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ABSTRACT 

This paper demonstrates the approximate ana- 
lytical solution to a non-linear singular two-point 
boundary-value problem which describes oxy- 
gen diffusion in a planar cell. The model is based 
on diffusion equation containing a non-linear 
term related to Michaelis-Menten kinetics of en- 
zymatic reaction. Approximate analytical expres- 
sion of concentration of oxygen is derived using 
new Homotopy perturbation method for various 
boundary conditions. The validity of the obtained 
solutions is verified by the numerical results. 
 
Keywords: Oxygen Diffusion; Michaelis-Menten; 
Non-Linear Differential Equations; New Homotopy 
Perturbation Method; Numerical Simulation 

1. INTRODUCTION 

Pharmacological and physiological experiments are be- 
ing increasingly performed on thin vital tissue prepara- 
tions known as slices. Oxygen diffusion for spherical 
cells in tissue preparations with Michaelis-Menten kinet- 
ics is developed by Bassom [1]. Rashevsky [2] modeled 
the kinetics for oxygen uptake by piecewise linear func- 
tions. Lin [3] argued that this supposed Michaelis-Men- 
ten [4] kinetics form would be a far more appropriate 
model. Lin’s [3] results were recomputed by McElwain 
[5]. Hiltmann et al. [6] proved that this Michaelis-Men- 
ten model for spherical cells possesses exactly one solu- 
tion. This unique solution can only be precisely deter- 
mined by recourse to numerical procedures, but useful 
lower and upper bounds on this true solution were given 
by Anderson et al. [7] and these were improved further by 
sharp polynomial approximations derived by Asaithambi 

et al. [8,9]. 
Finally Bassom et al. [1] mention that modern experi- 

ments in both biology and medicine use tissue slices to 
simulate hypoxia, that is a situation in which the tissue 
exhibits low oxygen consumption. Bassom et al. [1] con- 
sider a Michaelis-Menten uptake in a tissue slice and to 
provide both theoretical (limiting cases) and numerical 
analyses of the resulting equations. The purpose of this 
paper is to derive the approximate analytical expressions 
of concentration of oxygen for all values of the dimen- 
sionless parameters using new Homotopy perturbation 
method. 

2. MATHEMATICAL FORMULATION OF 
THE PROBLEM 

It is convenient to begin by considering a tissue slice 
within a Cartesian coordinate system which is aligned so 
that the slice in the Y Z  plane with the X-axis normal 
to the slice (Figure 1). For simplicity, the slice is as- 
sumed of infinite extent in the  and Y Z  directions so  

 

 

Figure 1. The geometry of the tissue slice and co-ordinate sys- 
tem. 
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that edges effects need not be considered. The slice is 
also taken to lie with in ,so that the sur- L X L  
rounding oxygen bath lies above the slice where X L  
and below it with X L   v X. If  denote the oxy- 
gen concentration in the tissue then, by Fick’s law of 
diffusion, the uptake equation for the steady state is  

 
2
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where  is the oxygen consumption rate which is 
non linear term in oxygen concentration. D is the con- 
stant diffusion coefficient for the tissue. 

 q X

3. ANALYTICAL EXPRESSION OF 
CONCENTRATION OF OXYGEN  
USING NEW HOMOGOPY  
PERTURBATION METHOD 

Linear and non-linear phenomena are of fundamental 
importance in various fields of science and engineering. 
Most models of real life problems are still very difficult 
to solve. Therefore, approximate analytical solutions such 
as Homotopy perturbation method (HPM) [10-23] were 
introduced. This method is the most effective and con- 
venient ones for both linear and non-linear equations. 
Perturbation method is based on assuming a small pa- 
rameter. The majority of non-linear problems, especially 
those having strong non-linearity, have no small parame- 
ters at all and the approximate solutions obtained by the 
perturbation methods, in most cases, are valid only for 
small values of the small parameter. Generally, the per- 
turbation solutions are uniformly valid as long as a sci-
entific system parameter is small. However, we cannot 
rely fully on the approximations, because there is no cri- 
terion on which the small parameter should exists. Thus, 
it is essential to check the validity of the approximations 
numerically and/or experimentally. To overcome these 
difficulties, HPM have been proposed recently. 

Recently, many authors have applied the Homotopy 
perturbation method (HPM) to solve the non-linear bound- 
ary value problem in physics and engineering sciences 
[10-13]. Recently this method is also used to solve some 
of the non-linear problem in physical sciences [14-16]. 
This method is a combination of Homotopy in topology 
and classic perturbation techniques. Ji-Huan He used to 
solve the Lighthill equation [14], the Diffusion equation 
[15] and the Blasius equation [16,17]. The HPM is unique 
in its applicability, accuracy and efficiency. The HPM 
[18-23] uses the imbedding parameter p as a small pa- 
rameter, and only a few iterations are needed to search 
for an asymptotic solution. The law of mass action of 
oxygen uptake leads to the following non-linear equations 
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with L X L   , 1 D   and β denote the Micha- 
elis-Menten constant. The corresponding boundary con- 
dition is 

    bathv L v L c               (3) 

This boundary conditions reflect the fact that at the 
edges of the tissue the oxygen concentration matches that 
within the solution surrounding the preparation. By in- 
troducing the following dimensionless parameters 

    2,  ,  ,  bath bath bathu x v X c x X L L c k c       

(4) 
Eq.2 and the boundary conditions Eq.3 can be repre- 

sented in the dimensionless form as follows: 
Case (1) 
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with the boundary conditions 

   1 1 1u u                 (6) 

The basic concept of general Homotopy perturbation 
method is given in Appendix A. This problem is solved 
using new approach in Homotopy perturbation method 
(Appendix B). Using new Homotopy perturbation me- 
thod [24], the approximate analytical solution of Eq.5 for 
the boundary condition Eq.6 is 
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where the constant 
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Case (2) 
Here we consider the mass balance equation and the 

boundary conditions as follows: 
2
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Now the boundary condition becomes 

   0 ,   0y y  0              (10) 

where 0 1.   The approximate analytical solution 
of Eqs.9 and 10 using new Homotopy perturbation 
method (Appendix C) [24] is 
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given by Eq.16, where m is defined by Eq.8. where 

n
k







               (12) 4. NUMERICAL SIMULATION 

In order to find the accuracy of our analytical method, 
the non-linear ordinary differential Eqs.5, 6, 9, 10, 13 
and 14 are also solved by numerical methods. The func- 
tion bvp4c in Matlab/Scilab software which is a function 
of solving non-linear boundary value problems for ordi- 
nary differential equations are used to solve these equa- 
tions numerically. Our analytical results are compared 
with numerical simulations in Figures 2-11 and it gives a 
satisfactory agreement. The Matlab/Scilab program is also 
given in Appendix E. 

Case (3) 
Now the non-linear boundary value problem is in the 

following form: 
2
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The boundary conditions is 

   0 0, 1y y  1             (14) 

The approximate analytical solution of Eqs.13 and 14 
is (Appendix D) 
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5. RESULTS AND DISCUSSIONS 

Figures 2 and 3 are the dimensionless concentration 
u(x) versus the dimensionless distance x. From Figure 2, 
it is inferred that the dimensionless concentration u(x) 
increases, when the dimensionless parameter k increases. 
From Figure 3, it is clear that, the dimensionless con- 
centration u(x) decreases when the dimensionless pa- 
rameter γ increases. The corresponding effectiveness factor for this case is  

 
Diagarms for case (1) 

 

Figure 2. Dimensionless concentration of oxygen u(x) versus the dimensionless distance x for 
various values of the dimensionless reaction parameters γ and k, when (a) γ = 0.1 and k = 0.1, 0.5, 
1, 2, 4 and 8; (b) γ = 0.5 and k = 0.1, 0.5, 1, 2, 4 and 8; (c) γ = 1 and k = 0.1, 0.5, 1, 2, 4 and 8. 
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Figure 3. Dimensionless concentration of oxygen u(x) versus the di- 
mensionless distance x for various values of the dimensionless reaction 
parameters γ and k, when k = 0.5 and γ = 0.1, 0.5, 1, 2, 4 and 8. 

 
Diagarms for case (2) 

 

Figure 4. Dimensionless concentration of oxygen y(x) versus the dimensionless distance x for various values of the di- 
mensionless reaction parameters α, γ and k, when (a) α = 0.1, γ = 0.1 and k = 0.1, 0.5, 1, 2, 4 and 8; (b) α = 0.1, γ = 0.5 
and k = 0.1, 0.5, 1, 2, 4 and 8; (c) α = 0.1, γ = 1 and k = 0.1, 0.5, 1, 2, 4 and 8. 
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Figure 5. Dimensionless concentration of oxygen y(x) versus the dimensionless distance x for various val- 
ues of the dimensionless reaction parameters α, γ and k, when (a) α = 0.5, γ = 0.1 and k = 0.1, 0.5, 1, 2, 4 
and 8; (b) α = 0.5, γ = 0.5 and k = 0.1, 0.5, 1, 2, 4 and 8; (c) α = 0.5, γ = 1 and k = 0.1, 0.5, 1, 2, 4 and 8. 

 

 

Figure 6. Dimensionless concentration of oxygen y(x) versus the dimensionless distance x for various val- 
ues of the dimensionless reaction parameters α, γ and k, when (a) α = 0.75, γ = 0.1 and k = 0.1, 0.5, 1, 2, 4 
and 8; (b) α = 0.75, γ = 0.5 and k = 0.1, 0.5, 1, 2, 4 and 8; (c) α = 0.75, γ = 1 and k = 0.1, 0.5, 1, 2, 4 and 8. 
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Figure 7. Dimensionless concentration of oxygen y(x) versus the dimensionless distance x for various val- 
ues of the dimensionless reaction parameters α, γ and k, when (a) α = 0.1, k = 1 and γ = 0.1, 0.5, 1, 2, 4 and 
8; (b) α = 0.1, k = 2 and γ = 0.1, 0.5, 1, 2, 4 and 8; (c) α = 0.1, k = 4 and γ = 0.1, 0.5, 1, 2, 4 and 8. 

 

 

Figure 8. Dimensionless concentration of oxygen y(x) versus the dimensionless distance x for various val- 
ues of the dimensionless reaction parameters α, γ and k, when (a) α = 0.3, k = 2 and γ = 0.1, 0.5, 1, 2, 4 and 
8; (b) α = 0.3, k = 4 and γ = 0.1, 0.5, 1, 2, 4 and 8; (c) α = 0.3, k = 8 and γ = 0.1, 0.5, 1, 2, 4 and 8. 
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Figure 9. Dimensionless concentration of oxygen y(x) versus the dimensionless distance x for various values of the dimen- 
sionless reaction parameters α, γ and k, when (a) k = 0.5, γ = 5 and α = 0.1, 0.3, 0.5, 0.7 and 0.9; (b) k = 0.5, γ = 1 and α = 
0.1, 0.3, 0.5, 0.7 and 0.9; (c) k = 1, γ = 0.5 and α = 0.1, 0.3, 0.5, 0.7 and 0.9; (d) k = 1, γ = 1 and α= 0.1, 0.3, 0.5, 0.7 and 0.9. 

 
Diagarms for case (3) 

 

Figure 10. Dimensionless concentration of oxygen y(x) versus the dimensionless distance x for various values of the di- 
mensionless reaction parameters γ and k, when (a) γ = 0.1 and k = 0.1, 0.5, 1, 2, 4 and 8; (b) γ = 0.5 and k = 0.1, 0.5, 1, 2, 
4 and 8; (c) γ = 1 and k = 0.1, 0.5, 1, 2, 4 and 8. 
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Figures 4-9 are the dimensionless concentrations y(x) 

versus the dimensionless distance x From Figures 4-6, it 
is noted that the dimensionless concentration y(x) de- 
creases, when dimensionless parameter k increases. From 
these figures, it is evident that when α increases, the di- 
mensionless concentrations y(x) also increases. From Fig- 
ures 7 and 8, we infer that the dimensionless concentra- 
tions y(x) increases, when the dimensionless parameter γ 
increases. From these figures, it is noted that when α 

increases, the dimensionless concentrations y(x) also in- 
creases. From Figure 9, we infer that, the dimensionless 
concentrations y(x) increases, when the dimensionless 
parameter α increases. 

Figures 10 and 11 are the dimensionless concentra- 
tions y(x) versus, the dimensionless distance x From 
Figure 10, it is noted that the dimensionless concentra- 
tions y(x) increases, when the dimensionless parameter k 
increases and γ decreases. Figure 12 is the effectiveness  

 

            

Figure 11. Dimensionless concentration of oxygen y(x) versus the dimensionless distance x for various 
values of the dimensionless reaction parameters γ and k, when (a) k = 0.5 and γ = 0.1, 0.5, 1, 2, 4 and 8; 
(b) k = 1 and γ = 0.1, 0.3, 0.5, 0.7, 1 and 1.5. 

 
Diagram for effectiveness factors for case (3) 

 

Figure 12. The effectiveness factor η versus the dimensionless parameter γ can be calculated using the 
Eq. 16, when k = 0.1, 0.5, 1, 2, 4 and 8. 
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factors versus the dimensionless parameter γ. From this 
figure, it is evident that the effectiveness factors de- 
creases when the dimensionless parameter k increases 
and it reaches steady state value when γ = 200. 

6. CONCLUSION 

In this article, we have been interested in the analysis 
of non-linear reaction-diffusion equations with Micha- 
elis-Menten kinetics. The non-linear boundary value prob- 
lem with Michaelis-Menten kinetics has been solved ana- 
lytically and numerically. Analytical expressions of the 
concentrations can be derived by using the new Homo- 
topy perturbation method (NHPM). The primary result of 
this work is simple and approximate expressions of the 
concentrations for all values of the dimensionless pa- 
rameters k, γ and α. This method is extremely simple and 
it is also a promising method to solve other nonlinear 
equations. 
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APPENDIX A 

Basic concept of the Homotopy perturbation method 
[10-24] 

To explain this method, let us consider the following 
function: 

    0,   oD u f r r            (A1) 

with the boundary conditions of 
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u
B u
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where o  is a general differential operator, o  is a 
boundary operator, 

D B
 f r

D

 is a known analytical func-
tion and  is the boundary of the domain . In gen-
eral, the operator o  can be divided into a linear part 

 and a non-linear part . Eq.A1 can therefore be 
written as 
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By the Homotopy technique, we construct a Homo- 
topy    , : 0,1v r p    that satisfies 
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where  0,  1p  is an embedding parameter, and 0  
is an initial approximation of Eq.A1 that satisfies the 
boundary conditions. From Eqs.A4 and A5, we have 

u

     0,0 0H v L v L u           (A6) 

     ,1 0oH v D v f r           (A7) 

When p = 0, Eqs.A4 and A5 become linear equations. 
When p = 1, they become non-linear equations. The 
process of changing p from zero to unity is that of 

 to . We first use the 
embedding parameter 
   0 0L v L u      0oD v f r 

p  as a “small parameter” and 
assume that the solutions of Eqs.A4 and A5 can be writ- 
ten as a power series in p : 

2
0 1 2v v pv p v           (A8) 

Setting  results in the approximate solution of 
Eq.A1 is 

1p 
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This is the basic idea of the HPM. 

APPENDIX B 

Solution of non-linear Eqs.5 and 6 using NHPM 
In this Appendix, we indicate how Eq.7 in this paper 

is derived. To find the solution of Eqs.5 and 6 for case 
(1), we construct the new Homotopy as follows [24]: 
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The analytical solution of Eq.B2 is 
2
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Substituting Eqs.B3 into Eq.B2 we get 
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(B4) 

Comparing the coefficients of like powers of p in 
Eq.B4 we get 
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u u
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            (B5) 
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2 2
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dd
:

1 1d d
d d

0
d d

u uu u
p

k kx x
u u

u k u
x x

 



  
 

   
     (B.6) 

The initial approximations is as follows  

   0 01 1,   1 1u u                (B7) 

   1 1,   1 0,   1, 2,3i iu u i            (B8) 

Solving the Eqs.B5 and B6 and using the boundary 
conditions Eqs.B7 and B8, we obtain the following re- 
sults: 

  0 2 coshu x a mx              (B9) 

 
     

   

1

3
2 3

2
2

4 cosh 2
2 sinh 4 cosh
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2 cosh 2
2 sinh

3

u x

a m
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a mx
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(B10) 
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where  and  are defined in the text Eq.8. Accord- 
ing to the HPM, we can conclude that 

m a

  0
1

lim
p

u u X u


  1u            (B11) 

After putting the Eqs.B9 and B10 into an Eq.B11, we 
obtain the solutions in the text Eq.7. 

APPENDIX C 

Solution of non-linear Eqs.9 and 10 using NHPM 
[24] 

In this Appendix, we indicate how Eq.11 in this paper 
is derived. To find the solution of Eqs.9 and 10 for case 
(2), we construct the new Homotopy as follows [24]: 

   
2 2 2

2 2 2

d d d
1   

0d d d

y y y y
p p y k

y kx x x

 
   

          
0y


 

(C1) 
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d d d
1

d d d

y y y y
p p y k

kx x x

 


  
        

0y




 (C2) 

The analytical solution of Eq.C2 is 
2

0 1 2y y py p y             (C3) 

Substituting Eqs.C3 into Eq.C2, we get 
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(C4) 

Comparing the coefficients of like powers of  in 
Eq.C4, we get 

p
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d
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d
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0            (C5) 
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y k y
x x
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       (C6) 

The initial approximations is as follows  

   0 00 , 0 0y y               (C7) 

(0) 0, (0) 0,   1, 2,3,i iy y i           (C8) 

Solving the Eqs.C5 and C6 and using the boundary 
conditions Eqs.C7 and C8, we obtain the following re- 
sults: 

  0 cosh y x  nx                (C9) 
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3 2
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(C10) 

where n is defined in the text Eq.12. According to the 
HPM, we can conclude that 

  0
1

lim
p

y y x y
 1y                (C11) 

After putting the Eqs.C9 and C10 into an Eq.C11, we 
obtain the solutions in the text Eq.11. 

APPENDIX D 

Solution of non-linear Eqs.13 and 14 using NHPM 
[24] 

In this Appendix, we indicate how Eq.15 in this paper 
is derived. To find the solution of Eqs.13 and 14 for case 
(3), we construct the new Homotopy as follows [24]: 
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 (D2) 

The analytical solution of Eq.D2 is 
2

0 1 2y y py p y               (D3) 

Substituting Eqs.D3 into D2 we get 
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(D4) 
Comparing the coefficients of like powers of p in 

Eq.D4, we get 
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x = linspace(-1,1); 2
0 0 0

2

d
:

d

y y
p

kx




 


0             (D5) t = linspace(0,100); 
sol = pdepe(m,@pdex4pde,@pdex4ic,@pdex4bc,x,t); 
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dd
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1 1d d
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y yy y
p

k kx x

y y
y k y

x x

 



  
 

  

u1 = sol(:,:,1); 
figure 



         (D6) plot(x,u1(end,:)) 
title('Solution at t = 2') 
xlabel('Distance x') 

The initial approximation is as follows:  ylabel('u1 (x,2)') 
% --------------------------------------------------------------    0 00 0, 1 1y y                (D7) 
function [c,f,s] = pdex4pde(x,t,u,DuDx) 

   0 0, 1 0,   1, 2,3,  i iy y i           (D8) c=1; 
g=1; 

Solving the Eqs.D5 and D6 and using the boundary 
conditions Eqs.D7 and D8, we obtain the following re- 
sults: 

k=4;  
f = 1.* DuDx;  
F1 =-g*u(1)/(u(1)+k); 
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cosh
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mx
y x
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              (D9) 

s =F1;  
% -------------------------------------------------------------- 
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tanhcosh 2 3 cosh

2 cosh6cosh

sinh3 cosh 2
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function u0 = pdex4ic(x) 

mx

m




1y

  

(D10) 

u0 = 1;  
% -------------------------------------------------------------- 
function [pl,ql,pr,qr] = pdex4bc(xl,ul,xr,ur,t) 
pl = ul(1)-1;  
ql = 0;  
pr = ur(1)-1;  
qr = 0; 

where m is defined in the text Eq.8. According to the 
HPM, we can conclude that 

APPENDIX F 

Nomenclature   0
1

lim
p

y y x y


             (D11) 
Symbols Meaning 

μ, y Dimensionless concentration of oxygen 

x Dimensionless distance 

γ Diffusion coefficient 

k Maximum reaction rate 

α, m, n, and a Dimensionless parameters 

After putting the Eqs.D9 and D10 into an Eq.D11, we 
obtain the solutions in the text Eq.15. 

APPENDIX E 

Matlab/Scilab program to find the numerical solu- 
tion of non-linear Eqs.5 and 6 

function pdex4 
m = 0; 
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