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ABSTRACT 

In this article, Discrete Homotopy Analysis Method (DHAM), as a new numerical method, is employed to investigate 
amperometric biosensor at mixed enzyme kinetics and diffusion limitation. Mathematical modeling of the problem is 
developed utilizing non-Michaelis-Menten kinetics of the enzymatic reaction. Different results are obtained for differ- 
ent values of the dimensionless parameters described in the paper. The presented solution is then compared with the 
available actual and simulated results. 
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1. Introduction 

Biosensor is a device which measures biologically rele- 
vant information such as oxygen electrodes, neutral in- 
terfaces, etc. [1]. It is also utilized as a component of the 
transduction mechanisms [1]. Furthermore, it has been 
applied as a transducer, mapping the change in bio- 
molecules into electrical signals [2]. Biosensors produce 
a signal indicative of the concentration of the measured 
analyte. As such, they are used in many industrial, envi- 
ronmental, food safety [3], and medical applications. 
Examples of such use are detection of pathogens [4], 
toxic metabolites such as mycotoxins [5], and pesticides 
and water contaminants such as heavy metal ions [6]. 
These applications showcase the wide usage and studies 
of biosensors and highlight the requirement of low detec-
tion limits and quicker analysis with high specificity for 
biosensors [2]. Mathematical modeling is widely used as 
an important tool to investigate and optimize the analyti-
cal characteristics of biosensors [9]. Investigative mono- 
layer membrane contained in the model biosensors are 
used to study the biochemical treatment of biosensors 
[7,8]. The mathematical model developed is based on 
reaction-diffusion equations including none-linear terms 
that relate to non-Michaelis-Mentenkinetics of the enzy- 
matic reaction [9,10]. 

In addition to several numerical methods employed for 

solving linear and nonlinear differential equations, there 
exists some analytical methods such as perturbation 
method [11], δ-expansion method [12], Adomian de- 
composition method (ADM) [13,14], and Homotopy 
perturbation method (HPM) [15,16]. All of the above 
mentioned methods including the numerical methods 
have certain restrictions, such as necessity for existence 
of small parameters, incapability of determining conver- 
gence regions, etc. One of the analytical methods pro- 
posed in the last couple of decades is homotopy analysis 
method (HAM) in which many of these restrictions have 
been omitted. In 1992, Liao introduced homotopy analy- 
sis method (HAM) for solving strongly nonlinear differ- 
ential equations [17]. Using the linear property of homo- 
topy, one can transform a nonlinear problem into an infi- 
nite number of linear sub-problems regardless of the ex- 
istence of small parameterss in the original non-linear 
problem. HAM is a powerful mathematical technique 
and has already been applied to several nonlinear prob- 
lems [16-22]. 

Since HAM has many advantages in comparison to 
other analytical methods, it is employed to solve con- 
tinuous problems. Hence, after the discrete ADM method 
[23], discrete Homotopy analysis method (DHAM) was 
introduced in 2010 by Zhu et al. [24]. This method can 
be applied to complex problems containing discontinuity 
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in fluid characteristics and the geometry of the problem. 
In addition, it needs little computational cost as a nu- 
merical method in comparison to HAM as an analytical 
approach. DHAM has similar advantages to continuous 
HAM. For instance, by means of introducing an auxiliary 
parameter one can adjust and control the convergence 
region of the solution series. This method should be em- 
ployed for solving various differential equations to high- 
light its high capabilities in comparison with other nu- 
merical methods.  

The main focus of this paper is on amperometric bio- 
sensor at mixed enzyme kinetics and diffusion limitation 
by utilizing DHAM as a powerfull method. Non-Micha- 
elis-Menten kinetics of the enzymatic reaction is used to 
obtain the constitutive equation of the problem. Several 
non-dimensional parameters are defined to the dimen-
sionless equation. The obtained non-dimensional equa-
tion is used to procure the mth-order deformation equa-
tion as an important step towards obtaining the solution. 
The h-curves obtained for several cases are illustrated in 
this paper to clarify the convergence region of the solu-
tion. Finally, the obtained solution is analyzed to inves-
tigate the effects of varying each dimensionless parame-
ter in the procured equation of the problem. In addition, 
some of the results are compared with the actual and 
simulated results available in the literature [25]. 

2. Mathematical Modeling 

Spatial dependency of enzyme kinetics on biochemical 
systems has recently attracted much attention by consid- 
ering the effect of diffusion in these processes [9,10]. 
The simplest scheme of non-Michaelis-Menten kinetics 
may for instance be described by adding to the Micha- 
elis-Menten scheme (2.1) the relationship of the interac- 
tion of the enzyme substrate complex   with an- 
other substrate molecule  (2.2) followed by the gen- 
eration of non-active complex 

ES
 S

 2ES


 as 

E S ES E P           (2.1) 

2ES S ES                 (2.2) 

The reaction is sometimes said to display Michaelis- 
Menten kinetics in which the relationship between the 
rate of an enzyme catalyzed reaction and the substrate 
concentration takes the form 

 
 

max

M

V S

K S
 


              (2.3) 

where   and maxV  are the so-called “initial reaction 
velocity” and maximum velocity respectively. 

In addition, MK  is known as Michaelis constant for 
. S MK  and maxV  are constants at a given temperature 

and a given enzyme concentration. 
The reactions exhibit non-Michaelis-Menten kinetics, 

in which the kinetic behavior does not obey the Equation 

(2.3). The velocity function   for the simple reaction 
process without competitive inhibition is given by Pao 
[26] and Baronas et al. [27], which is based on the non- 
Michaelis-Menten hypothesis, 
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where the constants  max E
0cV k , MK  and iK  are 

Michaelis-Menten and inhibition constants respectively. 
The Equation (2.4) conforms to Equation (2.3) for large 
values of iK  with respect to MK . On the basis of 
Equation (2.4), the rate is maximized by increasing the 
concentration. It is then said to be inhibited by the sub- 
strate. In addition, the constant iK  (which has the di- 
mension of a concentration) is called the substrate inhibi- 
tion constant. For obtaining the rate of change of sub- 
strate concentration  ,S S t  at time t  and position 
   throughout the domain, the following equation 
given by Pao [26] is used. 

   ,S

S
D S

t
t 

    


        (2.5) 

S  is the substrate diffusion coefficient and D S  is 
the gradient operation. On the basis of non-Michaelis- 
Menten kinetics, Equation (2.5) becomes 

2

2 21S
M i M

S S KS
D

t S K S K K
 

 
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     (2.6) 

in which 0c MK K E K . 
In this paper, the steady state condition is accounted 

for and hence, Equation (2.6) is changed to the non-di- 
mensional form [25] using the following non-dimen- 
sional parameters 

2
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This results in the following non-dimensional differen- 
tial equation 

2

2 2
0,    0< 1

1

u Ku
u

x u u 


 
  

      (2.8) 

Equation (2.8) must be solved such that it satisfies the 
following boundary conditions 

1      at    1

0   at    0

u x

u
x

x

 


 


            (2.9) 

3. Analytical and Numerical Solutions 

DHAM Solution 

The discrete form of the nonlinear differential equation 
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(Equation (2.8)) is obtained as the first step of DHAM’s 
procedure of the solution 

       
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where  is the node number,  is the nonlinear op- 
erator, and the function  is defined as 
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where  is the unknown field variable at node number 
i,  is the embedding parameter, and 0,i  is the 
initial guess which is employed to meet the requirements 
of the boundary conditions. Here, 0,i  is valued at “1” 
satisfying all the boundary conditions stated in Equation 
(2.9). 

iu
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U

Through the generalizing concept of DHAM, the so- 
called zero-order deformation equation can be written as 
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where  is the non-zero auxiliary parameter, i0h  H  
is the auxiliary function, and  is the auxiliary linear 
operator which is chosen here as 

L
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Expanding  in Taylor series with respect to the 
embedding parameter , one obtains 
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With due attention to the procedure of DHAM [27], 

,m i  should be chosen so as the following equation is sa- 
tisfied 
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If the series  converges at , then the se- 
ries solution is 
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where ,m i  could be obtained by the so-called high- 
order deformation equation. For obtaining the mth-order 
deformation equation, the following vector is defined as 

u
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Differentiating both sides of the zero-order equation m 

times with respect to  and then setting , the so- 
called mth-order deformation equation can be obtained as 
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Therefore, the following relation is obtained 
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We are free to choose the auxiliary parameter , the 
auxiliary function i

h
H , the initial guess 0,i , and the 

auxiliary linear operator  so that the validity and 
flexibility of the DHAM solution to control the conver- 
gence region is proven. Due to the rule of solution ex- 
pression [27], the auxiliary function is chosen as follows 

u
L

1iH   

According to the DHAM, the valid region of the aux- 
iliary parameter h for convergence of the solution series 
is the flat regions of h-curves. To see the proper values of 
h, the h-curves are plotted for different values of dimen- 
sionless parameters ,   and K   in Figure 1 for ob- 
taining the valid results for the considered conditions. 

4. Results and Discussion 

The procedure for solving the non-dimensional equation 
of enzyme reaction (Equation (2.8)) which is based on 
the non-Michaelis-Menten kinetics theory utilizing 
DHAM is described in the Section 3. It is mentioned 
there that the mth-order deformation equation should be 
employed to solve the problem. As the first step towards 
the solution, the diagrams for variation of non-dimen- 
sional parameter  u X  versus auxiliary parameter h for 
different investigated cases are illustrated in Figure 1. 
Then, the flat region of h-curves in each case is obtained 
from these diagrams. 

On the basis of the chosen values of auxiliary parame- 
ter h in the flat regions of h-curves (Figure 1), some use- 
ful diagrams including variations of  versus  u X X  
(Figure 2) are procured to clarify the dependency of 
these variations on different non-dimensional parameters 
defined in Equation (2.8). It is shown in Figure 2 that the 
effect of variation of non-dimensional parameter K on 
the profiles of  u X  is substantial. Values of  u X  at  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 1. Variations of u (X) versus non-dimensional pa- 
rameter X for (a) α = 1.0, β = 0.1, (b) α = 0.1, β = 1.0, (c) α = 
10.0, β = 0.1 and (d) α = 10.0, β = 1.0. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2. Variations of u (X) versus auxiliary parameter h 
for (a) α = 1.0, β = 0.1, (b) α = 0.1, β = 1.0, (c) α = 10.0, β = 
0.1 and (d) α = 10.0, β = 1.0. 
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different locations are presented in Tables 1 and 2 for 
better clarifying the effects of K, as well as other non- 
dimensional parameter  ,  . It is clearly shown that 
the values of variable for lower value of   are lower 
than he higher ones. In addition, the spatial variation of 
variables which is also shown in Figure 2 is clarified. 

Verification of the Solution 

The results of the problem obtained by employing DHAM 
and the results procured by simulation and actual results 
[25] are compared in Table 3 to show the accu- racy of 
the presented solution. As such, the presented result in 
this paper can be utilized as promising data for investi-
gating the behavior of the enzyme reaction in the consi- 
dered conditions. 

5. Conclusions 

Solution to the amperometric biosensor at mixed en- 
zyme kinetics and diffusion limitation is presented util-

izing DHAM as a new numerical method. Dimensionless 
equation of the problem is obtained using the mathe- 
matical modeling presented in this paper, which is based 
on non- Michaelis-Menten kinetics of the enzymatic re- 
action. Solution procedure of the non-dimensional equa- 
tion of enzyme reaction is described and mth-order de- 
formation equation is obtained on the basis of the 
non-dimensional enzyme reaction equation presented in 
this paper. Several h-curves are dipicted to show the 
convergence region of the solution. Results of the solu- 
tion are presented for different quantities of the dimen 
sionless parameters used to non-dimensionalize the en- 
zyme reaction equation. It is shown that the most effect- 
tive parameter in the reaction and local dependency of 
the dependent variable of the problem  u X  is K. 
Available results in the literature are used conclusively to 
prove the high accuracy of the presented solution. 

On the basis of the presented solution for the consid- 
ered problem in the area of enzyme kinetics, it can be 
concluded that DHAM can be employed to solve differ- 

 
Table 1. Values of non-dimensional variable u (X) at different locations for α = 1.0, β = 0.1 and α = 0.1, β = 1.0 for different 
values of non-dimensional parameter K. 

α = 1.0, β = 0.1 α = 0.1, β = 1.0 
x 

K = 0.1 K = 1.0 K = 2.0 K = 5.0 K = 0.1 K = 1.0 K = 2.0 K = 5.0 

0 0.9764 0.7831 0.6097 0.3012 0.9762 0.7675 0.5694 0.2532 

0.2 0.9773 0.7916 0.6246 0.3244 0.9771 0.7767 0.5860 0.2770 

0.4 0.9802 0.8172 0.6695 0.3967 0.9800 0.8044 0.6360 0.3521 

0.6 0.9849 0.8601 0.7457 0.5255 0.9848 0.8507 0.7207 0.4884 

0.8 0.9915 0.9209 0.8551 0.7221 0.9914 0.9159 0.8416 0.7000 

1.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

 
Table 2. Values of non-dimensional variable u (X) at different locations for α = 10.0, β = 0.1 and α = 10.0, β = 1.0 for different 
values of non-dimensional parameter K. 

α = 10.0, β = 0.1 α = 10.0, β = 1.0 
x 

K = 0.1 K = 1.0 K = 2.0 K = 5.0 K = 0.1 K = 1.0 K = 2.0 K = 5.0 

0 0.9955 0.9551 0.9105 0.7790 0.9958 0.9583 0.9167 0.7924 

0.2 0.9957 0.9569 0.9141 0.7878 0.9960 0.9600 0.9200 0.8007 

0.4 0.9962 0.9623 0.9248 0.8142 0.9965 0.9650 0.9300 0.8255 

0.6 0.9971 0.9712 0.9427 0.8583 0.9973 0.9733 0.9467 0.8670 

0.8 0.9984 0.9838 0.9678 0.9202 0.9985 0.9850 0.9700 0.9252 

1.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

 
Table 3. Comparison of results of the DHAM with simulation and actual results of the problem at different location and for 
different values of non-dimensional parameter K. 

K = 0.1 K = 0.1 K = 5.0 
x 

Simulation DHAM Actual Simulation DHAM Actual Simulation DHAM Actual 

0 0.9500 0.9520 0.9520 0.6500 0.6481 0.6481 0.2100 0.2113 0.2113 

0.25 0.9529 0.9550 0.9550 0.6666 0.6684 0.6684 0.2502 0.2452 0.2452 

0.50 0.9618 0.9639 0.9639 0.7295 0.7308 0.7308 0.3585 0.3578 0.3578 

0.75 0.9767 0.9789 0.9789 0.8386 0.8390 0.8390 0.5893 0.5851 0.5851 

1.0 0.9976 1.0000 1.0000 0.9940 1.0000 1.0000 0.9970 1.0000 1.0000 
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ent nonlinear ordinary differential equations used to 
model different problems in Engineering and Science. 
The accuracy is clearly shown and the ablility of the 
aproach to control the convergence of the solution is ob- 
viously shown. Therefore, the employed method not only 
can be used to solve different complicated nonlinear 
problems but also can be considered as a promising nu- 
merical technique. 
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