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ABSTRACT 

By using Schauder’s Fixed Point Theorem, we study the existence of traveling wave fronts for reaction-diffusion sys-
tems with spatio-temporal delays. In our results, we reduce the existence of traveling wave fronts to the existence of an 
admissible pair of upper solution and lower solution which are much easier to construct in practice. 
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1. Introduction 

Traveling wave solutions, usually characterized as solu-
tions invariant with respect to translation in space, have 
attracted much attention due to their significant nature in 
science and engineering [1-18]. In which, the theory of 
wave fronts of reaction diffusion systems is an important 
part, and its history traces back to the so-called Fisher- 
KPP equation, the celebrated mathematical works by P. 
A. Fisher and by Kolmogorov, Petrovskii and Piscunov. 
Since then, lots of papers are devoted to the study of 
traveling wave solutions of reaction diffusion systems, 
and various research methods come forth. 

The present paper is mainly devoted to tackle the ex-
istence of traveling wave front solutions of the following 
reaction diffusion system with spatial-temporal delays 
and with some zero-diffusive coefficients,  
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And the kernels used frequently in the reference are as 
follows  

1)      , ;jg t x t x    

2)      , ;j jg t x t p x  

3)      , ;j jg t x t x      

4)      , ;j jg t x q t x  

5)      , .j j jg t x t p x    

The remaining part of this paper is organized as fol-
lows. In the next section, some preliminaries are given. 
In Section 3, we state and prove the main result of this 
paper. 

2. Preliminaries 

A traveling wave solution of (1.1) is a special translation 
invariant solution of the form    , ,U t x x ct    
where  2 , nC R R  is the profile of the wave that 
propagates through the one-dimensional spatial domain 
at a constant velocity c > 0. If  is monotone and satis-  
fies the asymptotic boundary conditions  lim

s
s U 


   

and  lim ,
s

s U 


     ,U t x x   ct  is called a 
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wave front of (1.1), where    T

1 , , ,nU u u   
,U U  T

1 , , n
nU u u     , and U−, U+ are equi-

libria of system (1.1). If Y < Z, we also denote  

      , : , : ,nBC Y Z C Y t Z t         

Let   be the supremum norm in n and    , ; nC a b  , 
and 
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Substituting  into (1.1) and denot-
ing still by t the traveling coordinate 

  ,U t x x ct   
x ct , we obtain 

the corresponding wave equations  
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Without loss of generality, we assume  
 T
0, ,0 ,U   0    the as-

ymptotic boundary conditions are replaced by  
 T
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   lim 0, lim .
t t

t t
 

    K        (2.3) 

In the following, we list the basic assumptions of this 
paper: 

(A1) .     , , , , 0F F 0 0 K K
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such that for all  , ,j jY Z  0 ,K 1, , ,j m  
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where t  and  satisfy  , , nC    
ˆ ˆ  0   K , here and in the sequel,  denote the 
constant vector function on , taking the value  
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Û
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T
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At the end of this section, we give the following two 
useful lemmas.  
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and the derivative function  x t  is uniformly continu-
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3. Main Theorem 

First, we introduce the definition an upper-lower solution 
  of wave Equations (2.1)

Definition 3.1. A continuous function  1, , n     
n   is called an upper solution of (2.1), if  i t  

and  t  (if 0d  ) exi i ist almost everyw
e essentially bounded, and 

here and they 
ar i  satisfies almost 
whe    

every-
re on
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 0,BC KBy Proposition 3.3, we know ,  
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Therymptotic boundary condition (2.3). 
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spatio-temporal delay rav-
el ave fronts by eo-
rem. In our results, we reduce the existence of traveling
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ct in practice. 
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