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ABSTRACT 

In a multi-prize contest, we consider the space of all outcomes and define a probability on it by hypothesizing the pro- 
bability of an outcome to depend on resources expended by all the players. In this probability space, we then derive the 
probability of an individual player winning. It turns out that this probability is a generalized Berry (1993) probability 
function. Specifically, when 0 weight is attached to the resources spent by the “unsuccessful players” (losers), the prob- 
ability of winning of an individual player is proposed exactly by Berry (1993). Such a formulation also helps to allevi-
ate charges against the probability function of Berry levied by Clark and Riis (1996) in the context of sequential distri-
bution of prizes since prizes by our very hypothesis, are awarded simultaneously. 
 
Keywords: Probability Function in Multi-Prize Contests; Generalization of Tullock’s Contest Success Function 

1. Introduction 

Berry [1] analyses a rent-seeking model with multiple 
prizes/winners. By doing so, he generalizes Tullock’s 
contest success function (the technology or function that 
translates a player’s expended resources into his prob- 
ability of winning) for one prize to the probability of 
winning in a multi-prize situation. If there are n players 
and k (denoted as n  in this note) many prizes, then 
Berry postulates that “the probability that firms ‘n’ wins 
is dependent upon its rent-seeking expenditures in combi- 
nation with the expenditures of all other possible combina- 
tions of ‘ ’ firms (out of ‘n’ firms) divided by the com- 
binations of all possible ‘k’ firms’ expenditures.” (p. 438). 

1k

The main gap in Berry’s analysis is that it starts di- 
rectly by postulating the probability of an “event” (that a 
player wins a prize) without specifying the set of “out- 
comes” (where an outcome means the distribution of the 
limited number of prizes among the competing players. 
See section II for a mathematical definition) and the cor- 
responding probabilities, which is necessary for a ma- 
thematical formulation of the problem. Clark and Riis [2] 
criticize the ad hoc-ness of Berry’s approach from a dif-
ferent perspective (see below) and they also miss to lay 
down the underlying probability space of Berry’s model. 
This paper resolves this issue completely and proposes a 
concrete probabilistic foundation of Berry’s approach. 

Clark and Riis [2] note that Berry’s probability of win-  
ning function is a valid probability function (though not 

deriving it from the underlying probability space) but 
they criticize it on the ground that it implies an “unrea- 
sonable selection process” of the winners in which “rent- 
seeking outlays affect only the distribution of the first 
prize; after this is awarded, rent-seeking outlays are for- 
gotten and each player has an equal probability of win- 
ning” (p. 179). But their criticism holds only when the 
process perceived is one where the announcement of 
outlays by the players is simultaneous while the distribu-
tion of prizes is sequential (like the distribution of quotas 
by the government, or the promotion of several workers. 
See Clark and Riis [3]). 

However, often the process in contests can be per- 
ceived to be one of not only simultaneous announce- 
ments of efforts but also simultaneous distribution of 
prizes. Examples include occupying seats in a congested 
transport vehicle by passengers, getting admitted to lim- 
ited number of seats in elite educational institutions, or 
getting housing allotments in the regulated housing mar-
ket. (Keeping these examples in mind, we use the terms 
“resources”, “expenditures” and “efforts” interchangea-
bly, in the sense of outlays expended by the players par-
ticipating in the contest.) Our probability space, by the 
very way it is defined, is more amenable to model such 
simultaneous distribution of prizes and since we can de-
rive Berry’s formulation from it, our model can dispel 
Clark and Riis’ criticism leveled against it (see especially 
footnote 1). 
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We start from the space of all possible outcomes and  
make the following plausible hypothesis: let the prob- 
ability of an outcome depend on the (weighted) sum of 
efforts of all the players. In the resulting probability 
space, we derive the probability of success (winning a 
prize) for an individual player (which is in contrast to 
both Berry [1] and Cark and Riis [2], who start from the 
probability of winning of individual players). 

We find that if the efforts of the unsuccessful players 
are weighed equally like those of the successful players, 
then we end up with an equal probability model where 
each player has an equal chance of winning, irrespective 
of their expended resources. On the other hand, if the re- 
sources expended by the unsuccessful players receive no 
weight at all (that is 0 weight) in bringing about a real- 
ized outcome (that is the probability of the outcome de- 
pends only on the resources expended by the successful 
players), then the resulting probability of winning of an 
individual player turns out exactly to be Berry’s formula- 
tion. Thus, in particular, our model generalizes Berry’s 
probability function. 

The next section begins from the probability space and 
derives a probability function by postulating a plausible 
hypothesis (Assumption 1) for the probability of out- 
comes, and demonstrates that Berry’s formula can be 
derived from it as a special case. 

2. The Model 

Let there be n players and n n , many prizes. The set 
of all possible outcomes can be represented by the col- 
lection of vectors  

        1
1

: , , 0,1 :
n

n

n i
i

n  


    


v v v v .




   

(1) 

here  means that in the outcome  the i-th 
person is successful in winning a prize, and otherwise 

i . The restriction 

  1i v

  0

v

 v  1 ii
 reflects the 

fact that in any outcome all prizes are taken. Also note 
that the number of different outcomes1 in the space is 
given by  

 
!

.
! !

n n

n n n n

 
     

 

A probability on the space  is given by a collection 
P  of non-negative real numbers  allotted to each 
outcomes 

pv

v , satisfying the two conditions  

0, and 1.p p


 v v
v

 

The pair  , P  is said to form a probability space.  
The question we are asking is the following: Can we 

have a probability space (on the sample space   given 
above) such that the probability of any outcome reflects 
the collective effort of the mode of the outcome (the way 
the outcome comes about)? To answer the question, let 
us hypothesize the following:  

Assumption 1. Let probability  be proportional to 
the weighted sum of the efforts of all the competing play- 
ers. That is,  

pv

    
1 1

1
n n

i i i i
i i

p e  
 

e
     
 v v v       (2) 

where i  be the effort exerted by the th player to ob- 
tain a prize out of 

e i
n  available units, with n n , 

1, ,i n  , and 0 1   is the weight attached to the 
efforts of the players who are not successful in winning 
any prize.  

This assumption means that there exists a positive 
constant (not depending on the outcome) K  such that  

    
1 1

1 .
n n

i i i i
i i

p K e e  
 

     
 v v v  

The following proposition lays down the value of K , 
the probability of an outcome, , and the probability of 
“success” for player i, 

pv

 1Pr  i

Proposition 1. Consider the probability space given 
by (1). Then, under Assumption (1), the probability of 
outcome  is given by  

:  

v

    
1 1

1 ,
n n

i i i i
i i

p K e e  
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n
n  v v      (3) 

where the constant of proportionality K  is given by  

 
   

 
1

1
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1 !
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i
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K
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e
n n n n






   
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    (4) 1Note that in any particular outcome, we have n  many one’s and 

n n   many zeroes in a certain order, but the one’s (or the zeroes) 

are unordered among themselves. Hence the situation depicts n
prizes awarded simultaneously. In contrast, if we had sequential dis-
tribution of prizes, then the set of outcomes would be given by 

     1: , ,seq n   v v v  

where  means the i-th player is unsuccessful whereas 

 means the i-th player has won the j-th prize, 

  0i v

j i v 1, ,j n  , in 

the outcome . That is, v seq  is the set of all possible permutations 

of  , ,0n 1,2, ,0, . 

Moreover, the probability of success for player i is:  
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
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
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

  
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  

 


  

     (5) 

Proof. Derivation of K: The derivation of the constant  
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of proportionality K is as follows: The non-negativity of 

vp  just means that K has to be non-negative (as the ef- 
forts ). The second criterion is satisfied if and only 
if  

0ie 
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Since K is an absolute constant and not depending i or 
 we can take it out of the summations to get  v
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Next we interchange the order of summations  
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In the inner sum, since the effort i  does not depend 
on  (this is by assumption, since we do not allow dif- 
ferent efforts for different outcomes), we can take it out 
to get  

e
v
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Now consider the inner sums over . Here,  v
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From simple combinatorics, we get that this count is 
same as the number of vectors of length , with 0, 1 
entries such that 

1n 
1n   entries have value 1 and others  

have value 0. This is given by 
1
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outcomes  for which  (since otherwise 
the contribution is 0). That is,  
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From simple combinatorics, we get that this count is 
same as the number of vectors of length , with 0, 1 
entries such that 
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Substituting we can get . This completes the deri- 
vation of the probability space in the case of our model. 
Now we come to the next part of the proposition. 

pv

Derivation of individual’s probability of success: 
Consider person 1. Let us compute the probability that 
person 1 is successful using the above probability model:  
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where K is as given by (4)  
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Substituting and simplifying, we get  
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Substituting subscript 1 with i, we can get (5). This 
completes the proof.  


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Notice that in this model, if 0  , we see that the 
probability of any outcome depends on the efforts of the 
people who are successful only, while 1   means the 
probability of any outcome depends equally on the ef- 
forts of those who are successful as well as those who are 
not so. For any 0 1  , it means the efforts of those  
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who are successful contribute more towards bringing 
about the outcome than the efforts of those who remain 
unsuccessful. 

Notice the following easily derivable properties of our  

model. If 1  , we get  Pr 1 ,i

n

n
     

which is the equal probability model. This means that if 
people’s efforts are equally weighted in the probability of 
an outcome, irrespective of whether they are ultimately 
successful or not, then each individual has the same 
probability of being successful, irrespective of effort lev- 
els. 

Derivation of Berry’s probability function: Note if 
0  , we get  

  1
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i

i
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n e n
 
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          (6) 

This is the same expression as introduced by Berry [1] 
and also rearranged and reproduced in Clark and Riis [2]. 
(An example of the above probability model can be 
found in Appendix A.) As noted by Berry [1], in case of 
a single prize, the probability of success of the ith indi- 
vidual reduces to the classic Tullock’s contest success 
function (obtained by substituting 1n   in (6)), given 
by  
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i
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e
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              (7) 

The probability function also exhibits the usual pro- 
perties (as also noted in Clark and Riis [2] and (1998)) in 
that it is bounded between 0 and 1, the probability of 
winning of a particular player is increasing in one’s own 
resources, decreasing in other’s resources, and the sum of 
all players’ probability of winning one of the prizes 
equals n , the number of prizes. 

An interpretation for 0  : Suppose we are inte- 
rested in the finding out how the probability of being 
successful changes as the weight given to efforts of peo- 
ple who are unsuccessful,  , changes2. That is, we cal-  

culate 
 Pr 1i
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

 as follows:  
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Hence the probability increases or decreases with  , 
depending on individual effort ei, relative to the ave- 
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. In particular, if 
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. (Similarly, if  

1

1 i
n

ii

e
n

e
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
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, the opposite holds.) This means that if indi-  

vidual i is exerting less than average effort, then as de- 
sired, his probability of success falls, as   falls. Simi- 
larly, for someone exerting more than the average effort, 
the above derivative is negative, which means that his 
probability of success increases as   falls.  

The last observation means that in our probability 
model, the smaller   gets, the more the probability of 
success of someone who is exerting above average effort, 
and lesser is the probability of success of someone who 
is exerting less than average effort. In the extreme case 
we have 0   which means the probability of an out- 
come is sensitive only to the efforts of those who have 
succeeded. Hence 0   makes for a good case to work 
with, which again means that our probability of success 
turns out to be that of Berry’s. 

3. Conclusion 

In this note, we derive a probability function by hypothe- 
sizing a possible relation between outcomes and ef- 
forts/resources of players in the context of a multi-prize 
contest. When efforts are simultaneously exerted by 
players, multiple prizes are simultaneously awarded, we 
hypothesize that the probability of an outcome is propor- 
tional to all efforts exerted. In the special case, where the 
probability of an outcome is proportional to the effort 
exerted by the winners only (that is to say the weight 
attached to the efforts of the unsuccessful players is 0), 
the probability of an individual player winning is pro- 
posed exactly by Berry [1]. Hence we provide a prob- 
abilistic foundation for the probability function in a 
multi-prize rent-seeking contest as introduced by Berry. 
Moreover our probability model, by the very way it is 
defined, is a good depiction when prizes are simultane-
ously distributed. 

2Notice that in our probability model, the space  is essentially 
given by a collection P  of non-negative real numbers ,p v allotted 

to each outcomes , satisfying the two conditions v

, ,0, and 1.p p 


 v v
v

 

Hence for every  , the pair  is said to form a probability 

space. Now here we want to see if we can choose a particular 

 ,P 
 (and 

hence the corresponding probability space) to work with. 
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Appendix Now:  

 
 1

1

1

1 2
vv

v

v








    Derivation of the Probability Model with an  
Example 

and similarly    2 3 2
v v

v v 
 

   . Hence sub-
stituting we get  1 2 31 2

Consider the basic probability model with 0   
(which gives Berry’s probability function). Let 3n  ,, 

2n  . Then the possible outcomes and associated prob-
abilities are as follows: 

.K e e e    


 

       
 

1 1 1 1 1 2 1 2 3 1 3

1 2

1,1,0 :v p K v e v e v

K e e

     

 

e
 

And , for this example. 
3

2
2


  
 

Now consider an example with , 3n  2n  , 1 8e  , 

2 3 1e e  . Then we get the following:  

        
 

2 2 1 2 1 2 2 2 3

1 3

1,0,1 :v p K v e v e v

K e e

     

 

1

1 8 1 18

2 10 2 20
P     

2 3e
 

2

1 1 1 11

2 10 2 20
P     

        
 

3 3 1 3 1 2 3 2 3 3 3

2 3

0,1,1 :v p K v e v e v

K e e

     

 

e
 

3

1 1 1 11

2 10 2 20
P     

Hence summing over all outcomes we get, 

 

     

3

1 2 3
1

1 1 2 2 3 3

1

.

i i
i v

v v v

p p p K e v

K e v e v e v



  

 

  

       
 

             
     

 

  

Again the sum equals 2n  . This means (roughly) 
that person 1 exerting high effort gets to win a prize with 
a very high probability, while the other two players ex-
erting the same low probability gets to win the remaining 
prize with almost equal probability. 



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