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ABSTRACT 

The pathogenesis of Alzheimer’s disease (AD) puta- 
tively involves a compromised blood-brain barrier 
(BBB). In particular, the importance of brain-to-blood 
transport of brain-derived metabolites across the BBB 
has gained increasing attention as a potential mecha- 
nism in the pathogenesis of neurodegenerative disor- 
ders such as AD, which is characterized by the aber- 
rant polymerization and accumulation of specific mis- 
folded proteins, particularly β-amyloid (Aβ), a neu- 
ropathological hallmark of AD. P-glycoprotein (P-gp), 
a major component of the BBB, plays a role in the 
etiology of AD through Aβ clearance from the brain. 
Our QSAR models on a series of purine-type and 
propafenone-type substrates of P-gp showed that the 
interaction between P-gp and its modulators depended 
on Molar Refractivity, LogP, and Shape Attribute of 
drugs it transports. Meanwhile, another model on 
BBB partitioning of some compounds revealed that 
BBB partitioning relied upon the polar surface area, 
LogP, Balaban Index, the strength of a molecule com- 
bined with the membrane-water complex, and the 
changeability of the structure of a solute-membrane- 
water complex. The predictive model on BBB parti- 
tioning contributes to the discovery of some molecules 
through BBB as potential AD therapeutic drugs. 
Moreover, the interaction model of P-gp and modu- 
lators for treatment of multidrug resistance (MDR) 
indicates the discovery of some molecules to increase 
Aβ clearance from the brain and reduce Aβ brain 
accumulation by regulating BBB P-gp in the early 
stages of AD. The mechanism provides a new insight 
into the therapeutic strategy for AD. 
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1. INTRODUCTION 

Therapy for central nervous system (CNS) diseases re- 
quires drugs that can cross the blood-brain barrier (BBB) 
[1]. BBB not only maintains the homeostasis of the CNS, 
but also refuses many potentially important diagnostic 
and therapeutic agents from entering into the brain [2]. 
The pathological hallmarks of Alzheimer’s disease (AD) 
are progressive brain atrophy and the accumulation of 
cortical senile plaques, formed by the aggregation of amy- 
loid beta peptide (Aβ) [3], and neurofibrillary tangles 
(NFT), namely the self-assembly of hyperphosphorylated 
forms of the microtubule associated protein tau into fi- 
bers termed “paired helical filaments (PHFs)” [4,5]. The 
pathogenesis of AD’s senile plaque and NFT lesions 
putatively involves a compromised BBB [6], which pro- 
tects the brain against endogenous and exogenous com- 
pounds and plays an important part in the maintenance of 
the microenvironment of the brain [7]. The ability of 
drug permeating across BBB becomes critical in the de- 
velopment of new medicines, especially in the design of 
new drugs active in brain tissue. In particular, the impor- 
tance of brain-to-blood transport of brain-derived me- 
tabolites across the BBB has gained increasing attention 
as a potential mechanism in the pathogenesis of neu- 
rodegenerative disorders such as Parkinson’s disease (PD) 
[8] and AD characterized by the aberrant polymerization 
and accumulation of specific misfolded proteins, par- 
ticularly Aβ. P-glycoprotein (P-gp or MDR1/ABCB1) is 
a 170-kDa transmembrane (TM) protein widely expressed 
from the epithelial cells of the intestine, liver, kidney, 
placenta, uterus, and testis to endothelial cells of the BBB 
[9]. It belongs to the ABC (ATP-binding cassette) trans- 
porter family and serves to pump exogenous substances  *Corresponding author. 

OPEN ACCESS 

mailto:luckyjyj@sina.com.cn


T. Y. Zhu et al. / Advances in Bioscience and Biotechnology 4 (2013) 872-895 873

out of the cells. The domain topology of P-gp consists of 
two homologous halves each consisting a TM domain 
preceding a cytosolic nucleotide binding domain. Each 
TM domain is composed of six TM α-helix segments in- 
volved in efflux as well as in drug binding [10]. The 
ABC transport protein P-gp, a major component of the 
BBB, mediates the efflux of Aβ from the brain as well as 
is a major factor in mediating resistance to brain entry by 
numerous exogenous chemicals, including therapeutic phar- 
maceuticals [11]. P-gp plays a role in the etiology of AD 
through the clearance of Aβ from the brain. Some drugs, 
such as rifampicin, dexamethasone, caffeine, verapamil, 
hyperforin, β-estradiol and pentylenetetrazole, were able 
to improve the efflux of Aβ from the cells via P-gp up- 
regulation [12]. Meanwhile, some compounds have been 
shown to reverse the P-gp mediated multidrug resistance 
(MDR), including verapamil, adriamycin, cyclosporin, 
and dexverapamil [13]. Hartz et al. have shown that up- 
regulating P-gp in the early stages of AD has the poten- 
tial to increase Aβ clearance from the brain and reduce 
Aβ brain accumulation by a transgenic mouse model of 
AD (hAPP-overexpressing mice) [14]. Abuznait et al. 
have also elucidated the impact of P-gp up-regulation on 
the clearance of Aβ [12], which indicated that targeting 
Aβ clearance via P-gp up-regulation was effective in slow- 
ing or halting the progression of AD and there was the 
possibility of P-gp as a potential therapeutic target for AD. 

P-gp at the BBB functions as an active efflux pump by 
extruding a substrate from the brain, which is important 
for maintaining loco-regional homeostasis in the brain 
and protection against toxic compounds [8]. P-gp is also 
discovered in various resistant tumor cells and expressed 
widely in many normal tissues and plays a very impor- 
tant role in drug ADME-Tox (absorption, distribution, 
metabolism, excretion, and toxicity). MDR is a matter of 
growing concern in chemotherapy. Cells which express 
the MDR phenotype can over-express efflux transporters 
after exposure to a single agent. As a result, these cells 
become resistant to the selective agent and cross-resistant 
to a broad spectrum of structurally and functionally dis- 
similar drugs. The drug efflux pump P-gp has been shown 
to promote MDR in tumors as well as to influence ADME 
properties of drug candidates [15]. P-gp is expressed at 
the BBB, the blood-cerebrospinal fluid barrier, and the 
intestinal barrier, thus modulating the absorption and ex- 
cretion of xenobiotics across these barriers. P-gp and its 
ligands (substrates and inhibitors) are therefore exten- 
sively studied both with respect to reversing MDR in 
tumors and for modifying ADME-Tox properties of drug 
candidates, such as CNS active agents [15]. P-gp pos- 
sesses broad substrate specificity and the substrates in- 
clude members of many clinically important therapeutic 
drug classes, including anti-HIV protease inhibitors, cal- 
cium channel blockers used in the treatment of angina, 

hypertension, antibiotics and cancer chemotherapeutics 
[16]. In this active efflux process, energy originating 
from ATP hydrolysis is directly consumed. Because of 
such a wide distribution of P-gp, if a drug such as quini- 
dine or verapamil inhibits the function of P-gp, it will 
also inhibit the excretion of digoxin by P-gp’s leading to 
increased plasma levels and toxicity due to digoxin. It is 
believed to be an important protective mechanism against 
environmental toxins. Since the function of P-gp always 
results in the lack of intracellular levels of the drug ne- 
cessary for effective therapy, the overexpression of P-gp 
in certain malignant cells is always associated with MDR 
phenotype [17]. Although a low resolution structure of 
P-gp is obtained, its physiological function and mecha- 
nisms of MDR modulation are still not very clear [18]. It 
is well known that a large number of structurally and 
functionally diverse compounds act as substrates or modu- 
lators of P-gp, including calcium and sodium channel 
blockers, calmodulin antagonists and structural analogues, 
protein kinase C inhibitors, steroidal and structurally re- 
lated compounds, indole alkaloids, cyclic peptides and 
macrolide compounds, flayanoids and miscellaneous com- 
pounds [19], which mostly share common structural fea- 
tures, such as aromatic ring structures and high lipo- 
philicity. Some of them possess MDR reversing activity 
while only a small number of them have entered clinical 
study. Classification of candidate drugs as substrates or 
inhibitors of the carrier protein is crucial in drug devel- 
opment [20]. 

On the other hand, the prerequisite to cure neurologi- 
cal disorders is that the drug distribution in CNS can 
reach effectively therapeutic concentrations [2]. Usually, 
the high BBB penetration is needed for drugs that acti- 
vate in brain. The molecule negotiating the BBB must go 
through cellular membranes comprised of a lipid bilayer. 
Until now, it is widely accepted that interaction of com- 
pounds with P-gp is a complex process and at this time 
the details of its mechanism of action are still the subject 
of hot debate. Although the experimental analysis of drug 
permeability is essential, the procedure of experiment is 
time consuming and complicated, a theoretical model of 
drug permeability is effective to give predictions. Mem- 
brane-interaction (MI)-QSAR (quantitative structure-ac- 
tivity relationship) method is a structure-based design me- 
thodology combined with classic intramolecular QSAR 
analysis to model chemically and structurally diverse 
compounds interacting with cellular membranes. Our 
modified MI-QSAR method that combines QSAR with 
solute-membrane-water complex simulating the BBB en- 
vironment is more close to the body condition than MI- 
QSAR and possesses higher ability to predict organic 
compounds across BBB [21]. There are several critical 
assumptions considered that can influence validity and 
correctness of any QSAR study as follows: the same 
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mechanism of action of all studied analogs; a comparable 
manner of their binding to the receptor; correlation of 
binding to the interaction energies; correlation of meas- 
ured biological activities to the binding affinities [22]. 
All the accuracy answer and research based on the above 
questions above may guarantee that proper and reliable 
relationships are obtained. However, different mechanisms 
and different binding sites may be involved in the case of 
MDR modulators. Several screening assays can help in 
the identification of substrates and inhibitors although 
they have both advantages and drawbacks, such as cyto-
toxity assays [23], inhibition of efflux assays [16], P-gp- 
ATPase activation assays, and drug transport assays [24]. 

The goal of a QSAR study is to find a means of pre- 
dicting the activity of a new compound. If possible, a 
desirable goal is the understanding of the biology and 
chemistry that give rise to that activity and the conse- 
quential possibility of reengineering the compound to re- 
move or enhance that activity. One successful example is 
the transformation of nalidixic acid with the help of 
QSAR into an important family of drug: the quinolone 
carboxylates, such as norfloxacin, fleroxacin, ciproflox- 
acin, and levofloxacin [25]. Since the method was estab- 
lished in the 1960s, QSAR equations have been used to 
describe the biological activities of thousands of different 
drugs and drug candidates [26]. The method definitely 
provides a more accurate way to synthesize or filtrate the 
new chemical compounds. At last, the final destination is 
to degrade the cost of research and manufacture. To date, 
so many methods have been used in QSAR study and 
some of them have got successful results. There are gen- 
eral methods used in the literatures these years, such as 
multiple linear regression (MLR) method, partial least 
square regression (PLSR) [18], MI-QSAR analysis [21], 
3D QSAR [27], and artificial neural network (ANN) [28]. 
In order to get more accurate results and QSAR models, 
we have used two different analyses: MLR and PLSR. 
Moreover, we focus on constructing theoretical models 
of the interaction between organic compounds and P-gp 
as well as the predictive models of BBB partitioning of 
organic compounds on the basis of QSAR analysis and 
MI-QSAR analysis. 

2. MATERIALS AND METHODS 

2.1. P-Glycoprotein Ligands 

Building of some compounds. 36 purine derivatives 
were selected and used in QSAR analysis (Table 1) [29]. 
These compounds were divided into two sets: the train- 
ing set and the test set. The study of the MDR-reversing 
properties of these derivatives was carried out in vitro on 
P388/VCR-20 cells, a murine leukemia cell line whose 
resistance was induced by vincristine (VCR), and KB-A1 
cells, a human epidermoid carcinoma cell line whose  

resistance was induced by adriamycin (ADR). The com- 
pounds were tested at four concentrations (0.5 - 5 μM) in 
association with VCR (P388/VCR-20 cells) or ADR (KB- 
A1 cells). In this test, MDR ratio in P388/VDR-20 and 
KB-A1 in vitro was used as biological activity for the  

whole dataset, namely 
 

 
50

ratio
50

IC CD
MDR

IC CD mod



.  

Here “CD” is the abbreviation for cytotoxic drug (such 
as VCR and ADR) in cytotoxity assays, and “mod” means 
modulators. It is defined as ratio between the IC50 values 
(concentration that inhibits the growth of MDR cells by 
50%) of the cytotoxic agent in absence and presence of 
relatively nontoxic concentration of the modifier [23]. 
Most often the IC50 for several concentration of a cyto- 
toxic drug is evaluated in the presence and absence of a 
nontoxic concentration of a P-gp modifier. In this assay 
modulators that interacted with P-gp and thus reduced 
the efflux of the cytotoxic compounds would increase the 
apparent toxicity of the cytotoxic compound [16]. The 
IC50 data were based on a general assessment of cytotox- 
icity and thus might account for more then one acting 
mechanism in the resistant cells used [16]. Furthermore, 
it is well known that the MDR ratio for any given com- 
pound can vary greatly depending on the cell type used 
for the assay as well as the intrinsic cytotoxicity of the 
compounds used. The data is also dependent on the con- 
centration of the P-gp substrates or modulators used in 
the studies [30]. 

Similarly, another 21 propafenone analogs were se- 
lected from the literature of Diethart Schmid et al. and 
used in QSAR analysis (Table 2) [31]. In this test Ka of 
P-gp ATPase in the adriamycin-resistant subline CCRF 
ADR5000 was used as biological activity for the whole 
dataset [31]. The assays were performed based on the 
colorimetric determination of inorganic phosphate released 
by the hydrolysis of ATP. Table 2 shows all the struc- 
tures and the experimental biological activity value. 

Finally, all two-dimensional (2D) structures of these 
compounds mentioned above were constructed using the 
chemical drawing software ChemDraw 8.0 and prepared 
for the next calculation. 

Calculation of some descriptors. Molecular descrip- 
tors are “numbers that characterize a specific aspect of 
the molecular structure” [32]. There are some molecular 
descriptors used in QSAR studies as follows: physico- 
chemical properties (i.e. hydrophobicity, aqueous solu- 
bility, molecular electronegativity, and molecular refrac- 
tivity), quantum chemical parameters (e.g. atomic charges, 
energies of HOMO (highest occupied molecular orbital) 
and LUMO (lowest unoccupied molecular orbital)) [33], 
topological indexes (such as molecular connectivity in- 
dexes) [34], and other 3D descriptors. Molecular de- 
scriptors were mostly calculated by the commercial soft-  
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Table 1. The structures and MDR ratios of 35 purine derivatives in the training/test sets. 
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reversion (MDR ratio) 
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Continued 
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Note: Ratio of IC50 (cytotoxic alone (VCR for P388/VCR-20, ADR for KB-A1 cells))/IC50 (cytotoxic + modulator) (1 μM in association with VCR or 2.5 μM in 
association with ADR) [29]. 

 
Table 2. The structures and Ka values and LogP of 18 propafenone analogs in the training/test sets. 

No. Structure Ka (μM/L) LogP No. Structure Ka (μM/L) LogP
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ware packages Chemoffice Chem3D Ultra 8.0, involving 
molecular mechanism parameters (Stretch-Bend Energy 
(Estretch), Bending Energy (Ebend), Torsion Energy (Etorsion), 
Total Energy (Etotal), van der Waals Energy (EVDW), etc), 
quantum chemistry parameters (i.e. Electronic Energy 

(Eelectronic), HOMO Energy (EHOMO) and LUMO Energy 
(ELUMO)), hydrophobic parameters (such as ClogP), ste-
reo parameters (eg. Es, Balaban Index (BI), Connolly 
Accessible Area (CAA), Molecular Weight (MW), Shape 
Attribute (ShA), Total Connectivity (Tcon), and Wiener 
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Index (WI)), thermodynamic parameters, including Henry’s 
Law Constant (H), Hydration Energy (Ehyd), Logarithm 
of partition coefficient in n-octanol/water (LogP), Molar 
Refractivity (MR), and molecular polar surface area (PSA) 
that defined as the surface area (Å2) occupied by polar 
atoms, usually oxygen, nitrogen and hydrogen attached 
to them, which will restrict molecule penetration into the 
membranes [2]. The other properties involved in number 
of hydrogen bond acceptor (NBA) and number of hy- 
drogen bond donor (NBD). 

The energy parameters root in the results of molecular 
mechanism and molecular dynamics. The total energy of 
a system expressed as follows [35]: Etotal = Evalence + 
Ecrossterm + Enonbone. Here, the valence interactions includes 
bond stretching (bond), valence angle bending (angle), 
dihedral angle torsion (torsion), and inversion, also called 
out-of-plane interactions (oop) terms, which are part of 
nearly all forcefields for covalent systems. A Urey-Brad- 
ley term (UB) may be used to account for interactions 
between atom pairs involved in 1 - 3 configurations (i.e., 
atoms bound to a common atom): Evalence = Ebond + Eangle 
+ Etorsion + Eoop + EUP. Modern (second-generation) force- 
fields generally achieve higher accuracy by including 
cross terms to account for such factors as bond or angle 
distortions caused by nearby atoms. Crossterms can in- 
clude the following terms: stretch-stretch, stretch-bend- 
stretch, bend-bend, torsion-stretch, torsion-bend-bend, 
bend-torsion-bend, stretch-torsion-stretch. The interaction 
energy between non-bonded atoms is accounted by van 
der Waals (VDW), electrostatic (Coulomb), and hydro- 
gen bond (hbond) terms in some older forcefields. 
Enon-bond = EVDW + ECoulomb + Ehbond. Restraints that can be 
added to an energy expression include distance, angle, 
torsion, and inversion restraints. Restraints are useful for 
information on restraints and their implementation and 
use if you are interested in only part of a structure, and so 
is the documentation for the particular simulation engine. 

These descriptors were calculated using Chemoffice 
Chem3D Ultra 8.0 and Hyperchem 7.5 as follows: 1) the 
structures of the compounds were drawn in ChemDraw 
8.0 and sequentially changed to 3D structures by Chem3D; 
2) the chosen compounds were minimized by molecular 
mechanism using MM2 force field with RMS (root mean 
square) gradient of 0.100; and 3) under the menu of 
Analyze-compute properties, the properties were selected 
to calculate and finally every descriptor value of each 
compound was gotten. 

QSAR models. QSAR models of some purine deriva- 
tives (Table 1) were achieved by partial sum of squares 
for regression with software SPSS 10.0. A training set of 
26 structurally diverse purine derivatives are measured is 
used to construct QSAR models. The QSAR models are 
optimized using MLR fitting and stepwise method (Eqs.1- 
5). A test set of five compounds is evaluated using the 

QSAR models as part of a validation process. Take MDR 
ratio in vitro in P388/VDR cell lines as dependent vari- 
able and molecule descriptors as independent variable. 
With the aid of Virtual Computational Chemistry Labora- 
tory software [20], QSAR modeling was constructed by 
PLSR (Eq.6). 

Similarly, a training set of 18 structurally diverse 
propafenone analogs (Table 2) are measured is used to 
construct QSAR models. The QSAR models are opti- 
mized using MLR fitting and stepwise method (Eqs.7- 
11). Another QSAR modeling was constructed by PLSR 
(Eq.12). A test set of five compounds is evaluated using 
the QSAR models as part of a validation process. 

2.2. Blood-Brain-Barrier 

Data. 37 organic compounds [36,37] were elected to 
compose a train set while another 8 organic compounds 
were acted as a test set (Table 3). The dependent vari- 
able is the logarithm of the BBB partition coefficient, log 
BB = log(Cbrain/Cblood), where Cbrain is the concentration 
of the test compound in the brain, and Cblood is the con- 
centration of the test compound in blood. Experimental 
values of logBB published to date lie approximately be-
tween −2.00 to +1.04. Compounds with logBB values of 
>0.30 are readily distributed to the brain whereas com-
pounds with values <−1.00 are poorly distributed to the 
brain. Building of all these compounds was performed 
using the Build modules of Hyperchem 7.5. The geome- 
try of these compounds was opitimized using the Amber 
94 force field in gas state and sequentially placed at a 
periodic solvent box with a volume of 16 × 10 × 18 Å3, 
which included 96 water molecules. Here, temperature is 
300˚K and pressure is 1 standard atmosphere. Then, the 
compounds in water were minimized by the above method 
and simulated by Monte Carlo method. 

Molecular modeling of a dimyristoylphosphatidyl- 
choline (DMPC) monolayer membrane complex with 
a layer of water. A model of DMPC monolayer mem- 
brane composed of 25 DMPC molecules (5 × 5 × 1) was 
constructed using Material Studio and minimized for 200 
steps with the smart minimizer. Here, the parameter of 
the single crystal of DMPC with a = 8 Å, b = 8 Å, and γ 
= 96.0˚ resulted in each lipid molecule with an average 
area of 64Å2 similar to Stouch’s research results [38]. 
Moreover, a layer of water (40 × 40 × 10 Å3) including 
529 water molecules was added to the polar side of the 
DMPC monolayer membrane (Figure 1). 

Molecular dynamic simulation of compound-DMPC- 
water complex models. A compound displaced a DMPC 
molecule in the DMPC monolayer membrane at three 
different positions (upper, center or lower) to form each 
solute-membrane-water complex. Molecular dynamic  
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Table 3. The structures and LogBB values of some compounds in the training/test sets. 
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Figure 1. Compound B1 colored by atom-type in water and the solvent box defined in Monte 
Carlo simulation. 

 
3. RESULTS simulation of the complex was performed for 1000 steps 

by Discover module with Materials Studios, using Com- 
pass force field. Here, the 3D volume was restricted to a 
border of X = 40 Å, Y = 40 Å, Z = 91.76 Å, and γ = 
96.0˚. 

3.1. QSAR Analysis Based on MDR Ratio in 
P388/VDR-20 and KB-A1 in Vitro 

MDR ratio of compounds in vitro in KB-A1/ADR cell 
lines was taken as the dependent variable. A training set 
of 26 compounds (Table 4) was used to construct QSAR 
models. The QSAR models were optimized using MLR 
fitting and stepwise method by SPSS (Eqs.1-5). A test 
set of 5 compounds (A27-A31) was evaluated using the 
models as part of a validation process (Figure 2 upper, 
Table 5). 

QSAR model of BBB partitioning of some com- 
pounds. MI-QSAR model of a training set of 37 com- 
pounds through BBB were achieved by partial sum of 
squares for regression with SPSS. Molecular dynamics 
simulations were used to determine the explicit interac- 
tion of each compound with a model of DMPC monolayer 
membrane complexed with a layer of water. An addi- 
tional set of intramolecular solute descriptors were com- 
puted and considered in the trial pool of descriptors for 
building MI-QSAR models. The MI-QSAR models were 
optimized using multidimensional linear regression fit- 
ting and stepwise method. The MI-QSAR models were 
then evaluated by a test set of 8 compounds. 

Similarly, MDR ratio of compounds in vitro in P388/ 
VDR cell lines acted as the dependent variable. With the 
aid of Virtual Computational Chemistry Laboratory soft- 
ware (http://vcclab.org) [20], some QSAR models were 
constructed by PLSR (Eq.6, Figure 2 down). Table 6 
shows the calculated descriptors mentioned above and 
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Table 4. The molecular descriptors of some compounds related to MDR ratios in the training/test sets. 

No. LogMR ShA BI LogP Ehyd (kcal/mol) No. LogMR ShA BI LogP Ehyd (kcal/mol)

Training set 

A1 1.20 37.03 2,662,570 3.33 −3.56 A14 1.22 39.02 3,358,755 1.48 −19.64 

A2 1.18 35.03 2,440,928 2.59 −13.71 A15 1.22 39.02 3,358,755 1.48 −19.71 

A3 1.22 40.02 3,649,082 1.14 −16.23 A16 1.20 37.03 2,662,570 2.13 −15.99 

A4 1.14 32.03 1,669,953 2.21 −13.54 A17 1.202 37.03 2,662,570 2.13 −16.23 

A5 1.22 39.02 3,358,755 1.33 −19.71 A18 1.202 37.03 2,662,570 2.13 −15.95 

A6 1.20 37.03 2,662,570 2.13 −16.22 A19 1.18 37.03 3,091,919 1.61 −15.9 

A7 1.22 40.02 3,491,392 0.76 −17.67 A20 1.23 41.02 4,008,723 0.76 −17.36 

A8 1.20 37.03 2,662,570 2.28 −16.3 A21 1.14 32.03 1,651,352 1.9 −13.79 

A9 1.24 42.02 4,491,514 1.29 −16.34 A22 1.22 39.02 3,324,212 1.33 −20.06 

A10 1.24 41.02 4,055,919 0.99 −19.77 A23 1.20 37.03 2,634,052 2.13 −15.77 

A11 1.18 36.03 2,271,976 1.41 −17.73 A24 1.19 36.03 2,246,188 2.13 −16.15 

A12 1.19 36.03 2,271,976 2.13 −16.17 A25 1.15 35.03 2,244,801 1.71 −14.88 

A13 1.15 33.03 1,900,460 2.28 −13.57 A26 1.15 35.03 2,271,261 1.71 −15.03 

Test set 

A27 1.19 37.03 2,662,570 1.41 −18.09 A30 1.25 41.02 3,977,672 2.98 −13.52 

A28 1.22 40.02 3,491,392 0.76 −17.61 A31 1.20 37.03 2,634,052 2.13 −15.95 

A29 1.21 37.03 2,662,570 2.75 −15.55       

 
Table 5. The experimental values and the predictive values of MDR ratio of these compounds. 

Predictive values of MDR ratio Predictive values of MDR ratio 

No. 
MDR  
ratio  

(KB-A1) Eq.1 Eq.2 Eq.3 Eq.4 Eq.5 
No.

MDR 
ratio 

(KB-A1) Eq.1 Eq.2 Eq.3 Eq.4 Eq.5 

Training set 

A1 171 114.32 215.61 200.33 123.15 180.87 A14 147 151.94 151.04 171.02 173.75 144.79

A2 278 80.79 200.54 305.22 260.52 228.39 A15 152 150.27 140.09 157.75 159.16 130.87

A3 238 161.08 71.37 78.37 79.12 92.55 A16 209 115.64 233.15 217.87 209.32 197.83

A4 236 44.84 113.11 178.94 196.99 213.61 A17 171 115.64 233.15 217.87 209.32 193.94

A5 160 150.27 140.09 157.75 168.14 148.66 A18 156 116.97 252.09 236.91 229.26 219.10

A6 208 113.02 199.36 184.18 174.42 159.21 A19 49 81.98 22.31 33.79 29.47 25.56 

A7 102 163.01 77.39 67.24 80.67 105.63 A20 214 198.44 93.91 119.73 132.46 165.76

A8 120 114.32 215.61 200.33 180.88 153.75 A21 113 42.69 80.90 121.41 145.60 174.56

A9 75 237.62 101.82 179.28 149.94 146.81 A22 200 150.27 140.09 149.67 160.44 139.02

A10 136 222.49 204.96 297.19 322.30 315.82 A23 189 113.02 199.36 176.36 167.80 160.14

A11 44 79.86 58.80 41.66 49.61 53.08 A24 142 92.42 159.30 116.68 117.52 112.54

A12 83 92.42 159.30 121.35 121.70 115.60 A25 6 52.12 10.08 9.16 8.45 8.02 

A13 272 53.80 124.41 185.32 190.50 197.66 A26 9 52.12 10.08 9.53 8.76 8.16 

Testset 

A27 406 99.21 81.97 70.98 80.61 81.67 A30 370 243.10 375.08 504.47 282.78 192.47

A28 68 163.01 77.39 67.24 80.67 106.16 A31 210 114.32 215.61 191.82 183.83 174.21

A29 723 125.69 411.51 400.76 323.36 248.59        
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Figure 2. Comparison of the experimental MDR values with the corresponding predicted MDR values. Upper: MDR value in 
KB-A1/ADR cell lines (blue rhombic dots); MDR as predicted by Eq.4 MLR model (red square dots) and by Eq.5 MLR model 
(yellow triangle dots) for all the molecules of the training and test set. Down: MDR value in P388/VDR cell lines (blue rhombic dots); 
MDR as predicted by the method of PLSR (Eq.6) (red square dots) for all the molecules of the training and test set. The rhombic dots 
represented the experimental values (P388) and the predicted values of MDR, respectively. 

 
Table 6. Comparison of experimental value of MDR ratio with predicted value of MDR ratio by PLSR. 

No. 
MDR 
(P388) 

Pred 
MDR 

LogP MR EVDW ShA WI No.
MDR
(P388)

Pred
MDR

LogP MR EVDW ShA WI

A1 50 43.66 3.33 15.85 32.21 37.03 5476 A18 129 62.87 2.13 15.90 27.08 37.03 5476

A2 78 40.71 2.59 15.10 21.84 35.08 4872 A19 36 29.48 1.61 15.13 21.63 37.03 5585

A3 75 53.15 1.14 16.63 24.83 40.02 6522 A20 70 73.87 0.76 17.12 25.52 41.02 6855

A4 53 55.39 2.21 13.91 20.16 32.03 3916 A21 35 54.41 1.9 13.82 20.17 32.03 3874

A6 93 86.84 2.13 15.83 32.75 37.03 5476 A24 24 24.57 2.13 15.39 23.42 36.03 4855

A8 30 47.64 2.28 15.85 25.21 37.03 5476 A25 13 11.32 1.71 14.21 22.20 35.03 4487

A9 57 79.51 1.29 17.56 26.03 42.02 7353 A26 24 11.44 1.71 14.21 20.92 35.03 4538

A10 108 138.69 0.99 17.40 29.44 41.02 6935 A27 84 58.01 1.41 15.54 26.05 37.03 5476

A11 37 30.21 1.41 15.08 24.04 36.03 4909 A28 57 35.88 0.76 16.66 23.78 40.02 6244

A12 15 27.61 2.13 15.39 23.512 36.03 4909 A29 108 49.03 2.75 16.06 25.95 37.03 5476

A13 78 87.23 2.28 14.27 29.12 33.03 4216 A30 27 35.79 2.98 17.61 26.49 41.02 6804

A14 56 96.24 1.48 16.50 28.19 39.02 6288 A32 59 30.18 1.83 15.13 22.08 37.03 5642

A15 75 89.20 1.48 16.47 27.54 39.02 6288 A33 71 73.84 0.86 15.79 27.62 38.03 5822

A16 51 54.90 2.13 15.88 25.61 37.03 5476 A34 13 31.95 2.58 15.64 25.36 37.03 5476

A17 70 54.43 2.13 15.88 25.49 37.03 5476 A35 3 12.22 1.71 14.21 20.40 35.03 4589
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the result of predicted value was in Table 5. LogKa 2.424 0.484 LogP   

LogMDR = −6.537 + 7.162 LogMR N = 16; R = 0.860; F = 39.748        (7) 
N = 27; R = 0.445; F = 6.187         (1) LogKa 3.612 0.285 LogP 0.0732 ShA    

LogMDR = −37.830 + 48.862 LogMR − 0.499 ShA N = 16; R = 0.900; F = 27.676        (.8) 
N = 27; R = 0.889; F = 45.415        (2) LogKa 2.573 0.480 LogP 0.285 ShA 0.651 MR     

LogMDR = −35.816 + 52.416 LogMR − 0.717 ShA + 
6.612 × 10−7 BI 

N = 16; R = 0.914; F = 20.251        (9) 

LogKa = 7.313 − 0.752 LogP − 0.647 ShA + 1.642 
MR + 0.605 EHOMO N = 27; R = 0.919; F = 41.442        (3) 

LogMDR = −38.791 + 56.923 LogMR − 0.769 ShA + 
5.897 × 10−7 BI − 0.159 LogP 

N = 16; R = 0.928; F = 17.111       (10) 

LogKa = 10.021 − 0.875 LogP − 1.044 ShA + 2.263 
MR + 0.673 EHOMO + 6.734 × 10−4 WI N = 27; R = 0.927; F = 33.504        (4) 

LogMDE = −42.192 + 61.818 LogMR − 0.801 ShA + 
4.791 × 10−7 BI − 0.369 LogP + 3.595 × 10−2 Ehyd 

N = 16; R = 0.945; F = 16.832         (11) 

LogKa = 3.662 − 0.279 LogP − 4.71 × 10−3 MW + 
1.223 × 10−2 EHOMO N = 27; R = 0.936; F = 29.749          (5) 

LogMDR = 7.611 + 3.138 × 10−2 LogP − 0.245 MR + 
0.495 EVDW − 0.509 ShA + 8.802 × 10−4 WI 

N = 18, Q2 = 0.7100            (12) 

3.3. QSAR Analysis Based on BBB Partitioning 
of Organic Compounds 

N = 30; Q2 = 0.4650                (6) 

3.2. QSAR Analysis Based on Ka of ATPase in 
CCRF ADR5000 Cell Lines On the other hand, 37 organic compounds of training set 

and 8 compounds of test set were built and minimized, 
dissolved in liquid, and optimized by Monte Carlo method. 
Molecular modeling of the compound-membrane-water 
complex model revealed that the energy of an organic 
compound inserted at the middle position in the DMPC 
model with a layer of water was lower than that of the 
other two positions. Molecular descriptors of compounds 
in a training set and a test set are listed in Table 9. Six 
QSAR equations were constructed based on Table 9 and 
were listed as follows. 

Meanwhile, took Ka of ATPase of compounds in CCRF 
ADR5000 cell lines as dependent variable. Some QSAR 
models of a training set of 16 compounds were built us- 
ing MLD method (Eqs.7-11) and PLSR method (Eq.12) 
(see Figure 3). All the molecular descriptors were listed 
in Table 7. A test set of 2 compounds was evaluated 
using the models as part of a validation process. Table 8 
displays the comparison of the experiment Ka and pre- 
diction Ka values of ATPase. 

 

 

Figure 3. Comparison of the experimental Ka value (blue rhombic dots) with the corresponding predicted Ka as predicted 
by Eq.11 MLR model (red square dats) and by Eq.12 PLSR model (yellow triangle dots) for all the molecules of the 
training and test. 
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Table 7. The molecular descriptors of some compounds related to ATPase in the training/test sets. 

No. LogP ShA MR EHOMO (eV) WI MW No. LogP ShA MR EHOMO (eV) WI MW 

A36 3.39 21.04 9.254 −9.14 1366 312.41 A45 4.3 26.04 11.42 −9.17 2345 383.53

A37 3.62 24.04 10.55 −9.20 1949 355.48 A46 4.93 32.03 13.27 −8.24 4689 462.57

A38 3.67 25.04 10.84 −9.16 2172 367.49 A47 5.2 32.03 13.38 −8.19 4329 464.58

A39 1.42 18.05 7.86 −9.12 920 277.37 A48 4.25 26.04 11.45 −9.24 2607 383.53

A40 4.93 32.03 13.27 −8.16 4329 462.57 A49 4.52 26.04 11.59 −8.94 2367 385.55

A41 2.67 25.04 10.29 −8.15 2244 372.44 A50 4.88 27.03 12.06 −8.94 2550 399.58

A42 0.94 19.05 8.01 −9.15 1050 293.37 A51 2.38 26.04 10.99 −9.09 2400 383.49

A43 2.54 25.04 10.52 −9.20 2172 369.46 A52 3.94 25.04 10.95 −9.05 2172 369.51

A44 3.98 32.03 13.50 −9.16 4227 459.59 A53 4.93 32.03 13.27 −8.19 4509 462.57

 
Table 8. Comparison the experimental values with the predictive values of Ka of these compounds. 

Predictive values of Ka Predictive values of Ka 
No. 

Ka  
(μM/L) Eq.7 Eq.8 Eq.9 Eq.10 Eq.11 Eq.12

No.
Ka 

(μM/L) Eq.7 Eq.8 Eq.9 Eq.10 Eq.11 Eq.12

A36 3.34 6.07 12.75 9.37 6.43 6.14 13.57 A45 1.53 2.20 3.02 3.32 2.69 2.08 3.50 

A37 5.30 4.70 6.62 7.10 6.19 5.60 7.33 A46 1.47 1.09 0.73 0.52 0.48 0.81 1.02 

A38 2.59 4.44 5.41 5.36 3.98 3.06 6.24 A47 0.55 0.81 0.61 0.46 0.50 0.53 0.84 

A39 122 54.54 76.92 73.09 90.64 160.46 70.37 A48 7.64 2.33 3.13 3.83 3.33 4.22 3.60 

A40 0.36 1.09 0.73 0.52 0.53 0.51 1.02 A49 12.20 1.72 2.62 3.39 4.98 5.00 2.99 

A41 6.13 13.54 10.43 7.17 11.79 7.23 11.56 A50 2.26 1.15 1.75 2.37 3.50 3.28 2.04 

A42 120.00 93.12 89.09 81.21 80.47 99.37 80.44 A51 10.50 18.71 10.66 14.57 16.6 13.20 12.02

A43 18.50 15.65 11.36 11.73 8.26 5.56 12.59 A52 12.80 3.29 4.53 4.74 4.57 3.91 5.15 

A44 1.01 3.15 1.36 2.10 1.66 2.13 1.88 A53 4.15 1.09 0.73 0.52 0.51 0.65 1.02 

 
Table 9. The molecular descriptors of the compounds related to BBB in the training/test sets. 

No PSA (Å2) ClogP BI (Å) Estretch (Kcal/mol) Etotal
a (Kcal/mol) Etorsion

a (Kcal/mol) ΔEtotal
b (Kcal/mol) ΔEtorsion

b (Kcal/mol)

Training set 

B1 78.90 1.20 12378 −1.35503 −298.2972 −1713.1146 42.46 11.30 

B2 94.00 1.99 1101758 −0.15595 −406.0803 −1789.8084 −65.32 −65.39 

B3 73.00 3.80 1738650 −1.48472 −256.3021 −1703.1425 84.46 21.27 

B4 87.00 1.63 1346396 −1.39112 −302.7543 −1841.5635 38.00 −117.15 

B5 39.00 1.02 41807 0.58131 −226.3773 −1734.7452 114.38 −10.33 

B6 26.80 3.23 305770 −0.09264 −228.2923 −1679.4604 112.47 44.96 

B7 88.80 1.01 58510 0.71038 −279.0781 −1671.3414 61.68 53.07 

B8 76.60 2.80 62216 −0.38334 −309.2981 −1654.6730 31.46 69.74 

B9 104.40 1.77 83798 −0.35599 −313.4237 −1639.9898 27.34 84.43 

B10 108.80 2.00 193593 −0.52172 −548.5593 −1640.9214 −207.80 83.49 

B11 47.90 2.51 352512 −0.09496 −312.1226 −1656.7465 28.64 67.67 

B12 45.20 4.27 779210 0.00479 −163.8011 −1716.3101 176.96 8.11 

B13 38.50 2.61 158640 −0.09491 −170.3338 −1716.7159 170.43 7.70 

B14 40.00 4.28 431722 −1.30506 −247.0951 −1748.0241 93.66 −23.61 

B15 39.20 5.88 766256 0.09911 −289.2825 −1735.4004 51.48 −10.98 

B16 54.90 5.14 766256 −0.14215 −181.0636 −1743.6068 159.70 −19.19 

B17 18.80 0.62 20863 0.18071 −331.7044 −1695.6999 9.05 28.72 
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Continued 

B18 46.70 0.27 20264 −1.36843 −209.4697 −1644.6752 131.29 79.74 

B19 44.10 2.80 190375 −2.97778 −311.9182 −1713.8942 28.84 10.52 

B20 5.40 4.85 210631 −0.06079 −235.7250 −1704.3399 105.03 20.08 

B21 0.00 −0.47 4 0.00000 −407.3194 −1729.3793 −66.56 −4.96 

B22 0.00 2.14 972 −0.00009 −239.8807 −1675.1827 100.88 49.23 

B23 23.40 0.07 213 0.00000 −160.1278 −1672.3898 180.63 52.03 

B24 22.60 0.69 712 0.00000 −319.0674 −1742.6968 21.69 −18.28 

B25 0.00 3.74 1899 0.00067 −282.3721 −1751.6193 58.39 −27.20 

B26 0.00 3.61 1661 0.00000 −285.7132 −1731.9518 55.05 −7.54 

B27 0.00 1.43 1661 −0.00008 −238.7249 −1731.3090 102.03 −6.89 

B28 0.00 2.48 633 0.00003 −291.5583 −1725.7370 49.20 −1.32 

B29 11.60 2.46 21380 −0.00005 −418.0323 −1682.7138 −77.27 41.70 

B30 24.40 −0.24 47 0.00000 −329.3150 −1704.6187 11.44 19.80 

B31 10.70 1.27 7864 −0.00002 −253.3453 −1747.7044 87.41 −23.29 

B32 0.00 2.37 7322 −0.00003 −268.8335 −1714.2486 71.93 10.17 

B33 0.00 3.31 931 0.02567 −353.8395 −1739.7672 −13.08 −15.35 

B34 24.40 −0.24 47 0.00000 −187.4520 −1720.5500 153.31 3.87 

B35 0.00 1.93 7322 −0.00003 −177.4875 −1728.8621 163.27 −4.45 

B36 0.00 2.64 2050 −0.02344 −220.3940 −1681.1548 120.36 43.26 

B37 0.00 2.63 712 −0.00002 −231.5752 −1722.2582 109.18 2.16 

Test set 

T1 22.70 0.321 712 0.00000 −274.7201 −1713.7409 66.04 10.68 

T2 0.00 3.738 1838 0.00000 −225.6308 −1716.6234 115.13 7.79 

T3 0.00 4.267 4150 0.00000 −331.3754 −1700.6397 9.38 23.78 

T4 11.30 0.870 791 0.00000 −181.5954 −1700.8447 159.16 23.57 

T5 0.00 4.397 4650 0.00000 −404.2903 −1741.2420 −63.53 −16.83 

T6 0.00 1.103 0 0.00000 −282.9386 −1746.1889 57.82 −21.77 

T7 0.00 3.339 791 0.00063 −271.9174 −1681.9440 68.84 42.47 

T8 22.70 −0.208 213 0.00000 −364.8884 −1695.3605 −24.13 29.06 

Note: aEtotal and Etorsion mean the total energy and the torsion energy of the compound-DMPC-water complex; bΔEtotal and ΔEtorsion are the residues between the 
compound-DMPC-water complex and the DMPC-water complex. 

 
n = 37 R = 0.947 S = 0.248        (17) 2log BB 0.552 1.73 10 PSA    

LogBB = 8.730 × 10−2 − 1.04 × 10−2 PSA + 0.222 
ClogP − 9.60 × 10−7 BI − 0.183 Estretch + 1.364 × 10−3 
ΔEtotal − 2.68 × 10−3 ΔEtorsion 

n = 37 R = 0.835 S = 0.398        (13) 
2log BB 0.229 1.70 10 PSA 0.131Clog P     

n = 37 R = 0.878 S = 0.352        (14) 
n = 37 R = 0.955 S = 0.232        (18) 

logBB = 4.965 × 10−2 − 1.28 × 10−2 PSA + 0.211 
ClogP − 6.40 × 10−7 BI Here, n means the number of compounds in a training 

set, R means the correlative coefficient, and S means the 
standard residual error. LogBB = log(Cbrain/Cblood). PSA 
means the total polar surface area of a molecule. CLogP 
and BI display calculated LogP and connective index of 
molecular average total distance (relative covalent ra- 
dius), respectively. They come from CS calculation. ΔEtotal 
and ΔEtorsion are related to interaction between a com- 
pound and the membrane-water model. The total energy  

n = 37 R = 0.924 S = 0.285        (15) 

LogBB = 6.262 × 10−2 − 1.36 × 10−2 PSA + 0.205 
ClogP − 7.11 × 10−7 BI − 0.185 Estretch 

n = 37 R = 0.938 S = 0.264       (16) 

LogBB = 6.580 × 10−2 − 1.21 × 10−2 PSA + 0.206 
ClogP − 7.77 × 10−7 BI − 0.197 Estretch + 1.330 × 10−3 
ΔEtotal 
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and the torsion energy of the membrane-water complex 
are −340.7589 and −1724.4164 (Kcal/mol), respectively. 
ΔEtotal is the change in the total potential energy of the 
solute-membrane-water complex comparing with that of 
the membrane-water model and so is ΔEtorsion. 

With the increase of the independent variable, the rela- 
tivity of QSAR model was also improved and its predic- 
tive ability was enhanced. The most significant Eq.18 
displayed that the capability of a compound through 
BBB was directly proportional to ClogP and ΔEtotal, but 
inversely proportional to PSA, BI, Estretch, and ΔEtorsion. 
Figure 4 showed the comparison of the experimental 
logBB with the corresponding predicted logBB of the 
molecules in the training set based on Eqs.17 and 18 
models (see Table 10). Compound B18 was predicted 
with a higher logBB than observed, supported by the 
result of Iyer et al. [35]. 

The test set of 8 compounds to span almost the entire 
range in BBB partitioning was selected for validation of 
the QSAR models mentioned above. The observed and 
predicted logBB values for this test set were given in 
Table 10 and plotted in Figure 4 (right). It seemed to 
suggest that Eqs.17 and 18 models could predict logBB 

for other compounds in drug design. 

4. DISCUSSION 

Some predictive models of MDR, Ka and BBB parti- 
tioning of organic compounds were built by simulating 
the interaction between modulators or drugs and P-gp 
and/or the interreaction of the organic compound with 
the phospholipide-rich regions of cellular membranes. 
We have constructed theoretical models of the interac- 
tion between organic compounds and P-gp and compounds 
with the affinity for and simulation of the P-gp ATPase. 
On one hand, the interaction between compounds and 
P-gp (P-gp binding or MDR-reversal activity of com- 
pounds) is found to depend on LogP, LogMR, and ShA 
of compounds it transports, which proportional to Log 
MR whereas inversely proportional to LogP and ShA 
(see Eqs.1-5). Moreover, modulators or drugs interacting 
with P-gp and thus reducing the efflux of the cytotoxic 
compounds would increase the apparent toxicity of the 
cytotoxic compounds, which might account for more 
than one mechanism of action in the resistant cells used. 
There were many uncertainty factors in the MDR ratio 
assay method which was convinced by our linear 

 

 

 

Figure 4. Comparison of the experimental logBB values (blue rhombic dots) for all the molecules of the training sets (upper) or the 
test set (down) to the corresponding predicted logBB as predicted by Eq.17 MI-QSAR model (red square dots) and by Eq.18 
MI-QSAR model (yellow triangle dots). 

Copyright © 2013 SciRes.                                                                       OPEN ACCESS 



T. Y. Zhu et al. / Advances in Bioscience and Biotechnology 4 (2013) 872-895 890 

  T
ab

le
 1

0.
 T

he
 e

xp
er

im
en

ta
l v

al
ue

s 
an

d 
th

e 
pr

ed
ic

ti
ve

 v
al

ue
s 

of
 L

og
 B

B
 o

f 
th

es
e 

co
m

po
un

ds
. 

Copyright © 2013 SciRes.                                                                       OPEN ACCESS 



T. Y. Zhu et al. / Advances in Bioscience and Biotechnology 4 (2013) 872-895 

Copyright © 2013 SciRes.                                                                       

891

OPEN ACCESS 

 
regression models. Our research results using two dif- 
ferent statistic methods, MLR and PLSR, have revealed 
that the QSAR equation was also improved and the pre- 
dictive ability of the models was enhanced with the in- 
crease of the variable. Eq.5 was built on KB-A1 cell line 
with a cytotoxic compound of 2.5 μM ADR while Eq.6 
was based on P388/VDR-20 cell line with 1.5 μM VCR. 
Here, most of the models gave satisfactory cross-vali- 
dated Q2 above 0.500, conventional R above 0.800 and 
less SE values, indicating their proper predictive ability. 
Significant differences between values were examined 
using two-tailed paired T test provided by SPSS. All the 
results were considered not significant if P < 0.05. Eq.5 
model was the most significant and indicated that the 
potential of P-gp modulators interacted with P-gp de- 
pended upon MR, BI, Ehyd, ShA, and LogP. The former 
three displayed positive contributions to the MDR activ- 
ity of P-gp, suggesting that the MDR activity increased 
accordingly with the increase of MR. The latter two dis- 
played negative contribution to the MDR activity of 
P-gp. 

On the other hand, our built models for Ka of ATPase 
based on the analogies of purine and propafenone ana- 
logs suggested that the enzyme hydrolysis of these com- 
pounds largely depended on LogP, MR, ShA, MW and 
EHOMO, especially positive related to MR but negative to 
LogP and ShA (see Eqs.7 to 11). Both models, Eq.11 by 
MLR and Eq.12 by PLSR, pointed out that EHOMO, posi-
tive related with the activity of P-gp ATPase, was an 
important parameter for the compound stimulated AT-
Pase activity with high affinity, whereas another LogP 
was negative related with the activity of P-gp ATPase. 
Figure 3 showed that molecular A39 and A42 with 
higher Ka value of ATPase were depart from other 
compounds. This may be because they have lower lipo-
philicity, which is supported by the research results of 
Diethart Schmid et al. [31]. The results above showed 
that the P-gp binding capacity of these compounds shares 
common characteristics with their ATPase hydrolysis, 
namely their hydrophobic parameters (such as logP) and 
steric parameters (e.g. MW, ShA, and MR). 

In another aspect, our MI-QSAR models indicated that 
the distribution of organic molecules through BBB was 
not only influenced by organic solutes themselves, but 
also related to the properties of the solute-membrane- 
water complex, namely interactions of the molecule with 
the phospholipide-rich regions of cellular membranes. 
The QSAR model, especially Eq.18 most significant, 
revealed that the capability of BBB partitioning of an 
organic compound focused on six significant features. 
Obviously, two descriptors, ClogP and ΔEtotal, had posi-
tive regression coefficients and the other four descriptors, 
PSA, BI, Estretch, and ΔEtorsion, had negative regression 
coefficients. Moreover, PSA descriptor was found as a 

dominant descriptor in these QSAR models, which was 
related to the aqueous solubility of the solute compound 
along with a direct lipophilicity descriptor. When the 
value of PSA of a molecule lessened within the range 
from 0 to 108.80 Å2, its value of LogBB would increase. 
This was consistent with the experimental results that the 
more polarity it possessed, the more difficultly a mole-
cule entered the hydrophobic environment of BBB [38]. 
BI as the connective index of molecular average total 
distance pertained to the volume parameter. Our research 
result showed that a molecule more and more difficultly 
acrossed through BBB by diffusion with the addition of 
its bulk. However, the value of LogBB of a molecule 
increased with the increase of ClogP. It meaned that the 
hydrophobic molecule could pass through BBB more 
easily than the hydrophilic molecule does. The presence 
of Estretch descriptor suggested that with the decrease of 
the stretch-bend energy of a molecule, its value of 
LogBB increased. Two of the descriptors, ΔEtotal and 
ΔEtorsion, found in the logBB QSAR models (Eqs.17 and 
18), reflected the behavior of the solutes in the mem-
brane and the entire membrane-solute complex. Along 
with the meaning mentioned, ΔEtotal was equivalent to 
the change in the average total potential energy between 
the ternary complex of solute-membrane-water and the 
binary complex of membrane-water. Similarly, ΔEtorsion 
was the difference between the dihedral torsion energy of 
the ternary complex and that of the binary complex. Here, 
the more the change value of ΔEtotal was, the more its 
value of LogBB increased. This may be because small 
molecules across BBB membrane could lead to the change 
of the complex structure. The more changeability of the 
structure resulted in greater change of the total potential 
energy, while the addition of the energy change could be 
the important cause of the increase of the capability of a 
small molecule through BBB. On the contrary, the less 
the difference of the torsion energy was, the larger its 
LogBB value was. It displayed that a small molecule 
tight combined with the membrane-water complex could 
lead to the increase of its LogBB. Moreover, the rela-
tionship would suggest that the solute became more 
flexible within the membrane-water complex, which would 
possess the greater logBB value, in agreement with the 
research results of Iyer M et al. [35]. Furthermore, BBB 
partitioning was mainly found to depend upon two pa-
rameters, namely PSA and ClogP, where the ability of 
organic molecules permeating across BBB was directly 
proportional to LogP but inversely proportional to PSA 
(see Eqs.13-18), which was consistent with the research 
results of Chen and co-worker [2], namely the increasing 
PSA decreased LogBB rapidly while LogP was positively 
related to LogBB. It indicated that molecules with higher 
lipophilic would be partitioned into the lipid bilayer 
more easily with more chances to penetrate BBB, sup- 
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ported by the research result of Wang et al., namely a 
large number of structurally and functionally diverse 
compounds as substrates or modulators of P-gp mostly 
sharing common structural features, such as aromatic 
ring structures and high lipophilicity [19]. PSA of CNS 
active drug should be lower than 90 Å2 [2], while the 
penetration through the BBB is optimal for LogP value 
in the range 1.5 - 2.7 (Norinder & Haeberlein, 2002). 

In addition, several non-MI-QSAR computational mod- 
els to describe and predict BBB partitioning have been 
reported that includes other descriptors besides PSA and 
ClogP [39]. An alternative, complementary approach to 
BBB partitioning prediction uses MI-QSAR analysis de- 
veloped by Iyer M et al. [35]. Their research results 
showed that BBB partitioning of an organic compound 
depended upon PSA, CLogP, and the conformational 
flexibility of the compounds as well as the strength of 
their “binding” to the model biologic membrane. The 
MI-QSAR models indicated that BBB partitioning proc- 
ess could be reliably described for structurally diverse 
molecules and provided interactions of the molecule with 
the phospholipide-rich regions of cellular membranes. 
An extension of these approaches that combined QSAR 
with solute-membrane-water complex had been devel-
oped by us, which was addition of a layer of water on the 
hydrophilic side of DMPC monolayer membrane in order 
to simulate the truth BBB environment. Our results re-
vealed that the distribution of organic molecules through 
BBB was not only influenced by the properties of or-
ganic solutes, but also related to the property of the sol-
ute-membrane-water complex. The former involved the 
polarity, hydrophobic, size, and conformational freedom 
degree of organic molecules, while the latter dealt with 
the strength of an organic molecule combined with BBB 
membrane and the structural changeability of a solute- 
membrane-water complex. Furthermore, the capability of 
a small molecule across BBB was mainly related to four 
physicochemical factors, which depended on the relative 
polarity of a small molecule (namely PSA and ClogP), 
the molecular volume (i.e. BI), the strength of a small 
molecule combined with DMPC-water model (viz. 
ΔEtorsion), and the changeability of the structure of a sol-
ute-membrane-water complex (scilicent ΔEtotal). The QSAR 
model showed that the less polarity and more hydropho-
bic molecules relatively easily passed through BBB and 
entered brain to cure. The reason for the change of the 
total energy was that small molecules across BBB mem-
brane caused the structural change of the solute-mem- 
brane-water complex. The more the changeability of the 
complex structure was, the more the change value of its 
total energy was, and the more easily a small molecule 
penetrated BBB. 

In particular, cerebral clearance of Aβ was considered 
to occur via elimination across BBB, as well as prote-

olytic degradation. Attenuation of its elimination was 
likely to result in the increase of cerebral Aβ deposition, 
which may facilitate progression of AD [40]. P-gp de-
toxified cells by exporting hundreds of chemically unre-
lated toxins but had been implicated in MDR in the 
treatment of cancers. Substrate promiscuity was a hall-
mark of P-gp activity, thus a structural description of 
poly-specific drug-binding was important for the rational 
design of anti-amyloid accumulation drugs, anticancer 
drugs and MDR inhibitors. The x-ray structure of apo 
P-gp at 3.8 angstroms revealed an internal cavity of ap-
proximately 6000 Å3 with a 30 Å separation of the two 
nucleotide-binding domains. Two additional P-gp struc-
tures with cyclic peptide inhibitors demonstrated distinct 
drug-binding sites in the internal cavity capable of stereo-
selectivity that was based on hydrophobic and aromatic 
interactions. Apo and drug-bound P-gp structures had 
portals open to the cytoplasm and the inner leaflet of the 
lipid bilayer for drug entry. The inward-facing confor-
mation represented an initial stage of the transport cycle 
that was competent for drug binding [41]. Currently, 
P-gp was identificated as an energy-dependent pump, 
whereas ATPase activity as an assay in itself was possi-
bly problematical because the assay was based upon one 
assumption that drug-induced ATP hydrolysis reflects 
transport by the transporter [16]. There may be many 
ways in which this activity could be altered, including 
direct action on the ATP binding domain. Scientists once 
observed some compounds such as daunomycin and vin-
blastine inhibit ATPase activity, but increase in others, 
suggesting that modulation of ATPase activity was 
highly dependent on experimental conditions and may 
not correlate well with the ability of P-gp to transport the 
drug [42-44]. The work of Litman et al. was one of the 
few studies suggesting that affinity between drugs and 
ATPase activity has no correlation to LogP, but Surface 
Area [45]. Because of the less comparability of molecu-
lar structures in a training set, our QSAR model pos-
sessed more universal significance. However, the preci-
sion of the QSAR models was so low that there was still 
a distance to its application. So a series of organic com-
pounds with similar structures are chosen and consist of 
a training set, thus the precision of QSAR simulation will 
be largely increased, while the prediction of the ana-
logues through BBB will be greatly improved. 

5. CONCLUSIONS 

The pathogenesis of AD is characterized by the aggrega- 
tion of Aβ into neurotoxic plaques. P-gp is involved in 
MDR and in neurodegenerative disorders such as PD, 
AD and epilepsy. P-gp mediates the efflux of Aβ from  
the brain as well as mediates MDR, while P-gp trans- 
ports neutral or positively-charged hydrophobic sub- 
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strates with consuming energy from ATP hydrolysis. In 
comparison with the ability of organic molecules perme-
ating across BBB, P-gp binding or MDR-reversal activ-
ity of compounds has a negative correlation with LogP. 
Moreover, P-gp binding or MDR-reversal activity of 
compounds is mainly proportional to LogMR (Eqs.1 to 5) 
but inversely proportional to LogP (Eqs.4 and 5). Simi-
larly, ATPase activity of these compounds was largely 
negatively related to LogP (Eqs.7 to 12) but positively 
related to MR (Eqs.9 to 11), where most compounds are 
with logP value more than 2.7. This showed that the P-gp 
binding capacity of these compounds shared common 
characteristics with their ATPase hydrolysis, namely 
their hydrophobic parameters (i.e. logP) and steric pa-
rameters (e.g. MR). Additionally, the distribution of or-
ganic molecules through BBB was not only influenced 
by organic solutes themselves, but also related to the 
properties of the solute-membrane water complex, 
namely interactions of the molecule with the phosphol-
ipide-rich regions of cellular membranes. The ability of 
organic molecules permeating across BBB was mostly 
proportional to LogP (Eqs.14 to 18) but inversely pro- 
portional to PSA (Eqs.13 to 18), which is consistent with 
the research results of Chen and co-workers [2], namely 
the increasing PSA decreased LogBB rapidly while LogP 
positively related to LogBB. Chen et al. have indicated 
that the optimum logP for designing CNS active drug 
was about 2.9 and the compound with LogP lower than 
2.9 had a positive correlation with logBB, but the com-
pound with logP bigger than 2.9 made an unfavorable 
contribution [2]. It is disclosed that molecules with 
higher lipophilic would be partitioned into the lipid bi-
layer more easily with more chances to penetrate BBB, 
supported by the research result of Wang et al., namely a 
large number of structurally and functionally diverse 
compounds as substrates or modulators of P-gp mostly 
share common structural features, such as aromatic ring 
structures and high lipophilicity [19]. The LogP not only 
offered opportunity to penetrate the lipid bilayer, but also 
gave favorable contribution to binding with P-gp or P450. 
There may be two reasons for this phenomenon. Firstly, 
the compounds with higher liposolubility are more vul-
nerable to cytochrome P450 metabolism, leading to 
faster clearance [46]. P450 enzymes catalyze the me-
tabolism of a wide variety of endogenous and exogenous 
compounds including xenobiotics, drugs, environmental 
toxins, steroids, and fatty acids. Aminated thioxanthones 
have recently been reported as P-gp inhibitors as well as 
its interaction with cytochrome P450 3A4 (CYP3A4), as 
many substrates of P-gp and CYP3A4 are common [47], 
which could be a major cause of P-gp binding or MDR- 
reversal activity of compounds inversely proportional to 
LogP. The second reason was related to the mechanism 
of P-gp action. According to the model proposed by 

Higgins and Gottesman [48], after entering into the 
phospholipid bilayer, compound may interact with P-gp 
in the inner leaflet of the lipid bilayer. Upon interaction 
with P-gp, the compound was flipped from the inner 
leaflet to the outer leaflet of the lipid bilayer. The lipo-
philic compounds with high LogP entered into cellular 
membrane easily and intended to retain there, so its op-
portunity to interact with P-gp increased and then its op-
portunity to be pumped out of cells enhanced. 

In conclusion, the predictive model of BBB partition- 
ing of organic compounds contributed to the discovery of 
potential AD therapeutic drugs. Moreover, the interac- 
tion model of P-gp and modulators for the treatment of 
multidrug resistance indicates the discovery of some 
molecules to increase Aβ clearance from the brain and 
reduce Aβ brain accumulation by regulating BBB P-gp 
in the early stages of AD. Because P-gp is a transporter 
whose ligands are almost exclusively small molecules, it 
is not surprising that the pump itself is unable to trans- 
port Aβ. Nazer and co-worker have indicated the non- 
proteolytic clearance of Aβ via receptor-mediated trans- 
port across the BBB and investigated P-gp and the low- 
density lipoprotein receptor-related protein (LRP) in- 
volving Aβ efflux across the BBB [49]. Nevertheless, 
LRP or P-gp alone was insufficient for non-proteolytic 
transcytosis of intact Aβ. LRP in transcytosing intact Aβ 
across the BBB may require a co-transporter, such as 
P-gp [49]. Elucidation of the molecular mechanisms of 
the potential of LRP and P-gp to efflux cortical Aβ 
across BBB should help to promote rational therapeutic 
strategy in AD. 
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