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ABSTRACT 

In this paper, we present and discuss the topology of modular spaces using the filter base and we then characterize 
closed subsets as well as its regularity. 
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1. Introduction 

In the theory of the modular spaces X  , the notion of 
∆2-condition depends on the convergence of the se-
quences in modular space X  . More precisely, it reads:  
for any sequence  n n

x


 in X  , if  m 2 0n
n

x

li  , 

we have   0nxlim 2
n




 . This condition has been used  

to study the topology of modular spaces, see J. Musielak 
[1], and to establish some fixed point theorems in modu-
lar spaces, see [2-7]. Some fixed point theorems without 
∆2-condition can be found in [8,9]. 

In this paper, we present a new equivalent form for the 
∆2-condition in the modular spaces X   which is used to 
show that the corresponding topology is separate and to 
establish some associated topological properties, includ-
ing the characterization of the  -closed subsets as well 
as its regularity. The present work is an improved Eng-
lish version of a pervious preprint in French [10]. 

2. Preliminaries 

We begin by recalling some definitions. 
Definition 2.1 Let X be an arbitrary vector space over 

K    or . 
1) A functional  : 0,X  

0x 
 is called modular if 

  0x   implies . 
a)    x x     for any x X  when K  , and 

b)    eit x x   for any real t when K   . 

c)      x y x       y 0 for ,    and 
1   . 

2) If we replace c) by the following 
     x y x       y 0 for ,    and 

1   , then the modular   is called convex. 
3) For given modular   in X, the  

  0X x   0 as X x     is called a modular 
space. 

4) a) If   is a modular in X, then  

inf
x

0,  x u u
u

      
  

 

is a F-norm. 
b) Let   be a convex modular, then  

inf 0,  1
x

x u
u

      
  

 

is called the Luxemburg norm. 

3. Topology τ in Modular Spaces 

In this section, we introduce the property 0  for a mod-
ular  , which will be used to show that the corre-
sponding topology, noted by , on modular space  X   
is separate, and to characterize their closed subsets. 

We begin with the following 
Proposition 3.1 Consider the family  

  0B r r0, , where  

    0,B r x X x r     .  

Then 
1) The family  is a filter base. 
2) Any element of   is balanced and absorbing. 

Furthermore, if   is convex, then any element of  
is convex. 



Proof. 
1)  is a filter base. Indeed, we have 
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a)  because any   0,B r   . 
b) Let  and  10,B r   0,B r2

z B
  be in  and set 

. Then, for any  we have 


 1 2,r rinfr  0, r 

2

 
 

1

2

z r r

z r r




 
  

 

and therefore . That is   10, 0,z B r B r  

     1 20, 0, 0, .B r B r B r     

Hence  is a filter base for the existence of 
 0,B r   such that  

    1 20, 0, 0,B r B r B r     . 

2) Let .  0,B r 
 0,B ra)  is balanced. Indeed, for given  ei   

with    and 1   , and given  0,x B r , 
we have 

       ei <x x x x         r . 

This means that  0,x B r  . 
b)  is absorbing. Indeed, for given 0,B r  x X    

we have . Whence, for all  there   
0

0x


 


lim > 0r

exists > 0,  such that 0 < <   and   <x r  . 
Hence, there exists > 0  such that  0,x B r . 
This shows that  is absorbing.  0, rB

Now, assume that   is in addition convex and let 
. For given  0,B r  , 0 ,x y B r  and  0,1  , 

we have 

        1 1 < ,x y x y          r

, .

 

then 

  1 0x y B r     

Thence  is convex. 0,B r 
Definition 3.1 We say that   satisfies the property 

0  if for all > 0 , there exist  and > 0L > 0  such 
that    y x    for every x, y satisfying    x L   
and   <x y  . 

Theorem 3.1 Assume that the modular   satisfies 
the property 0 . Then X   is a separate topological 
vector space. 

Proof. In Proposition 3.1, we have seen that the family 
 is a filter base, and furthermore any element of  

is balanced and absorbing. On the other hand, for any 
, there exists 







0,B r  0 > 0  such that 

     0 00, 0, 0, .B B B     r  

In fact, let  ; > > 0r  . Since   satisfies the 
property 0 , there are  and > 0L > 0 , such that for 
  <x L  and   <x y   we have  
    <y x   . Thus, if we set  

 0 inf , , ,r L     

we see that for   0 00, 0,z x y B B        with 

 
 

0

0.

x

y

 
 


 

 

We obtain  00,y z x B    . This implies  
 z x 0      and   0x L  . Thence 

    0 .z x r       r         

This infers that  0,z B r , and so  

     0 00, 0, 0,B B B     r . 

Hence the family  is a fundamental system of 
neighborhoods of zero, then the unique topology defined 
by  in 



 X   is given by 


  

, if  ,

then such that ,

G G X x G

V x V G

    

    



 
 

so that X   is a topological vector space. 
To show that  ,X    is separate, let x, y in X   

such that x y  and assume that for any Vx neighbor-
hood of x and Vy neighborhood of y we have x yV V   . 
So that one can consider  

1 1
0, 0,z x B y B

n n 
            

     
 


  

for certain . Then *n

 

 

1

1
.

x z
n

y z
n





  

  


 

Since   satisfies the property 0 , then there exist 
for any 0  , two reals  and 0L  0  , such that  

    <
2

y x
   for every x, y satisfying   <x L   

and   <y x  . Now, set  and Y y x  X z x   
and note that we have 

   

   

1

1
.

X x z
n

Y X y z
n

 

 

   

    


 

It follows that for any n  such that  
1

inf , ,
2

L
n

 
 


 , we have 

      .
2 2 2

Y y x z x
              

This infers that  y x   , for arbitrary 0  . 
Thus,   0x y    and then x = y, a contradiction since 
by hypothesis x y . Therefore there exist neighbor-
hoods xV  of x and neighborhood yV  of y such that 

Copyright © 2013 SciRes.                                                                                  AM 



A. HAJJI 1298 

x yV V  . 

τ Convergence and Characterization of τ-Closed 
Subsets of Xρ 

We begin by recalling some needed definitions of the 
 -convergence and the  -closed subsets of the the 
modular space X   (see for examples [2-8]). 

Definition 3.2 Let X   be a modular space. 
1) A sequence  n n

x


 in X   is said to be -con-  

vergent to x, denoted by nx x


, if  as 

. 

  0nx x  

n 
2) A subset  of B X   is said to be  -closed if for  

any sequence  n n
x B





, such that nx x


, we have  

x B . We denote by B


 the closure of  in the 
sense of 

B
 . 

3) A modular   is said to be satisfying the Fatou  

property, if    liminf n nx y x    y  as nx x

  

and . ny y



In this section, we define the  -convergence, the  - 
closed subsets of X  , and we show that the topology 
defined by  -closed in the definition before, noted by 

1 , and the topology   are the same topology. 
The naturel convergence in the sense of the topology 

  and  -closed subsets of X    given by the follow- 
ing definitions. 

are

Definition 3.3 A sequence  n n
x


 in X   is said to 

be convergent to x  in the sense of the topology   (or 
simply  -convergent) if for any > 0  there exists 

 such that 0N   0,Bnx x    whenever . 0

Note that the property 0

>n N
  is a necessary condition to 

show the uniqueness of the limit when exists. Thus, the 
 -convergence need the property 0  and it is easy to 
see that  -convergence and  -convergence are equiva-
lent. 

Definition 3.4 Let   be a modular satisfying the 
property 0 . A subset B of X   is said to be  - losed if 
and only if the complimentary of B in 

c
X  , noted by 

B
XC


, is an element of . 
The following lemma shows that the property 0  

makes sense in the theory of modular spaces. 
Lemma 3.1 Let   be a modular and X   be a 

modular space. Then   satisfies the -condition if 
and only if 

2
  satisfies the property 0 . 

Proof. To prove “if”, let  n n
x


 be a sequence in 

X   such that  as . This implies 
that for all 

  0nx 
> 0

n  
 , there exists  such that for any 

 we have 
0n

0>n n

  inf , , .
2nx L
    

 
 

Now, take n nX x  and , for any . It 
follows 

2nY x n 0n n

      inf , , .
2n n n nX x Y X L
         

 
 

This yields      2
2n n nY x x
        when-  

ever 0 . Whence, the sequence n n   2 nx
n

 tends 
to zero as n goes to  , and therefore   satisfies the 

2 -condition. 
For “only if”, let   be a modular satisfying the 

2 -condition, and suppose that there exists > 0  such 
that for any  and for any > 0L > 0 , there exist 

,x y X   satisfying   < ,x L  <x y    and  

   y x    . In particular, for 
1

L
n

   there 

exist ,n nx y X   such that 

   

   

1 1
,  and

,

n n n

n n

x y x
n n

y x

 

  

  

 
 

which implies   0nx   and  as 
. However, we have 

  0n ny x  
n 

    
    2 2

n n n n

n n n

y y x x

.x y x

 

 

  

  
 

Now, since   satisfies the ∆2-condition, then  
  0ny   as . It follows that n 

    0  as  ,n ny x n      

which contradicts the fact that     > 0n ny x     
for any n . Finally, for all > 0 , there are  
and 

> 0L
> 0  such that if  x <   and  y x <  , 

we have     <y x   . This completes the proof of 
Lemma 3.1. 

In the following theorem, we show that the  -topol- 
ogy and the 1 -topology are the same. 

Theorem 3.2 Let   be a modular satisfying the ∆2- 
condition and F X  , then F is  -closed if and only 
if F is  -closed. 

The following result is needed to show Theorem 3.2. 
Proposition 3.2 Let   be a modular satisfying the 

∆2-condition and F a  -closed subset of X  . Then 

 0,  , .x F B x F       

Proof. For x X  , we have 

     
 

, is an open set of the -topology

0, 0, ,

> 0, such that , .

F F
X X

F
X

x F x C C

B x B B x

B x F

 

C
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Finally, 

 > 0,  , .x F B x F       

Proof of Theorem 3.2. Let F  be  -closed and 

n  be a sequence in  nx F  such that nx x

 . Then, 

for any > 0 , there exists 0  such that for every 
, we have 

n



0>n n  ,nx B x  . This implies that 

 > 0, , .B x F     

Whence, making use of Proposition 3.1, we get that 
x F . 

Conversely, assume that F  is not  -closed, then 
F
XC


 is not an open set for the  -topology. There exists 
then F

Xx C


  satisfying  , F
XCB x
   and so  

 ,B x F    for any > 0 . Therefore, for 
1

k
   

there exists 
1

,kx B x
k F

 
 
 



 n n

. Thence, the obtained 

sequence x F
  satisfies nx x


 . This implies  

x F , which is in contradiction with the fact that 
F
Xx C


 . In conclusion, F is  -closed. 
Remark 3.1 Observe that 

2

0

satisfies the -condition

satisfies the property .


 




 

As consequence, we see that under the assumption that 
  satisfies the 0  property, we have 

1 topology topology.   

Then definitions of  -convergence and  -closed 
subsets of X   need the hypothesis that   satisfies the 
∆2-condition. 

The following result shows that the modular space 
X   is a regular space. 

Theorem 3.3 Let   be a modular satisfying the ∆2- 
condition, A be a  -closed subset of X   and 0x A . 
Then there exists an open neighborhood 

0xV  of 0x  
such that . 

0x

In order to show the theorem above, we need the 
following result. 

V A  

Proposition 3.3 Let   be a modular satisfying the 
∆2-condition and A X  . Then  

    , inf ,x A x y y A    0  

if and only if x A


 , where A


 is the closure of A for 
the  -topology. 

Proof. We have 

    , inf ,x A x y y A    0.  

Then for any 
1

n
  , there exists  such that ny A

  1
<nx y

n
   this implies that there exists a sequence 

 n n
y


 A x such that . Whence ny


 x A


 . 

Inversely, let x A


 , then by Theorem 3.2, there ex-  

ists a sequence  n n
y


A  such that , there-  ny


 x

fore, for any 0   there exists  such that 0n

   n 0, ; .x A x y n   n      

Hence 

 x A , 0 .  

Proof of the Theorem 3.3. By Proposition 3.3, 0x A  
if and only if  0x A , >r 0 . Next, since   satisfies  

the 2 -condition then by Lemma 3.1, for > 0
3

r
,   

there exist , and 0L 0   such that if  x L   
and  y x    we have    y x   . More-  

over, there exists  such that *
0m   inf ,

r
L

m
   

whenever 0 . Now, let  and we 
consider the open neighborhood of 

m m 1 max 3,m 
0

0m
x  

00
1

0, .x

r
V x B

m
 

   
 

 

Suppose next that 
0

 and let 
0xV A   xy V A  . 

Since A  is closed we make use of Proposition 3.1 to  

exhibit a sequence  n n
y


 A y such that . So  ny




that one considers n nX y y   and . Since 0nY x y  n

ny A  and 0x A , then . On the other 
hand, note that 

 nY r

     
1

inf , ,n n

r
X y y L

m
       

whenever  and 0nn 

     0
1

inf , .n n

r
X Y x y L

m
        

Therefore 

   
1

2

3 3n n

r r r
r Y y y

m
          

whenever , a contradiction. Thus 0nn 
0xV A   . 

Remark 3.2 If   satisfies Fatou property, then 

      0,B r 0,B r x X x r       

is a closed ball of the topology  . We note by  ,fB x r
0r 

 
all closed ball centered at x with the radius  (see 
[7]). 

Corollary 3.1 Under the same hypotheses of Theorem 
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3.3, and if the modular   satisfies Fatou property, then  
By Proposition 3.1, there exists  

1

0,n n

r
y B

m

 
  

 
  

such that . Moreover, the sequence  ny



0xV A


  . 

Proof. Making appeal of Theorem 3.3, there exists  
y

 0 0n n

00
1

0,x

r
V x B

m
 

  
 

  such that . Then, we 

have 

0xV A  

0 0
1

0,x f

r
V x B

m

  
  

 

xx y


 V  satisfying 0 0nx y x


   y . Hence 

 . Indeed, let 
0xy V


  and 

note that from Proposition 3.1, there exists a sequence 

 
1

0,n fn

r
y B

m

 
 

 


00 .xx y V


   

Finally, we take the same arguments as in the proof of 
Theorem 3.3, we have 

  such that 
0

.xV A


   

0 ,nx y y
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