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ABSTRACT 

We consider a problem of estimating an unknown location parameter from two biased samples. The biases and scale 
parameters of the samples are not known as well. A class of non-linear estimators is suggested and studied based on the 
fuzzy set ideas. The new estimators are compared to the traditional statistical estimators by analyzing the asymptotical 
bias and carrying out Monte Carlo simulations. 
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1. Introduction 

The problem is to estimate an unknown scalar parameter 
  from two different independent samples of size n1 and 
n2 
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where jb  and j  are the bias and scale parameter of 
the j-th sample respectively, j = 1, 2, and i , i  are 
zero mean independent random noises. 

A novelty in our set up is that the biases jb , j = 1, 2 
are assumed to be unknown which makes   unidenti- 
fiable from the classical statistics viewpoint, e.g. [1]. 
Thus, traditional formulations of best estimation are not 
applicable in this situation which nevertheless often 
arises in applications. An important example is an as- 
similation problem in physical oceanography and mete- 
orology where information on a certain parameter comes 
from both observations and a circulation model [2,3]. 
Typically such a model is biased for a variety reasons: 
uncertainties in a forcing and dissipation, boundary con- 
ditions, model parameters, etc. The bias in observations 
is mostly due to inaccurate measurements and time/space 
averaging intrinsically present in any measuring proce- 
dure. That type of bias sometimes can be excluded using 
a learning samples [4,5], however it is often difficult to 
justify the key assumption that learning and control sam- 
ples are taken from the same ensemble. 

One can simply ignore the biases and apply traditional 

least square or maximum likelihood methods which 
would result in a biased estimate of  . As an alternative, 
we suggest to use fuzzy set (possibility theory) ideas [6,7] 
to construct non-linear estimators for   diminishing the 
bias comparing to the aforementioned approach. With 
biased observations the focus is naturally shifted from 
the variance of an estimator, which can be arbitrarily 
reduced by increasing a sample size, to its asymptotical 
bias. More exactly, in the traditional representation of the 
squared standard error (SE) 

    2
2
ˆ

ˆ ˆVarE B


      

our primary point of interest is the first term. Thus, we 
start with analyzing the asymptotical bias of the sug- 
gested estimators and then compare it to that of estima- 
tors traditionally used in statistics such as weighted mean 
or weighted median. Then, SE is addressed for small 
samples via Monte Carlo simulations when the second 
term is not negligible. 

Worthy noting that in the simplest situation with unbi- 
ased observations 0jb   and known  ’s the unbiased 
estimator with the smallest SE (least square estimate) is 
given by the weighted mean, e.g. [8] 
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               (2) 

where jx  is the sample mean of the j-th sample. More- 
over, with normal noises it is the maximum likelihood 
estimator [1]. 
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In the general formulation (1) with biased observations 
a choice of an appropriate measure of the estimation skill 
is a challenge because the bias ˆB  depends on unknown 
(nuisance) parameters b1, b2 which never can be identi-
fied from the available observations. We construct such a 
measure as follows. 

For large samples one can efficiently estimate 2
j , 

 and the bias difference 1 2  from the 
observations (1) by subtracting the second sample from 
the first one. Introduce 

1,2j  b b b  

1b

b
 


                   (3) 

Assume that we deal with a class of estimators ̂  for 
which the asymptotical bias  exists and 
thereby is a function of all the involved parameters 

 1 2,n n 

 2 2
1 2; , ,B b    (sub ̂  is dropped as a matter of 

breivity). 
Unlike 2 2

1 2, ,b    one cannot estimate    all un-
der the given observations. In such a situation one of the 
ways to order estimators according to their biases is to 
accept that  1ˆ

at

  is better than  ˆ 2  (under the identifi-
able parameters being fixed) if 

       1 2πB B π               (4) 

for a certain class of densities  π   where 
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and  is the asymptotical bias of  kB  ˆ k . 
In simple words under arbitrary distribution of   the 

absolute value of the first bias is not greater than that of 
the second one. 

Our first finding and pretty surprising one is that the 
best estimator in sense (4) among a wide class including 
traditional statistical and fuzzy estimators is the simple 
arithmetic mean 

1 2
0̂ 2

  
                 (5) 

where j  is any consistent estimator of the center of xi 
(i.e. j jb    as ) say the sample mean or 
median. 

jn 

Does it mean that (5) is the best way to deal with bi-
ased observations? Of course it is not because after all a 
real matter of concern is SE which can be essentially less 
for the weighted mean (2) than for (5) under small 
enough biases jb . 

The next important result of this study is that the sug-
gested fuzzy estimators are better than weighted estima-
tors of type (2) in sense (4). Finally, to decide which es-
timator should be prefered in dealing with small samples 
we carry out Monte Carlo simulations and use SE aver-
aged over the nuisance parameters as a measure of the 

estimation skill 

   2

,

ˆ ˆSE E
 

               (6) 

where the angle brackets mean averaging over parame- 
ters   defined in (3) and the ratio 

1

1 2




 



                 (7) 

characterizing the difference in the noise level of two 
sources. The reason for including the averaging over 
identifiable parameter   is that we are interested in 
small samples  11 2  for which it is not possible 
to efficiently estimate even identifiable parameters. 

, 0n n

We then investigate dependence of (6) on the bias 
level ∆b and noise scale 1 2     for different esti- 
mators and suggest recommendations for sensible choice 
among them. In general, fuzzy estimators seem to be 
preferable for high values of ∆b and   in most of sce- 
narios determined by different noise distribution (normal, 
Cauchy), non-probabilistic noise (logistic chaos), and by 
different estimates of the center (mean or median). 

2. Estimators and Their Asymptotical Bias 

First recall that a fuzzy set is a pair  , A P  where A is a 
set and  : 0,P A 1  is called the membership function, 
the value  P x  characterizes the degree of membership 
x in A. The set   > 0P xx A  is called the support of 
 ,A P . For our purposes it is enough to consider real 
fuzzy sets, A R . 

Regarding to the formulation (1) we consider A as a 
range of the observed random variable X. Let us intro-
duce a class of fuzzy estimators similar to estimators 
based on the triangular membership function (possibility 
distribution) discussed in [9]. 

Let  F x  be a cumulative distribution function, 
symmetric and increasing, i.e. ,      1F x F x  

 F x 0 . 
Introduce the membership functions generated by each 

of two samples as follows 
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and j , js  are consistent estimators of the center and 
spread of the j-th sample respectively, . In other 
words we assume 

1,2j 

,j j jb s j      

with probability 1 as . jn 
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mean  0p   and the weighted estimator with 1p  . We address the following estimator of   henceforth 
called the fuzzy estimator To analyze properties of ˆ

f , let us fix the bias differ-
ence 1 2b b b   , the observation error level 1 2     
and introduce dimensionless parameters 1b b   , 

1   , a b   . Then the bias of (9) as  

1 2n n n    goes to 

    
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          (8) 

where O is the set of the Pareto optimal solutions and 
 is the minimum of a and b. Pareto set is defined 

by 
a b

x O  if and only if 
    

 
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p p p pp
B b
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 

   
 

  (10) 

The asymptotical bias for (8) is given in the next 
statement. 

   ' '
1 2 < 0P x P x  

Proposition 1 In other words, a Pareto optimal solution (Pareto op-
timal) is one in which any improvement of one objective 
function in the two objective optimization problem 

Let 1 2n n n  
ˆ

f

, then for any fixed a the bias 
ˆ

fB E    goes to 

  fB b                 (11)    1 2max, maxP x P x   

can be achieved only at the expense of another, e.g. [10]. where 
A key point in the base of (8) is that we use a standard 

fuzzy logic aggregation procedure, but integration is car- 
ried out only over the set of x maximizing both member- 
ships of x. Such an approach goes far beyond linear esti- 
mators traditionally used in statistics. However, the in- 
troduced class of estimators allows their analytical study 
at least regarding to the asymptotical bias. 
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Together with (8) we consider the class of weighted 
estimators 

Proof 
 1

ˆ 1p p pw w With no loss of generality assume 1 2<  , then the 
Pareto optimal set is simply an interval  1 2,O    
due to the condition   > 0F x

1P x
. Since the symmetry the 

only intersection point of  and  in this 
interval is given by 

  2P x

2                (9) 

where j  is a sample mean or other consistent estima- 
tor of the center of j-th sample. 

The weights in (9) are given by 
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and our primary focus is on the minimum least square 
estimator corresponding to , simple arithmetic  2p  and after an appropriate variable change (8) becomes 
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Let us change u to −u in the second integrals on the top and at the bottom. Then using the symmetry of  F u  get 
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Proceeding to the limit , accounting for the consistency of estimates 1 2,n n  ,j js  and symmetry of  F x  
obtain 

           
       

1 2 1 2

2 1

1 2 1 2

2 1

2 2 2 1 1 1

2 1

d d

d d

b b

b b
f b b

b b

b u F u u b u F u
B

F u u F u u

   

 
   

 

   

 

   

 
   

 

  




 
 

u
 

  



L. I. PITERBARG 1272 

 
Notice that in the considered case . Using di-

mensionless variables 
0b 

1b b   , 1   ,  
a b    after some algebra arrive at (11). 

Notice that 

   1x x   1            (12) 

Proposition 2 
If 0 < < 1 2x , then 

  1 2x                (13) 

Proof 
Since  inequality (13) is equivalent to   0p x 

      2 1 2 1ap x q x ap x q x       

The expression on the right hand side can be written as 
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then the inequality takes form  and is 
equivalent to 

   > 1S x S x
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1 2 2 1

d
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x


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 (14) 

Let us break down the integral on LHS into integrals 
from −a to 0 and from 0 to  respectively, 
change v to −v in the second integral, and move it to RHS. 
Next, make the same variable change on the RHS of (14) 
and move it to LHS. The goal is to have all the integrals 
over positive intervals. The result is 

1 2a 
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1 2

0 1 2

0

d d
2 2

> d
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Obviously    2 2v a x v a x     and  
     2 1 2v a x v a x       whenever 0 1x 2   

and hence the last inequality is true since  F u  is in-
creasing. The proof is over. 

Further we restrict ourselves by distributions which 
decay fast enough as  u 

  C
F u

u
                 (15) 

From (15) it follows that    0lim 0x q x p x   and 
since  we get    1 1p q  0

   0 0, 1  1             (16) 

Next we consider the class of all estimators for which 
the asymptotical bias is expressible in form 

  B b       

 x  satisfies 

            (17) 

where 
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Notice that both the weighted mean (9) and e fuzzy 
estimator (8) are in this class. For the former it is easy to 
ch

th

eck and for the latter the statement follows from (12, 
13, 16). 

Now we intend to order estimators from this class ac-
cording to their asymptotical bias. Roughly speaking for 
fixed a  and   one estimator is better than another if 
the asymptotical bias of the former averaged over   is 
less than that of the latter. Rigorously, for two estimator 
with biases  k kB B   given by (17)  1,2k  the 
first one is better than the second one if (3) holds true for 
any positive fu

 

nction  π x  satisfying two conditions 

     π d ,  π 0.5 π 0.5x x x x x



        (18) 

Value 0.5   
of bala

ition 3 

is singled out since it corresp
the case nced biases 

onds to 

1 2 0b b  . 
Propos  
If for some 0 1 2    inequality  1 2     

he second one is estimato true, then the first r is better than t

   1 2π πB    
Proof 
By direct computations with usin

ob

B             (19) 

g symmetry of π  
tain for 0.5z   

   1d
π d π d < 0

d

z
x x x x

 
  

z
x z

z 
  

Hence    1 2     implies (19) because  j   
0.5. 

ising result is rA surpr eadily derived from Proposition 
3. 

Corollary 
The trivial estimator 

1 2
0̂ 2

 



               (20) 

is the best estimator in the class (17
This statement follows from the fact that for 

) 
(20) 

   0 1 2x x   . 
The problem with (20) is that for small biases it is es-

han ˆsentially less efficient t 2  and 1̂ . Let us compare 
the efficiency of (20) to that of 2̂  in the case of equal 
small biases 1 2b b   . Introduce ratio of MSEs 
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For any large 

                 (21) 

whenever 

> 0C  

R C  

1 1  
1 1 1 1

 or 
2 1 2 2 1

C C

C C
 
 


    (22) 

and 

2 

    

    

22 22 2 2

222 2

1 4 1

4 1 1

C

C

  


 

   


  


   (23) 

oof 
Let 
Pr

  22 1 4s      and  

    222 21 1t         
2

then (21) becomes 
2

2C  
2

s

t







or 
2

2
2 1

s tC

C
 




               (24) 

Inequality is equivalent to (23) and then 
 turns in 

xample assume C = 2, then (20) holds true if β > 
0.7887 or β < 0.2113. Then for β = 
< 0.2594. 

orth to co

2 0s tC   
(22). (24)

For e
0.1 we have R > 2 if ε 

Thus it is w mpare the suggested fuzzy esti-
mators with 2̂  and 1̂ . For that purpose we need an-
other representation for   appearing in (11) 

     
    
1T x T x

x x
 

          (25) 
1a p x p x 

where 

     2 dT x x a u F u u   
a

a x





Since the denominator in (25) is positiv
following statement gives conditions for for the fuzzy 

r to dominate 

e for all x the 

estimato 1̂ . 
Proposition 5 

   > ,  0,1 2x x x          (26)    

if and only if 

     1T x x  > 0,   0,1 2T x       (27) 

e possibility distribuFor example if th tion is given by 

  1

1
P u

u



              (28) 

which corresponds to    0.5 1 ,  < 0u , then 

     

   

F u u 
(27) is fulfilled. Indeed, for (28) 

2
1 ln 1

1

bx
x x

x x
        

Then for any fixed 

2 1
ln 1 ,

b x 
   

, 1t x b T x T x  

1

a
b

a




 one gets  ,0 0t x    0,1 2x
and 

 
    

1 2
0

2 1 1

b xt

b x bx x b x


 

    
 

which implies (27). 
t always fu e triangle

bership function defined by the cumulative prob-
ability distribution function 

Condition (27) is no lfilled for th  
mem

 
1 if

0.5

0 if

u
q u

qF u

u q

 0    
  

where q is a fixed quantile. Indeed, direct computations 
yield [11]. 

 

Proposition 6 

 

      
  

   
 

 
    

 
   

3 2

2

3 2

2

1 2 3 1 1 2

1 2 1 1

3 1 2

1 1
1

if min 1 ,1 1
3

1 3 2

1

if max 1 ,1 1

1 2 1

if 1 1 1

x x x

x x

x x

x

x x x

x x

x

x

x

x




 





if 1 1 1x 

 

 


 


 

    


  

   

 
   


  



  
  


  

 

where 

   




q a  . 
 be deriIt can ved from that statement that (26) holds 

true if and only if 1 2    while for 1 7 3   the 
opposite relation holds true:  x x   for all 0 1x 2  . 
In the intermediate case 7 3 1   2  the difference 
 x x   changes the sign once in  0,1 2 . If 1   

then two samples are incompatible. 
These conclusions are illustrated in Figure 1 by plot-

ting the difference    d x x x   for the triangular 
membership function (left and middle panel) an r 
membership (28) (right panel 2

d fo
). If 1    then for sure 

7 3   and hence  d 0x   for 1x  t panel). If 
2 3

2  (lef
er    then two options are possible eith  d x  

or 
0

 d x  changes the sign once (cen   tral pane  l). Finally 
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Figure 1. The difference λ(x) − x vs x. 1) Triangle membership, 1 < γ < 2; 2) Triangle membership, 2 < γ < 3; 3) Membership 
given by (28), 0.5 ≤ a ≤ 5. 
 
for membership (2)  for all a. 

However, it can be s [9], that 
 d 0x 

hown 
  p x x                (29) 

  2x x   when 
for all  0,1 2x  thereby the fuzzy triangle estimator is better 

than 2̂  in sense (19). 

0 1 2x  . Then 

  1

1 2
1 , 1 2pG x a    dx

(29) the region  always occupies more 
than a half 

Nex efine another quantitative for 
asy to evaluate, 

un he parame
interest 

t, d characteristic 
comparing asymptotical biases which is e Thus under G

like  πB . First define the space of t ters of . In particular, for  1 x x 
.125 and fo

 , 1 2 3 2,  0 1           

The range for   is founded in [9]. Then introduce 
the diff e of biases for the mentioned estimators de-
fined by 

 the tegral 
on the right  side is equal r  

 in
 hand  to 0



erenc
functions 1  x  and  2 x  respectively 

  1 2,B B B      

and define 

    12 , 0G B       ,

Obviously the area of equals 2 a  hence the first 
estimator can be viewe better than the second one 

he area of exceeds 1. This excess is 
quantified in the next nt. 

Proposition 7  

  
d as 

12G  
 stateme

nd

whenever t

If    1 2x x  , 0 1 2   then x

    1 2

12 1 20
1 1 d 1G x x x       

Indeed, the solution of    1 2<x x      is 
equivalent to     1 2> 2x x    from which the 
st ent readily follows. 

The following proposition gives a rough estimate of 
improving a fuzzy estimator comparing to any weighted 
m

atem

ean (9). Set 

      , ,G B ,f pB        

Corollary 
Let for some fixed a 

    22
2

2 1x x x x    it is ln 2 4 0.1733 . The 
latter follows from 

   1 2

20
d 1 lx x  

rticular, the area of a region in  where the 
bias of the fuzzy estimator (28) is less tha at of 

n 2 4  

In pa 
n 1̂th  is 

greater than 1.125. While the area of a on in regi   
w athere the fuzzy triangle estim or is better than 2̂  is 
greater than 1733. 1.

3. Simulations 

The goal of the performed simulations is to compare the 
efficiency of different estimators under fferent noise 
distributions. 

 di
Now the asymptotical bias is not of primary 

concern, but rather the relative standard error 

   21.5 1

2 0.5 0

1ˆ ˆ d d
2

SE E    
 

    

is addressed under small samples. 
o fuzzy estimators (8), first, deter-

 1) and, second, determined by 
We examine tw

mined by (28) (Fuzzy
  0.5e uP u   (Fuzzy 2) and three weighted estimators 

0̂ , 1̂  and 2̂  given by (9). 
Sample sizes 1 2 10n n   and number of Monte 

Carlo trials M = 100 for each mesh  ,   are kept the 
same for all ex

First, normal noise is tested with 
periments. 

j jx  , i.e. the 
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sample center is estimated by the sample mean (Figure 
2). 

At zero bias (left panel) 2̂  is best as expected, while 
 modest biases (central 

pa
Fuzzy 2 is only slightly worse. For

nel) 0̂  is best for small level of noise while for 
modest and high level of noise again Fuzzy 2 is better. 

h biases (right panel) only two estimates 
peting ˆ

Finally hig
are co , 

 for 
m 0  and Fuzzy 1. The former is better for 

small noise while the latter dominates for high noise. 2̂  
and 1̂  are much worse in this case. 

If the center is estimated by
 

 the sample median the 
co e, how

n). 
stri

nclusions remain basically the sam ever the 
numbers are slightly different (experiments are not 
show

In the case of Cauchy di bution of the noises (Fig-
ure 3) only the median  medj jx   was used for 
estimati  the centers. 

One can see that even for zero bias of noises Fuzzy 2 
has the smallest SE along with 1̂

ng

 . For modest biases all 
the estimators except 0̂  are approximately of the same 
accuracy for the whole range of  . The primitive 0̂  
appe  to be essentially worse than aars ny other estim  ate 

for high values of  . Finally for high biases again 
Fuzzy 1 is best for intermediate values of   while 0̂  
and Fuzzy 2 are slightly better for small and large  ’s 
respectively. Comparing to the normal noise the accuracy 
of all the estimators are somewhat lower. 

In Figure 4 results are presented for logistic noise 
generated by 

 1 1k kr k      

with r = 5.2 for the first sample and r = 3 for the second 
one. The results are closer to the normal noise case rather 
than to the Cauchy case, however errors in general are 
smaller than in the normal case. 

In summary for all three experiments, the classical 
weighted estimator 2̂  is worsening fast as the level of 
bias is increasing while the fuzzy estimators demonstrate 
a steady skill in all the scenarios and for whole range of 
  and b . At this point it is hard to give a preference 
to either Fuzzy 1 or Fuzzy 2. 

Similar conclusions can be drawn from Figures 5 and 
6 where other experiments are presented in which the 
dependence of SE on ∆b were studied for fixed  . We  

 

 

Figure 2. Dependence of standard error on the noise level σ for different values of bias scale ∆b normal noise. The mean is 
taken as an estimate of center. 1) ∆b = 0; 2) ∆b = 0.5; 3) ∆b = 1. 
 

 

Figure 3. Dependence of standard error on the noise level σ for different values of bias scale ∆b Cauchy noise. The median is 
taken as an estimate of center. 1) ∆b = 0; 2) ∆b = 0.5; 3) ∆b = 1. 
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Figure 4. Dependence of standard error on the noise level σ for different values of bias scale ∆b logistic noise. The median is 
taken as an estimate of center. 1) ∆b = 0; 2) ∆b = 0.5; 3) ∆b = 1. 
 

 

Figure 5. Dependence of standard error on the bias scale ∆b for different values of noise level σ normal noise. The median is 
taken as an estimate of center. 1) σ = 0.1; 2) σ = 1; 3) σ = 3. 
 

 

Figure 6. Dependence of standard error on the bias scale ∆b for different values of noise level σ Cauchy noise. The median is 
taken as an estimate of center. 1) σ = 0.1; 2) σ = 1; 3) σ = 3. 
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want to stress two of them, first, for high   

e and, second, 
Fuzzy 2 is 

uniformly better than any other estimat 0̂  
is not appropriate for such values of   regardless
noise distribution. 

4. Conclusions and Discussion 

A majority of studies in estimating a location parameter 
address, first, linear functionals of either the original 
sample or its ranking, e.g. [11], and, second, unbiased 
observations. Here a class of essentially nonlinear esti-
mators is suggested based on the fuzzy set theory ideas to 
handle biased observations coming from two different 
sources. Because any analytical investigation of the 
standard error for highly non-linear functions of sample 

an the classical least square estimator. 
r 

are estimator and 

N00014-11-1-0369 and NSF under grant CMG-1025453 
is greatly appreciated. 
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