant set contained in E . Then every solution starting 
in  approaches  M  as . t 

Suppose the system has a polynomial limit cycle 
. Define . To achieve a stable limit 

cycle, set  according to the LaSalle’s theorem. 
Then, . Hence we have 
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or  divides . For system in (1),  p p
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 hp . By the definition of directional de- 
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 , we have 

,fL p hp                   (2) 

with h, the quotient of  divided by , being a poly- 
nomial as well. Such  that satisfies (2) is studied in a 
variety of topics, with names such as semi-invariants, se- 
cond integrals, eigenpolynomials etc. [16]. In this paper, 
the semi-invariant associated with system (1) plays the 
role of limit cycle. For (2), notice that  results in a 
special case that . Such  is known as a first  

p
p

0

p

h  0

fL p p

 

 

Figure 1. Stable limit cycle and neutrally-stable limit cycle: 
(a) plots a stable limit cycle that attracts nearby trajectories; 
(b) plots neutrally stable limit cycles consisting of infinite 
closed trajectories (only part of them are plotted). 
 
integral, which expresses a specific kind of stable limit 
cycles, the neutrally-stable limit cycles. In this case, the 
system has infinite non-isolated closed trajectories as 
shown in Figure 1(b). 

2.2. Representation of Multivariate Polynomials 

Any multivariate polynomial can be represented with a 
coefficient vector multiplied by a vector containing all 
monomials up to a certain degree. Suppose we have a ge- 
neral bivariate polynomial of degree two, 

2 2
1 2 1 3 2 4 1 5 1 2 6 2 .p p p x p x p x p x x p x       

It can be expressed as, 

   1 2 3 4 5 6 2 2 ,p p p p p p p k
T

 

where 2  2
2 1 2 1 1 22 1k x x x x x 2x   

1 2,
 consists of 

all monomials of variables x x

n 1, , n

 up to degree two. 
Similarly, in the rest of the paper, vector containing all 
monomials of  variables x x  up to degree  
is noted by 

d
 nk d p

p k

. Furthermore, if  is multiplied by 
a monomial, the result can be expressed as a “shifted’’ 
coefficient vector of  multiplied by the  vector of 
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extended order. For example 

   1 1 2 3 4 5 6 20 0 0 0x p p p p p p p k 3 .

6

0

p

2

 

Now, consider the multiplication of p and another 
general polynomial q. Since q can be regarded as a linear 
combination of monomials, according to the representa- 
tion above, it can be seen that the coefficient vector of 

 is also a linear combination of coefficient vectors of 
p multiplied by each monomials in q. By stacking these 
coefficient vectors, a truncated Macaulay matrix can be 
constructed, with coefficient vectors of p and its shifted 
versions as rows. If 1 2 1 3 2 , then the mul- 
tiplication of p and q can be expressed as, 

qp

q q q x q x  

 

1 2 1 3 2

T

1 1 2 3 4 5 6

2 1 2 3 4 5 6

3 1 2 3 4 5

2

0 0 0 0
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3

pq q p q x p q x p

q p p p p p p

q p p p p p p

q p p p p p

k

  

   
       
      



 

polynomial of a certain degree, all polynomials and their 
operations in (2) are represented in the way described in 
Section 2.2. By equating the coefficient vectors on both 
sides of (2), a set of polynomial equations are set up 
whose variables are coefficients of all unknown polyno- 
mials in the equation, including those of the limit cycle. 
Therefore it is sufficient to obtain the accurate expression 
of the limit cycle by solving those polynomial equations. 
Generally, a polynomial limit cycle can be of any order. 
Therefore, with initial trial of a certain order, we itera- 
tively increase the order of the limit cycle. At each itera- 
tion the solved coefficients indicate the termination: the 
recursion stops when a set of valid coefficients of a limit 
cycle are obtained. We illustrate the idea through a walk- 
through example. Given a third-order bivariate polyno- 
mial system with a polynomial limit cycle of unknown 
order, 
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
       (3) 

by assuming the limit cycle is of a certain degree, say 
degree 2, the general form of such limit cycle is  

2
1 2 1 3 2 4 1 5 1 2 6 2 0p p p x p x p x p x x p x       . By com- 

paring the degree on both sides, the degree of cofactor h, 
     deg deg 1 3 deg 2h p p     . Therefore, by uti- 

lizing the notion in Section 2.2, 

3. Two-Level Macaulay Matrix Approach 

In this section, we present how the two-level Macaulay 
matrix approach works on finding limit cycles of poly- 
nomial form. The entire procedure is divided into two 
stages. First, with the assumption that the limit cycle is a 
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Therefore, the L.H.S. of (2) becomes 
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Similarly, R.H.S. becomes 
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The corresponding coefficients of each monomial in 

 on both sides must be equal, which generates a 
set of 15 polynomial equations in 12 variables. 
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Notice that further investigation based on observation 
of the numerical simulated limit cycle makes the equa- 
tions more compact: firstly, the origin does not lie on the 
limit cycle, which forces 1  nonzero. We might as well 
set 1  since the limit cycle  still holds; more- 
over, the limit cycle has two intersection points on each 
of 

p
1p 

1

0p 

x  and 2x  axis, indicating that 1 2 1  

3 2 4 1 5 1 2 6 2  has two roots of 2

p p p x  
2 0p x x x p 2 p x p  x x  

w.r.t. 1x  (same for 1x  w.r.t. 2x ). Therefore 4  and 

6  are both nonzero. Accordingly, it reduces (4) to a set 
of 9 equations in 7 variables, as below, 
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Next, these polynomial equations are manipulated by 
putting coefficients in a Macaulay matrix and unknowns 
in a monomial vector, such that the problem is converted 
to a linear algebraic one. Given a polynomial system 
 1, , sf f , of degree  1, ,id i s   and in  vari- 
ables 

n
 , , n1x x , the approach at this stage is accomp- 

lished in three steps [13,17]: 
1.  nM d , a Macaulay matrix of degree  in  

variables 
d n

 , , n1x x , is constructed with  
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                 (6) 

where for each if , monomials from degree 0 up to 

id d  are multiplied,  1, ,i s  .  nM d  contains 
the coefficients of (6). In other word, expressions in (6) 
can be represented by   n n M d k d . 

0













.       (5) 

2. By first performing a left-right permutation, then re- 
gulating  nM d  into reduced row echelon form, the 
distinct leading monomials in the row space of  nM d


 

are observed. These monomials of 1 , , nx x  are de- 
noted by  nA d . The vector space spanned by  nA d , 
and its complement spanned by the remaining monomials 
are denoted by  and d , respectively. Then those 
monomials span d  are defined as normal set 

d


 

 nB d . 
The decomposition of monomial basis into  nA d  and 

 nB d  is called canonical decomposition, implemented 
by principal angle computation through SVD. Further- 
more, the reduced monomials are defined to be the small- 
est subset that divides  nA d , denoted by  nA d . That 
is, for each monomial in  nA d , there exists a mono- 
mial in  nA d  that divides it. Then the reduced normal 
set  dn  is the normal set corresponding to the cano- 
nical decomposition implied by 

B

 nA d
 , ,



x
. 

Starting from the initial 1 ma sd d  d , the de- 
gree of  nM d  is stepped up. The Macaulay matrix of 
a proper degree  is found when the corresponding d 

 nB d  stops changing as  increases. To eliminate d
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roots at infinity, the reduced Macaulay matrix  nM d   
is constructed with .  nB d 

3. Once n M d   is constructed, the affine roots are 
retrieved from the canonical nullspace K  of  nM d  . 
Whereas K is not directly available, the basis of the null- 
space, Z is first computed by SVD. Then K is proposed to 
be obtained by K ZV  where V is a nonsingular ma- 
trix. Let 1  and 2  be two row selection matrices, and S S
D  a freely chosen diagonal matrix, such that 1S KD  

. Replacing K with ZV on both sides, 2 S K 1S ZVD  
. Alternatively,  2 S ZV

 1D V S  †

1 2 ,Z S Z V               (7) 

where  is the pseudo-inverse of   since 

1  is not necessarily square. Therefore, V is obtained 
by computing the eigenvectors of . Once V is 
available, K is solved with 

 †

1S Z


1S Z
S Z

 †

1S Z S2Z
K ZV . With first element 

normalized to 1, columns of K represent monomial 
vectors containing monomials valued at affine roots of 
the system. Hence, all affine roots are retrieved. 

As described above, the two-level Macaulay matrix 
approach obtains a set of possible coefficients of the limit 
cycle. This process iterates by increasing the order of the 
limit cycle and inspecting the validity of the coefficients 
solved at each iteration, until a valid limit cycle is ob- 
tained, if there exists one. For equations in (5), initially 

 of size  is constructed. By inspecting 
, the Macaulay matrix sufficient for solving affine 

roots is . Through eigenvalue computation, the 
affine root is obtained as  

 7 2M
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36
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Therefore, the limit cycle is 2 2
1 2

1 1
1

4 4
p x x 0    . 

4. Immersion 

In this section, we extend our framework to non-polyno- 
mial systems or non-polynomial limit cycles by immer- 
sion. Immersion was introduced in control theory for de- 
cades [18]. The main idea is to eliminate the non-polyno- 
mial kernels in nonlinear systems by adding new state 
variables. Through immersion, the original system is trans- 
formed into a polynomial system with more states. There- 
fore, our framework is also applicable to non-polynomial 
systems that are convertible via immersion. Moreover, by 
flexible use of the idea of immersion, we can similarly 
transform a non-polynomial limit cycle into a polynomial 
one by eliminating its non-polynomial terms. For a limit 
cycle with common nonlinear terms, e.g., exponential or 
logarithmic nonlinearity, by defining new states to re- 
place those terms, we get a new system with a polyno- 
mial limit cycle. The new system has more states, yet 

transforming the problem into where our framework is 
applicable. This enlarges a lot the scope of polynomial 
systems compatible with our proposed method. The Lot- 
ka-Volterra (LV) equations, which are widely used for 
describing behaviors of biological systems, is a bivariate 
polynomial system as below,  
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with its limit cycle known to be 

1 1 2 23 ln 2 lnp x x x x    

3 1 4ln , ln

. The Macaulay matrix ap- 
proach unsurprisingly fails for LV equations since the as- 
sumption of a polynomial limit cycle never holds due to 
the existence of logarithms. However, by utilizing im- 
mersion, the framework regains efficacy. Defining two 
new states 2x x x x  , and taking Lie deri-  

vatives 3 1 2 4 2 1
1 2

1 1
2 , 3x x x x x x

x x
1         , the LV  

equations are extended to a four-state polynomial system 

 
 

1 1 2

2 2 1

3 2

4 1

2

3 1
,

2

3 1

x x x

x x x

x x

x x

  


 


 
  







              (9) 

with limit cycle now being 1 3 2 4 , a 
polynomial. Therefore, the extended system falls into the 
scope of our framework. Inputting the extended equations 
through the two-level Macaulay matrix approach in Sec- 
tion 3, we have  

3 2p x x x     x

   1 2 3 4 3 1 1 2p p p p   
p p x p x p x p x x

, i.e.,  

1 1 2 2 3 3 4 4 1 2 3 43 2x x x        
2413 ln=,ln= xxxx

3 ln 2lnp x x x x

. Sub- 
stituting , the limit cycle  

1 1 2 2      is retrieved. Substituting 
back to (2), we have 0fL p  . Therefore  

1 1 2 23 ln 2 lnp x x x x      expresses neutrally-stable 
limit cycles as mentioned in Section 2.1. 

5. Examples 

In this section, we illustrate the feasibility and applicabil- 
ity of the technique presented in the previous sections 
with examples.  

5.1. A Third-Order Bivariate Polynomial System 

First we study the planar cubic system  

2 2
1 1 1 1 1 2 1 2

2
2 2 1 2 2 1 2

9 8 4 3
.5

6 15 4 3
2

x f x x x x x x

2x f x x x x

      



     



 x
     (10) 

The semi-invariant equation is 
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 2 2
1 1 1 2 1 2

1

2 2
1 2 2 1 2

2

9 8 4 3

5
6 15 4 3

2

f

p
L p x x x x x x

x

p
x x x x x h

x


    


        
p





    (11) 

Initially, p is assumed to be a first-order polynomial. 
Through the procedure, the order of p is increased ite- 
ratively until a valid limit cycle is obtained. Employing 
the first stage of the Macaulay matrix approach, the iden- 
tification of the first-order, second-order and third-order 
limit cycle  is converted to solving for systems of 10, 
15 and 21 equations, respectively. At the second stage, 
only trivial solutions are found for the above cases, i.e. 
either  or  is a constant. These solutions do 
not represent a valid limit cycle. Now, assume the limit 
cycle is of order 4. Equation (11) is formulated into a set 
of 28 equations in 21 variables, 

p

0p p

11 11 12

21 12 22 11 21 21 11

13 24 15 22 15

13 15

5

2
5

9 6
2 0,

12

h p p

p p p h p h p

h p p h p

h p

 

     







 
  
  
 



1

    (12) 

where ij  represents the coefficient of p 1
1 2
i jx x   in the 

limit cycle. Numerical simulation of (10) implies that the 
origin does not lie on the limit cycle, which indicates a 
nonzero 11 . Therefore, we might as well set 11p 1p   
to eliminate the trivial solutions  with arbitrary 

. Then, (12) becomes, 
0p 

h

11 12

21 12 22 11 21 21

13 24 15 22 15

13 15

5

2
5

9 6
2 0.

12

h p

p p p h p h

h p p h p

h p

 

      

  
  
 











   (13) 

Such modification does not reduce the number of equ- 
ations. However it makes the Macaulay matrix approach 
feasible. After applying the Macaulay matrix approach, 
the affine roots of (13) is found as 

11 21 31 22

33 21 22

3
1, , 1, 1,

2

1
, 16, 12

2

p p p p

p h h

     


   


 

with remaining coefficients all being 0. Therefore, a va- 
lid limit cycle of degree 4 is obtained, 

  2 2
1 2 1 1 1 2 1 2

3 1
, 1

2 2
p x x x x x x x x     

Figure 2 compares the level curve  

2 2
1 1 1 2 1 2

3 1
1

2 2
x x x x x x2 0      with a simulated tra-  

jectory of system (10). It verifies that the obtained limit 
cycle in (14) does capture the limit cycle of the system. 

5.2. A Bivariate Non-Polynomial System with  
Exponentials 

Given a non-polynomial system, 

  

 



   

1 1 1

1 1 1

1 2

2

2 2 1

2

1

3
1 e e 5 e

2

1
1 e 1 e 5 e 1

2

x x x

x x x

x x

x x x

x

 

           


         




    (15) 

First, immersion is applied to transform (15) to a po- 
lynomial system. Notice that the non-polynomial non-li- 
nearity is caused by 1ex . One may guess that the limit 
cycles of (15) also contain such nonlinearity. Therefore, 
define 1

3 exx   and add the Lie derivative  
 3 1 3 2 2ex1x x x   3x x x   to (15). We have, 

   

     

1 2

2

2 2 3 3 1 3

2

3 3 1 3

3 2 3

3
1 5

2

1
1 1 5

2

x x

x x x x x x

x x x x

x x x

 


1

          


          


 







   (16) 

Thus, a forth-order polynomial system in variables 
 T

1 2 3, , x x x x  is obtained via immersion and it falls 
into the scope of the framework. Similarly to Section 
1.5.1, by assuming (16) has a multivariate polynomial li- 
mit cycle  p x 0 , the Macaulay matrix approach is 
iterated by increasing the degree of . A valid affine 
root is found for 

 p x
 p x  of degree four. The limit cycle is 

 

 

Figure 2. Plots of (14) and a simulated trajectory of (10) spi- 
raling towards the limit cycle. 

2 0    (14) 
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identified to be  

    

 

2

2 3 1 3

1 3

1
1 5

2
5 0

p x x x x x

x x

      

   
. 

Substituting 1
3 exx  , the limit cycle for the original 

system (1.15) is retrieved, 

    
 

1 1

1

2

2 1

1

1
1 e 5 e

2

5 e 0.

x x

x

p x x x

x

    

   


     (1.17) 

The level curve (17) and the numerical simulation of 
trajectories of (15) are plotted in Figure 3, showing that 
the identified limit cycle attracts nearby trajectories as 
expected. 

6. Conclusion 

This paper has presented a new framework for finding 
multivariate limit cycles for polynomial systems. This 
framework employs a two-level Macaulay matrix appro- 
ach to convert the limit cycle identification to a problem 
of solving multivariate polynomial equations, and finds 
the roots with linear algebra and eigenvalue computation. 
The procedure iterates by increasing the degree of the po- 
lynomial limit cycle until a valid limit cycle is obtained. 
Furthermore, the scope of the framework is extended to 
non-polynomial limit cycles containing exponential or 
logarithmic terms by employing immersion. This frame- 
work makes use of the semi-invariant to capture limit cy- 
cles and embeds a recently developed method of multiva- 
riate polynomial roots finding into limit cycle identifica- 
tion, thus providing an innovative way for constructing 
exact analytical expressions of limit cycles. 
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