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Abstract 
 
Recently we have developed an eigenvector method (EVM) which can achieve the blind deconvolution (BD) 
for MIMO systems. One of attractive features of the proposed algorithm is that the BD can be achieved by 
calculating the eigenvectors of a matrix relevant to it. However, the performance accuracy of the EVM de-
pends highly on computational results of the eigenvectors. In this paper, by modifying the EVM, we propose 
an algorithm which can achieve the BD without calculating the eigenvectors. Then the pseudo-inverse which 
is needed to carry out the BD is calculated by our proposed matrix pseudo-inversion lemma. Moreover, using 
a combination of the conventional EVM and the modified EVM, we will show its performances comparing 
with each EVM. Simulation results will be presented for showing the effectiveness of the proposed methods. 
 
Keywords: Blind Signal Processing, Blind Deconvolution, Eigenvector Methods, Super-Exponential Mthods, 

MIMO Systems, Matrix Pseudo-Inversion Lemma 

1. Introduction 

In this paper, we deal with a blind deconvolution (BD) 
problem for a multiple-input and multiple-output (MIMO) 
infinite-impulse response (IIR) channels. A large number 
of methods for solving the BD problem have been pro-
posed until now (see [1], and reference therein). In order to 
solve the BD problem, this paper focuses on the eigenvec-
tor method (EVM). 

The first proposal of the EVM was done by Jelonnek et al. 
[2]. They have proposed the EVM for solving blind equa-
lization (BE) problems of single-input single-output (SISO) 
channels and single-input multiple-output (SIMO) channels. 
The most attractive feature of the EVM is that its algorithm 
can be derived from a closed-form solution using reference 
signals. Then, a generalized eigenvector problem can be 
formulated and the eigenvector calculation is carried out in 
order to solve the BE problem. Owing to the property, dif-
ferently from the algorithms derived from steepest descent 
methods, the EVM does not need many iterations to 
achieve the BE, but works so as to solve the BE problem 

with one iteration. 
Recently, we extended the EVM to the case of MI-

MO-IIR channels [3,4]. Then we proved that the proposed 
EVM can work so as to recover all source signals from 
their mixtures with one iteration. However, in the EVM, its 
performance accuracy depends highly on computational 
results of the eigenvectors. 

In this paper, we modify the EVM and then an algo-
rithm for solving the BD is proposed, in which the pro-
posed algorithm can be carried out without calculating 
the eigenvectors. Namely, the proposed algorithm can 
achieve the BD with as less computational complexity as 
possible, compared with the conventional EVMs. More-
over, a combination of the conventional EVM and the 
modified EVM is proposed. The combined EVM has su- 
ch properties that the BD can be achieved with as less 
computational complexity as possible and with good acc- 
uracy compared with each EVM. 

The present paper uses the following notation: Let Z de-
note the set of all integers. Let C denote the set of all com-
plex numbers. Let Cn denote the set of all n-column vectors 
with complex components. Let Cm×n denote the set of all 
m n  matrices with complex components. The super-

*A preliminary version of this paper was presented at the 2010 IEEE 
International Symposium on Circuits and Systems (ISCAS2010).
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scripts T, *, and H denote, respectively, the transpose, the 
complex conjugate, and the complex conjugate transpose 
(Hermitian) of a matrix. The symbol† denotes a pseudo- 
inverse of a matrix. The symbols block-diag   and diag 
   denote respectively a block diagonal and a diagonal 
matrices with the block diagonal and the diagonal elements 
  . The symbol cum{x1, x2, x3, x4} denotes the fourth- 
order cumulant of xi's. Let i = 1, n stand for 1, 2, , .I n   
 
2. Problem Formulation and Assumptions 
 
We consider a MIMO system with n inputs and m out-
puts as described by 

( )

–
( ) ( ) ( ), ,k

k
y t H s t k n t t Z



 
         (1) 

where s(t) is an n-column vector of input (or source) 
signals, y(t) is an m-column vector of system outputs, 
n(t) is an m-column vector of Gaussian noises, and 
{H(k)} is an m×n impulse response matrix sequence. 

The transfer function of the system is defined by H(z) 

= ( )
–

k k
k

H z


  , z ∈ C. 

To recover the source signals, we process the output 
signals by an n×m deconvolver (or equalizer) W(z) de-
scribed by  

( )

–
( ) ( )k

k
v t W y t k



 
   

   ( ) ( )
– –

k k
k k

G s t k W n t k
 

   
     ,   (2) 

where {G(k)} is the impulse response matrix sequence of 
G(z) : = W(z)H(z), which is defined by G(z) = 



k

kk z)(G , z ∈ C. The cascade connection of the 

unknown system and the deconvolver is illustrated in 
Figure 1. 

Here, we put the following assumptions on the system, 
the source signals, the deconvolver, and the noises. 

A1) The transfer function H(z) is stable and has full 
column rank on the unit circle |z| = 1, where the assump-
tion A1) implies that the unknown system has less inputs 
than outputs, i.e., n ≤ m, and there exists a left stable 
inverse of the unknown system. Please do not revise any 
of the current designations. 
 

 

 
Figure 1. The composite system of the unknown system H(z) 
and the deconvolver W(z), and the reference system f(z) 
with m inputs and single output x(t). It is the case of single 
reference. 

A2) The input sequence {s(t)} is a complex, ze-
ro-mean and non-Gaussian random vector process with 
element processes {si(t)}, i = 1,n being mutually inde-
pendent. Each element process {si(t)} is an i.i.d. process 
with a variance 02 

is  and a nonzero fourth-order 

cumulant 0i  defined as 

        * *cum , , , 0.i i i i is t s t s t s t        (3) 

A3) The deconvolver W(z) s an FIR system, that is, 

W(z) = 
2

1

)(L
Lk

kk zW , where the length L := L2   L1 + 1 

is taken to be sufficiently large so that the truncation 
effect can be ignored. 

A4) The noise sequence {n(t)} is a zero-mean, Gaus-
sian vector stationary process whose component 

processes {nj(t)}, j = 1,m have nonzero variances 2 0
in  , 

j = 1,m. 
A5) The two vector sequences {n(t)} and {s(t)} are 

mutually statistically independent. 
Under A3), the impulse response {G(k)} of the cascade 

system is given by 

,: 2
1

)()()(  
 L

Lτ
kk  HWG  k ∈ Z      (4) 

In a vector form, (4) can be written as 

i ig Hw ,    1i ,n              (5) 

where ig is the column vector consisting of the i-th 

output impulse response of the cascade system defined 

by 1 2: 
TT T T

i i i ing g ,g , ,g     , gij is expressed as  

     : 1 0 1 1
T

ij ij ij ijg ,g ,g ,g , , j , n          (6) 

where gij(k) is the (i, j)-th element of matrix G(k), and 

iw is the mL-column vector consisting of the tap coeffi-

cients (corresponding to the i-th output) of the decon-
volver defined by iw~ := 1 2[ , , , ]T T T T

i i inw w w ∈ CmL, ijw is 

defined by  

     1 1 2: 1 1
T L

ij ij ij ijw w L ,w L , ,w L C , j ,m,      (7) 

where wij(k) is the (i,j)-th element of matrix W(k), 
and H is the n×m block matrix whose (i,j)-th block ele-
ment Hij is the matrix (of L columns and possibly infinite 
number of rows) with the (l,r)-th element [Hij]lr defined 
by[Hij]lr := hji(l   r), l = 0, 1, 2,   , r = L1,L2, where 
hij(k) is the (i,j)-th element of the matrix H(k). 

In the MIMO deconvolution problem, we want to ad-
just iw~ 's (i= 1,n) so that 

   1 1 1, , , , , ,n n ng g H w w δ δ P,    
            (8) 

where P is an n×n permutation matrix, and iδ
 is the 
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n-block column vector defined by 1 2

TT T T
i i i inδ δ ,δ , ,δ   
  ,i 

= 1,n, ˆ:ij iδ δ for i = j, otherwise.  ,0,0,0,
T

   Here, 

i̂ is the column vector (of infinite elements) whose r-th 

element )(ˆ  i is given by    î i id r k    , where 

 t  is the Kronecker delta function, di is a complex 

number standing for a scale change and a phase shift, and 
ki is an integer standing for a time shift. 
 
3. The Conventional Eigenvector Algorithms 
 
Jelonnek et al. [2] have shown in the single-input case 
that from the following problem, that is, Maximize   

        * *cum , , ,
iv x i iD v t v t x t x t  

under            ,22
ii sv                  (9) 

a closed-form solution expressed as a generalized eigen-
vector problem can be led by the Lagrangian method, 

where 2
iv and 2

is denote the variances of the output vi(t) 

and a source signal )(ts
i , respectively, i is one of 

integers  1,2 , n  such that the set { 1 2, , , n   } is a 

permutation of the set  1,2, ,n , vi(t) is the i-th ele-

ment of v(t) in (2), and the reference signal x(t) is given 

by    Tf z y t using an appropriate filter f(z) (see Fig-

ure 1). The filter f(z) is called a reference system. Let 

a(z) :=          1 2  , , ,
TT

nH z f z a z a z a z    , then 

x(t) =           .T Tf z H z s t a z s t The element ai(z) of 

the filter a(z) is defined as  ( ) k
i ik

a z a k z



  and the 

reference system f(z) is an $m$-column vector whose 

elements are fj(z) =  
2

1
)(L

Lk
k

j zkf , j = 1,m, where dif-

ferently from the wij(k), the parameter fj(k) is any fixed 
value. 

In our case, 
iv xD and 2

iv can be expressed in terms of 

the vector iw~ as, respectively, i
H
ixvi

D wBw ~~~ and 

i
H
ivi

wRw ~~~2  where B
~

is the m×m block matrix whose 

(i,j)-th block element Bij is the matrix with the (l,r)-th 
element calculated by cum 

  1 1jy tL r  ,  *
i 1 1 ,y tL l     * ,x t x t (l,r = 1,L) and 

   * TR E y t y t   
   is the covariance matrix of m-block 

column vector )(~ ty defined by 

       1 2:
TT T T mL

my t y t , y t ,..., y t C        (10) 

where 

       j 1 1 2:  , 1 , , ,
T L

j j jy t y t L y t L y t L C       

j=1,m. It follows from (10) that ( )y t is expressed as )(~ ty  

= Dc(z)y(t), where Dc(z) is an mL×m converter (consist-
ing of m identical delay chains each of which has L delay 
elements when L1 = 1) defined by Dc(z) := 

block-diag     , ,c cd z d z  with m diagonal block 

elements all being the same L-column vector dc(z) de-

fined by dc(z) = 1 2, , .
TL Lz z    Therefore, by the simi-

lar way to as in [2], the maximization of || xvi
D  under 

22
ii sv   leads to the following generalized eigenvec-

tor problem; 

.~~~~
iii wRwB                (11) 

Moreover, Jelonnek et al. have shown in [2] that the 
eigenvector corresponding to the maximum magnitude 

eigenvalue of BR
~~† becomes the solution of the blind 

equalization problem, which is referred to as an eigen-
vector algorithm (EVA). It has been also shown in [3] 
that the BD for MIMO-IIR systems can be achieved with 

the eigenvectors of BR
~~† , using only one reference sig-

nal. Note that since Jelonnek et al. have dealt with SI-
SO-IIR systems or SIMO-IIR systems, the constructions 

of B, iw , and R in (11) are different from those pro-

posed in [2]. 
Castella et al. [5] have shown that from (9), a BD can 

be iteratively achieved by using xi(t) = )(~~ ti yw (i = 1,n) as 

reference signals (see Figure 2), where the number of 
reference signals corresponds to the number of source 

signals and iw~ is a vector obtained by iBR
~~† divided 

by i in the previous iteration, where iB  represents 

B in (11) calculated by xi(t) = )(~~ ti yw . Namely, they 

considered the following equation; 

.~~~~
iiii wwBR †              (12) 

Then a deflation method was used to recover all 
source signals. However, the EVM proposed by Castella 
et al. requires the calculation of the eigenvectors of the 

matrix iBR
~~† to achieve the BD. 

 
4. The Proposed Algorithm 
 
Here, the Equation (12) can be interpreted as follows. 
Suppose that the value iw~  in the left-hand side of (12) is 

a vector obtained by iBR
~~†  divided by i  in the pre-

vious iteration. Also, let id
~

denote .~~
iiwB  Then (12) can 

be expressed as 
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Figure 2. The composite system of the unknown system H(z) 
and the deconvolver W(z), and the reference system with m 
inputs and n outputs, where Dc(z) is an mL×m converter.  
It is the case of multiple reference system. 
 

,
~~1~

i
i

i dRw †


  i = 1,n,          (13) 

where on the details of i i id B w ,   see (30) in Appendix. 

Differently from the EVM in [5], (13) means that iw  is 

modified iteratively by the value of the right-hand side of 
(13) without calculating the eigenvectors of iBR

~~† where 

iw  in both xi(t) and id is the value of the left-hand side 

of (13) in the previous iteration. Moreover, the EVMs in 
[2,6] must select the appropriate parameter for the refer-
ence system f(z), but our proposed algorithm does not 
need such a troublesome process. The scalar i is fixed to 

be 1, but iw~ obtained by (13) should be normalized at 

each iteration, that is 

i
H
i

i
i

wRw

w
w

~~~

~
:~  ,  i = 1,n.        (14) 

It can be seen that the iterative algorithm (13) is noth-
ing but an iterative procedure of the super-exponential 
method (SEM) [7-9] (see Appendix), where the first pro-
posal of the SEM was done by Shalvi and Weinstein [9]. 
Therefore, our proposed algorithm for achieving the BD 
is that the vector iw is modified by using the value idR

~~† in 
(13), and then the modified vector, that is, iw  in the 
left-hand side of (13) is normalized by (14). 

Here, the calculation of †R
~

is implemented by using the  
following algorithm based on the matrix pseudo-inversion 
lemma proposed in [10]. The reason is that in the case 
that the pseudo-inverse is calculated using data block, the 
convergence speed is increased and the computational 
complexity is reduced, compared with the conventional 
pseudo-inverse algorithms, for example, the built-in func-
tion “pinv” in MATLAB [11]. Therefore, in order to pro-
vide a recursive formula based on block data for 
time-updating of pseudo-inverse, the block index “k” is  
defined, and then R

~
 and †R

~ are described as (k)
~
R and 

P(k), respectively, where the k-th block of data is defined 
as 

t = kl + i, i = 1,l – 1, k ∈ Z          (15) 

the parameters l and t denote the block length and the 
original discrete (or sample) time, respectively. The ma-

trix  R k is obtained by 

(k),(k))1(k
~

)1((k)
~ *

kk
TYYRR       (16) 

where 

Y(k) =         k 1 k 1 1 k 1 1y l , y l , , y l l           

∈ CmL×l                  (17) 
and k is a positive number close to, but greater than zero, 

which accounts for some exponential weighting factor or 
forgetting factor [12]. Moreover, the following parame-
ters are defined; 

   * ,kY k Y k                (18) 

       1 1 1 ,Y k = R k - P k - Y k           (19) 

   2 ( ) ( 1) ( 1) .Y k I R k P k Y k           (20) 

Then the pseudo-inverse P(k) can be explicitly ex-
pressed, as follows: 

   BP k P k †  

           † 1
1 2 1 2k k k k k k

H

B DP Y ,Y P Y ,Y        † kBP  

(21) 

where  BP k† and  1
DP k are respectively defined by 

 
       1

1 1†

k

k 1 k 1 k k k 1
k

1

H
A

B

P P Y P Y P
P :



      


 

    
† †

2 2k kHY Y ,              (22) 

and 

       
         

1 1
21

1 1
1 2 1

Δ k k Δ k
k :

k Δ k k k Δ kD

P
P

I E E E

 


 

 
  

   
(23) 

with 

     2 1Δ k : k kI E E ,             (24) 

where 

       †
1 1 1k k k kH

BE B P B ,         (25) 

       †
2 2 2k k k kH

BE B P B ,  

We treat P(k) as ,
~†R and iw is iteratively modified 

using (13) and (14), where i in (13) is assumed to be 

fixed to 1 and :i i id B w    in (13) is estimated by using 

Y(k). 
Thus, the proposed iterative algorithm for solving the 

BD problem is summarized, as follows: 
1) Choose appropriate initial values of  0iw , P(0), 

 R 0 ,  id 0 , i=1,n and set k = 1. 

2) Estimate  1R k ,  d k 1 ,i  by their moving aver-

ages, and  1P k  by (21). 

1 1 
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3) Calculate the  iw k , from    iP k- 1 w k , and then 

(k)~
iw is normalized by      k k 1 kH

i iw R w .   

4) Put k = k + 1 and stock the iw obtained in (13).  

If k = k' (where k' denotes an appropriate iteration 
number), stop the iterations, otherwise go to 2). 

 
5. Simulation Results 
 
To demonstrate the proposed algorithm, we considered a 
MIMO system H(z) with two inputs (n = 2) and three 
outputs (m = 3), and assumed that the system H(z) is FIR 
and the length of channel is three, that is H(k)'s in (1) 
were set to be 

H(z) = 


2

0

)(

k

kk zH  

= 

























22

22

22

1.02.01.04.01.06.0

1.025.012.01.05.0

15.025.065.01.015.01

zzzz

zzzz

zzzz

 

The source signals s1(t) and s2(t) were a sub-Gaussian 
signal which takes one of two values, –1 and 1 with 
equal probability 1/2. The parameters L1 and L2 in W(z) 
were set to be 0 and 9, respectively. As a measure of 
performances, we used the multichannel intersymbol 
interference (MISI) [8], which was the average of 50 
Monte Carlo runs. In each Monte Carlo run, using 300 
data samples, iw is modified by (13) and (14), and the 
total number of modification times is 10. About the 
block length l, the following two cases were considered: 
l = 1 and l = 2. For obtaining the pseudo-inverse of the 
correlation matrix, the initial values of R id , and P were 
estimated using 30 data samples. The value of k was  

chosen as
lk

1
k  for each k. 

Figure 3 shows the results obtained by the convention-
al EVM (ConEVM), the modified EVM (ModEVM), and 
their combined EVM (ComEVM) in the case of l = 1. As 
a ConEVM, we selected the EVM proposed by Castella et 
al.. Then, the pseudo-inverse of R in (12) was calculated 
by the built-in function “pinv” in MATLAB and our pro-
posed matrix pseudo-inversion lemma, denoted by 
“mpinvl”. In the ComEVM, the ConEVM was carried out 
at the first modification and from the second modification 
the ModEVM was carried out, where the pseu-
do-inverse R in (12) was calculated by “mpinvl”. From 
the figure, the ConEVM with mpinvl provides a better 
performance compared with the other EVMs, except for 
the ComEVM. However, the average of the execution 
time of the ConEVM with mpinvl is longer than the one 
of the ModEVM with mpinvl (see Table 1). 

 

 

Figure 3. The performances of the proposed algorithm and 
the conventional methods (l = 1). 
 
On the other hand, the ComEVM with mpinvl is carried 
out with a little bit longer execution time than the Mod-
EVM with mpinvl but the performance of the ComEVM 
with mpinvl is better than the other EVMs. From these 
results, we recommend to use the ComEVM with mpinvl 
to achieve the BD in the case of l = 1. 

Figure 4 shows the results obtained by the EVMs in 
the case of l = 2. From Figure 4, one can see that the 
ModEVMs with mpinvl provides better performances 
than the other EVMs. Therefore we recommend to use 
the ModEVM with mpinvl to achieve the BD in the case 
of l = 2. 

Table 1 shows the average of the execution times for 
the proposed method and the conventional EVM, using a 
personal computer (Windows machine) with 3.33 GHz  
processor and 3 GB main memories. From the Table 1, 
one can see that the execution time of the ModEVM with 
mpinvl is the fastest compared with other EVMs. The 
reasons are that the ModEVM is carried out without cal-
culating the eigenvectors of iBR

~~†  in (12) and the 

mpinvl has a property written in [13]. 
 
6. Conclusions 

In this paper, by modifying the EVM, we have proposed 
an algorithm which can achieve the BD without calcu-
lating eigenvectors. Moreover, a combination of the  
modified EVM and the conventional EVM has been 
proposed. It can be seen that the combined EVM pro-
vides a better performance than the other EVMs in the 
case of l = 1, and the ModEVA with mpinvl provides a 
better performance than the other EVMs in the case of l 
= 2, but the average of execution time of the combined 
EVM is a little bit longer than the modified EVM. Al-
though there exists such a trade-off, we conclude that our 
proposed EVM is more useful for solving the BD prob-
lem, because we consider that the performance accuracy 
is most important for achieving the BD. 
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Table 1. Comparison of the averages of the execution times. 

Methods 
times [sec] 

(l = 1) 
times [sec]

(l = 2) 
The ModEVM with “pinv” 0.1429 0.1205 
The ModEVM with “mpinvl” 0.1353 0.1168 
The ModEVM with “mpinvl” 0.1492 0.1218 
The ConEVM with “mpinvl” 0.1380 0.1179 
The ComEVM with “mpinv” 0.1362 0.1175 

 
 

 
Figure 4. The performances of the proposed algorithm and 
the conventional methods (l = 2). 
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Appendix 
 
The relationship between (13) and the SEM 
The matrices R

~
and iB

~
can be expressed as 

HΣHR
~~~~ H , HΛHB

~~~~
i

H
i            (28) 

where Σ
~

is a block-diagonal matrix which is denoted as 

 1Σ : block -diag Σ , ,Σ ,n   2 2Σ : diag , , , ,
i is s    i 

=1,n, iΛ
~

is a block-diagonal matrix which is represented 

as iΛ
~

:= block-  1diag Λ , ,Λi in , 

 2 2
Λ : diag , ( 1) , (0) , ,ij ij j ij jg g       (29) 

j = 1,n. Then, from (5) and (28), iii wBd ~~~
 can be ex-

pressed as 

.~~~~~~
ii

H
iii gΛHwBd              (30) 

It can be seen from (29) that the elements of ii gΛ ~~
are  

   2
,ij ij jg k g k  k = –∞,∞. Here，we define the fol-

lowing equation: 

     2

2
.

j

j
ij ij ij

s

f k g k g k



          (31) 

This can be used for the SEM with respect to gij(k), 
using the 4th order cumulant. [7] Substituting (31) into 
(30), we obtain the following equation: 

,
~~~~

i
H

i fΣHd                 (32) 

where

     1 2 1 0 1
T TT T T

i i i in ij ij ijf f , f , , f , f , f , f , .       
     

Moreover, substituting (28) and (32) into (13), then (13) 
can be expressed as 

 †
ΣH H

i iw H ΣH H f ,               (33) 

where i is assumed to be 1. (33) is the first step of the 

SEM with respect to iw~ [8]．In the SEM, the second step, 

that is, the normalization step is implemented using (14). 
Therefore, (13) and (14) are nothing but the iterative 
algorithm of the SEM. This completes the proof. 
 

 


