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ABSTRACT 

This paper is an extension of the book of reference [1] below. QCD Lagrangian is derived from the same equations of 
motion for quarks used to construct the equations of motion for mesons and baryons in the scalar strong interaction 
hadron theory that accounts for many basic low energy data not covered by QCD. At high energies, the energetic quarks 
in a hadron can be far from each other and approximately free. Each quark is associated with a vector in an internal 
space characterizing its mass and charge. These spaces are interchangeable and provide a new symmetry equivalent to 
color symmetry in QCD. A quark in a meson has two “colors” and in a baryon three “colors”; the β function of QCD is 
61%-92% greater in high energy interactions leading to baryons than that to mesons. This function enters the measur- 
able running coupling constant and this prediction is testable against experiment. QCD, successful at high energies, is 
thus reconciled with the scalar strong interaction hadron theory and both complement each other. 
 
Keywords: QCD at High Energies; Scalar Strong Interaction; Internal Symmetry 

1. Introduction 

The scalar strong interaction hadron theory [1,2] can ac- 
count, to a limited extent of varying accuracy, low en- 
ergy hadronic phenomena of basic importance. The high 
energy end has been left out. Quantum Chromodynamics 
(QCD) on the other hand, has proven to be successful at 
high energies but can basically not account for low en- 
ergy phenomena. 

The situation may be summarized in Table 1, which 
includes the established QED as reference. 

In the following, references of the form (x, y, z), Sec-
tion x.y, §x.y.z, pxyz, and Table x. y refer to those in [1]. 

QCD is a quantum field theory for “colored” quarks 
based on the QCD Lagrangian [3 Reviews.../Standard 
Model.../Quantum Chromodynamics, Equations (9.1, 2)]. 
The interquark force is of “color” vectorial nature. How- 
ever, the equations of motion at the quantum mechanical 
level obtained from the QCD Lagrangian are in terms of 
unobservable “colored” quarks and are of no use at low 
energies. This theory has proven to be successful at high 
energies. 

The equations of motion for ground state mesons (2.4.2) 
and for baryons (9.3.11) form the basis of the present 
scalar strong interaction hadron theory. There is no quark 
wave function in these equations and the interquark force 

is of scalar nature. These equations and the correspond- 
ing Lagrangians can be converted into each other. The 
theory remains largely at the quantum mechanical level 
and, as mentioned in §6.4.4, has not been quantized. 

The wave functions for mesons in (2.4.2) and for 
baryons in (9.3.11) have been solved for hadrons at rest. 
In motion, only dimensional estimates for pseudoscalar 
meson are given in Section 3.5. Feyman propagator for 
these hadrons is thus not known and Feynman diagrams 
in an eventual quantized version cannot be evaluated. 
More basically, the free hadron wave functions in (2.4.2) 
and (9.3.11) contain via (3.2.3a) in addition to the labo- 
ratory coordinate X, also the relative coordinate x as well 
as the internal coordinate z and u. The latter ones have no 
correspondence in classical mechanics and the usual 
transition rule to quantum mechanics is insufficient. This 
agrees with the known fact that nonlocal thoeries cannot 
be quantized. 

2. Genaralized Equations of Motion for 
Quarks 

The starting point of the scalar strong interaction meson 
theory [1,2] is a quark A at space-time point xI with fla- 
vor p interacting scalarly with an antiquark B at point xII 
having antiflavor r described by 
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Table 1. Key ingredients in QED, QCD and SSI (scalar strong interaction hadron theory) for comparison. 

Scalar Strong Int-SSI QCD QED  
Nonlocal theory Cannot be quantized Loop diagrams 

Renormalization 
diff. gauges 

Asymtotic freedom-1st order 
nonAbelian self coupling 

Loop diagrams 
Renormalization 

At high energies, the quarks are nearly free. The 
different internal spaces for quarks in SSI provide 
a new degree of freedom similar to color in QCD, 

which can largely be taken over (this paper) 

Feynman Rules: (FR) 
quark  
gluon  

Ghost-nonAbelian self coupling

Feynman Rules: (FR) 
lepton 
photon 

QUANTUM FIELD THEORY 

Predictive power: 
Similar to QCD’s 

Predictive power: 
Good 

Predictive power: 
Highly accurate 

Higher energies, Higher orders in 
coupling constant 

1 1 1 lmn m nA A A q A A            
1A  = like “gluon” 

1 1 1 lmn m nF V V gf V V          
1V   gluon 

F A A         

A  = photon 

SSI Lagrangians 
↕ 

Meson Equation of motion 
(akin to 4 theory) 

Baryon Equation of motion 

QCD Lagrangian 
(FR) 

does not yield 
useful Equation of motion 

QED Lagrangian 
↕ 

Dirac Equation (FR) 
Maxwell Equation (FR)

QUANTUM MECHANICS 

Predictive power: Limited but of basic nature,  
Ok presently 

Predictive power: 
Nearly none 

Predictive power: 
Firmly established 

Low energies, 
0th, 1st order in coupling constant
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

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     (2) 

In (1) and (2), following the notations of (A1-A5),  is 
usual Dirac bispinor and VSB(xI) is the scalar potential 
(2.1.2) emanating from B acting on A and vice versa 
(2.1.4) for VSA(xII). z

p are p complex variables originally 
providing a point field for implementing SU(p) transfor- 
mations [4] and zp = (zp)* in (2.3.4). They [2, Section5] 
acquire here a more physical role as eigenfunctions of the 
mass operator [2 (9.6a)], (2.3.26) 

 1
q q

op q I Iq II IIqq q
Iq IIqI II

m z m z z z z
z zz z

    
        

 (3) 

as well as the charge operator 

 

 

r r
op r I Ir II IIrr r

Ir IIrI II

op

q z q z z z z
z zz z

q z

    
       
 

 (4) 

generalized from (2.3.14). Repeated indices are summed 
over. Acting upon zp in (1), (3) and (4) produce the quark 
mass mp and charge qp, respectively, as eigenvalues. The 
A’s are the associated electromagnetic fields.   p

A I Ix z  
is regarded as the total wave function for quark A and 

B(xII)zIIr that of the antiquark B. zI and zII refer to dif-
ferent internal or flavor spaces in Section 2.1 and are as 
distinct as xII and xI. These z’s, like the relative coordi- 
nates x = xII − xI, are “hidden varaiables” in §2.3.5, p. 327. 
The above equations are taken as hypothetical, as free 
quark has not been observed, but are used to construct 
equations of motion for meson. For this purpose, (1) was 
originally written in van der Waerden’s two spinor form 
(2.1.1a, 3a) via (2.3.11). 

3. Quark Confinement in Meson 

The so-constructed equations of motion have been solved 
for mesons at rest to account for a number of basic prob- 
lems in the book [1]. After its publication, CP violations 
in neutral kaon decays have been substantially clarified 
[5]. 

The rest frame pseudoscalar meson is confined by the 
interquark potential (3.2.8a, 19, 20) via the genealization 
(2.2.3), 

       

  0

,SA II SB I m I II m

m
c m

V x V x x x x

d
x d

r

 

   
     (5) 

   
4

22
0

0

d
2

s
c m

g
r r r r r 



      0r     (6) 

where II Ir x x x    is the interquark distance, dm = 
0.864 Gev in (5.2.3), dm0 = 0.24455 Gev2 in Table 5.2, 

2
sg  is the scalar strong quark-quark coupling in (2.2.1, 

4), and c(x) the nonlinear (in ) confinement which 
provides linear confinement at large r. The meson wave 
fnnction 0(r) is formed from generalization of the 
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product of A(xI) in (1) and B(xII) in (2) according to 
(2.2.1), satisfies (3.2.10) and is given by (4.3.2) 

  
3

0 exp 2
8

m
m

d
r  


d r          (7) 

where  is a large normalization volume in the labora- 
tory space   2II IX x x  . For a free meson,  →  
and (7) and (6) → 0 and the quarks are confined by dm/r 
in (5) only. From (7), the size of the meson is about 2 fm 
in (4.7.3); the quarks are tightly bound. 

If the same meson is moving, Section 3.5 shows that 
its wave function is of the plane wave form  

     0
0exp ,iEX iKX x x    , where E is the en-

ergy and K the momentum, and is a four vector in rela-
tive space. 0 is the time and large component and the 
vector part  makes up the spatial and small components. 
Equations governing these components have not been 
solved. In addition, the free meson wave function is seen 
to be nonlocal and can therefore not be quantized. 

For small K, however, approximate forms of 0 and  
have been estimated using dimensional approximations 
and K, shown in §3.5.3, 4. 

As is discussed in Section 4.5, the above plane wave 
form is distorted and the corresponding quantity playing 
the role of  no longer →  when the meson is interact-
ing with another particle. Hence, the wave function be-
comes finite and the linear confinment (6) is called into 
action in (5); the quarks are always confined. 

At higher energies, the quarks also become energetic 
and the interquark distance r is expected to be large so 
that the confining term dm/r in (5) becomes small. In this 
case, quarks are no longer tightly bound and the nonlin- 
ear confinement c in (6) can still be weak over a large 
range of r for large enough  type of volumes. In this r 
range, m in (5) is small and quarks may be considered 
as approximately free so that (1) and (2) with VSB, VSA → 
0 via the left member of (5) are applicable. 

4. Internal Space Symmetry and Gauge 
Transformation 

In Section 12.8, on p. 272 at the end of the book, it was 
pointed out that “The internal degrees of freedom in form 
of the three internal coordinates zI, zII and zIII of Section 
9.3 can play some of the roles of the three colors in 
QCD...”. This observation will now be pursued and de-
veloped. The two internal spaces zI and zII in (1) and (2) 
are not observables and are interchangeable and thus 
provide a new symmetry analogous to color symmetry in 
QCD. Noting this, the total quark wave function  

  p
A I Ix z  in (1) is generalized to a column matrix with 

two elements, one with zI the other zII. Consequently, the 
U(1) gauge field A must also be generalized to an SU(2) 
gauge field. The so-generalized (1) and (2) read 

     

 
 

1 0,p
op I op A

I

p
A I Ip

A p
A I II

i iq z A x m z
x

x z

x z


 





  
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 
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 
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 (8) 
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
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  
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 
  
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 
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 (9) 

observing the definitions 

11 12 11 12

21 22 21 22

,
p p p p
I I I II
p p p p
II I II II

A A A z z A z z
A A

A A A z z A z z

   
         

 (10) 

The stepping operators of the from zI/zII has been in-
troduced earlier [6] in connection with the W bosons. As 
the A  type of matices in (8) and (9) operates on zI and zII, 

2

2 211 12

21 22

1

,
p p p p
I I I II
p p p p
II I II II

n n n

A z z A z z
A AA A

A z z A z z

A A A A

  
  

  

 


  (11) 

because the second order deivatives of the form 2 2
Iz  , 

2
I IIz z    in (11) vanish. Therefore, all higher order 

deivatives in zI and zII also drop out. Also, zI/zI and 
zII/zII inA may be dropped without affecting the re-
sults. 

Analogous to the usual field tensor [7 (18.8)], define 
the gauge field tensor 

     

     ,

v I I I
I I

op I v I

A x A x A
x x

iq z A x A x

  



  

 

 
 
 

   

x
  (12) 

Let 

         2 2exp , expI I IU x i x U x i x   I  (13) 

Under the SU(2) gauge transformations  

 

 
 2

p
A I Ip p p

A A I
p

A I II

x z
U x

x z





 
  A      
 

   (14a) 

         

     

1
2 2

1
2 2

I I I I

I I
op I

IA x A x U x A x U

i
U x U x

q z x

  



   



 






x
(14b) 

(8) and (12) are invariant; these invariances are the same 
as the conventional ones without the z’s in (13) and in (8) 
and (12), noting that (3) and (4) are invariant under zI  
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zII and can respectively be replaced by mp and qp. A  
corresponds to the SU(2) gluons in QCD. There are only 
two degrees of freedom represented by zI and zII corre-
sponding to two colors for quarks in a meson. 

5. Derivation of QCD Lagrangian 

The quark Lagrangian density LQ is obtained by multi-
plying (8) from the left by Ap  and integrating over the 
angles in p

Iz  and p
IIz . Limiting ourselves to light 

quarks u, d and s corresponding respectively to flavor p = 
1, 2 and 3, which have about the same quark mass mp in 
Table 5.2, one obtains 
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 
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



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
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

 (15) 

Here, (2.3.9, 6b) have been employed and Np is a con-
stant in (2.3.9). The quark charge qp becomes here an 
unrenormalized coupling constant. 

The SU(2) “gluon” Lagrangian density LG is similarly 
obtained 

   

   

1
d d trace

2

1
trace

2

I II

G

p
z p z p Kp v I v I K

N v I v I

L

v v z A x A x z

C A x A x

 

 

 

 

        

        


  
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where K runs from I to II and (4) has been used in (12). 
Note that quarks having different “colors” or zK’s have 
the same space time wave function in (15), as it should. 
Adding (15) and (16) yields the total “two color” La-
gragian density for p = 1, 2 or 3. 

2Q G N QCDL L C L              (17) 

The conventional QCD Lagragian density LQCD2 [7, 6 
line below (18.6)] for two colors is thus recovered. 

The antiqauark Equation (9) can be treated analo-
gously leading to the same results. 

Baryon consists of three quarks and makes use of three 
of (1) associated with three internal spaces zI, zII and zIII 
in (9.3.1) or three internal degrees of fredom or “colors”. 
At rest, two quarks merge to form a diquark via (9.2.12) 

and (9.3.4) and there are only two “colors”. The quark- 
diquark confinement potential (10.1.6a, 8) differs from (5) 
in that db2r

2 there provides confinement independent of 
the nonlinear confinement bc(x) there; the quark and the 
diquark are always confined irrespective whether there is 
another particle nearby. 

When interacting with another particle at higher ener- 
gies, the quarks also become energetic and the diquark is 
expected to break up so that there are three interquark 
distances instead of r. The corresponding form of b(x) 
is unknown but these three distances, like r in high en- 
ergy mesons, are expected to be large so that the three 
quarks may be regarded as approximately free in some 
ranges of the three distances. Again, the nonlinear con- 
finement corresponding to bc(x), which provides cubic 
form of confinement at large r in the quark-diquark con- 
figuration (10.2.5b), renders the quarks to be confined. In 
this case, the above treatment of quarks in meson can 
straightforwardly be extended to apply to quarks in bary- 
ons. The Pauli matrices  above is replaced by the Gell- 
Mann matrices  and  has now eight components. The 
conventional LQCD3 [7, 6 line below (18.6)] for three col- 
ors is recovered. 

The whole development of LQCD2 and LQCD3, including 
quantization, choice of gauges, renormalization, Feyn- 
man rules, asymtotic freedom, etc can be taken over. The 
QCD beta function  11C22nf [7 (18.146)] where C2 is 
3 for baryon and 2 for meson and the number of flavors 
nf is 2-5. This function is thus 61%-92% greater in high 
energy interactions leading to baryons than that to mes- 
ons. As this function enters the measurable running cou- 
pling constant, this prediction should be testable against 
experiment.  

This effect appears to be effective at large quark sepa- 
rations r for confinement which is taken over by the sca- 
lar strong interaction confinement dm/r in (5) and db/r in 
(10.1.6a) for small r. 

In this way, QCD is reconciled with the scalar strong 
interaction hadron theory and complement each other; 
the former holds at high energies while the latter ac-
counts for, so far to limited extent of basic nature, data at 
the low energy end of elementary particle theory. The 
intermediate energy range remains not covered. 

6. On Exact and Broken Symmetry 

The known symmetries, C, P, T, and electroweak SU(2) 
gauge, are all broken. Because they reside in space-time 
and isospace, the degrees of symmetry breaking can be 
measured. The SU(2) internal or “color” gauge symmetry 
here is however exact and cannot be broken. The associ- 
ated gauge transformation act on two abstract, internal 
spaces zI and zII, which have been created artifcially [2 
Section 5], Section 2.3 to accommodate different quark 
flavor vectors. These two spaces are identical in structure 
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and there is no quantity in the formalism that distinguish 
them from each other, i.e., can break this zI  zII sym- 
metry. Even if some such quantity will appear later, it 
cannot be measured to determine the degree of symmetry 
breaking because zI and zII are unobservable “hidden” 
variables mentioned below (4). Such a symmetry break- 
ing would appear as nonexisting. As the “gluons” in (8, 9) 
depend upon the unobservable quark coordinates xI and 
xII as well as zI and zII, they can also not be observed. 

7. Conclusion 

QCD has hitherto been based upon the assumption that a 
quark has three colors. This has its root in the Pauli ex- 
clusion principle. This principle has been confirmed for 
freely observable fermions; but quarks are not freely ob- 
servable and hence do not have to obey this principle and 
the above assumptions become ad-hoc. In the scalar 
strong interaction theory [1], the quark wave function is 
generalized to include an internal part in Section 2.3 
characterized by zI, and zII in (1) and (2), which is needed 
to specify its mass and charge via its flavor. It is shown 
here that this internal degree freedom plays an analogous 
role as color does in QCD and “justifies” the assumption 
of colored quarks, with the difference that quarks in mes- 

ons have only two “colors”. This difference is experi- 
mentally testable. QCD is thus reconciled with the scalar 
strong interaction hadron theory. 

REFERENCES 
[1] F. C. Hoh, “Scalar Strong Interaction Hadron Theory,” 

Nova Science Publishers, 2011.  
https://www.novapublishers.com/catalog/product_info.ph
p?products_id=27069 

[2] F. C. Hoh, International Journal of Theoretical Physics, 
Vol. 32, 1993, pp. 1111-1133. doi:10.1007/BF00671793 

[3] J. Beringer, et al., Physical Review D, Vol. 86, 2012 
Article ID: 010001. doi:10.1103/PhysRevD.86.010001 

[4] M. A. B. Bég and H. Ruegg, Journal of Mathematical 
Physics, Vol. 6, 1965, p. 677 
doi:10.1063/1.1704325 

[5] F. C. Hoh, Journal of Modern Physics, Vol. 3, 2012, pp. 
1562-1571. http://www.scirp.org/journal/jmp 

[6] F. C. Hoh, International Journal of Theoretical Physics, 
Vol. 37, 1998, pp. 1693-1705. 
doi:10.1023/A:1026640524638 

[7] T. D. Lee, “Particle Physics and an Introduction to Field 
Theory,” Harwood Academic Publisher, 1981.

 

http://dx.doi.org/10.1007/BF00671793
http://dx.doi.org/10.1103/PhysRevD.86.010001
http://dx.doi.org/10.1063/1.1704325
http://dx.doi.org/10.1023/A:1026640524638

