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ABSTRACT 

In this paper, the existence and uniqueness of solution systems for some binary nonlinear operator equations are dis- 
cussed by using cone and partial order theory and monotone iteration theory, and the iterative sequences which con- 
verge to solution of operator equations and error estimates for iterative sequences are also given. Some corresponding 
results are improved and generalized. Finally, the applications of our results are given. 
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1. Introduction 

In recent years, more and more scholars have studied 
binary operator equations and have obtained many con- 
clusions, such as references [1-3] etc. In this paper, we 
will discuss solutions for ordinal symmetric contraction 
operator and obtain some general conclusions; some cor-
responding results of references [4,5] are improved and 
generalized. Finally, we apply our conclusions to two 
point boundary value problems with two degree super- 
linear ordinary differential equations. 

In the following, let E always be a real Banach space 
which is partially ordered by a cone P, P be normal cone 
of E, N is normal constant of P, partial order ≤ is deter-
mined by P,   denotes zero element of E. For ,u v E  
and , let u v

   , :D u v x E u x v      

denotes an ordering interval of E. 
The concepts of normal cone and partially order, 

mixed monotone operator, coupled solutions of operator 
equations etc. see [6]. 

Definition 1.1. Let  be binary operator, 
A is said to be L-ordering symmetric contraction operator 
if there exists a bounded linear operator , 
which its spectral radius 

: D D EA  

  1r L
:L E E

  such that 

    , , A y x A x y L y x    

for any , ,x y D x y  , where L is called contraction 
operator of A. 

2. Main Results  

Theorem 2.1. Let : D D EA    be L-ordering sym-
metric contraction operator, and there exists a  0,1  , 
for any 1 2u x x v   2 1u y y, v    such that 

    2 2 1 1 2 1, , A x y A x y x x    .       (1) 

If condition  

(H1)       , , ,u A u v A v u v v u     ; 

or  

(H2)        , , ,u v u A u v A v u v      

holds, then the following statements hold:  
(C1)  ,A x x x  has a unique solution x D  , and 

for any coupled solution ,x y D  such that x y x  ;  
(C2) For any 0 0,x y D , we make up symmetric it-

erative sequences 
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1 1 1

1

1 1 1
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      (2) 

then  

 * *,n nx x y x n   , 

and for any   ,1r L 
m

, there exists a natural numbers 
m, if , we get error estimates for iterative se-
quences (2): 

n 

  2
1

n

n nx y x N u v
 


      
. 

Copyright © 2013 SciRes.                                                                                  AM 



B. M. QIAO 1238 

Proof. Set  

   1, ,
1

B x y A x y x   
, 

if condition (H1) or (H2) holds, then it is obvious 

   , , ,u B u v B v u v  , 

by (1), we easily prove that  is mixed 
monotone operator, and for any  such that 

:B D D E 
u x y v  

    , ,B y x B x y H y x     



, 

where  

  1
1H L I     

is a bounded linear operator, I is identical operator.  
By the mathematical induction, we easily prove that 

     , ,n n nB y x B x y H y x u x y v       ,

, 2 

 

where  

      1 1, , , , , ,n n nB x y B B x y B y x x y D n  . 

By the character of normal cone P, we implies 

   , , ,n n nB y x B x y N H x y u x y v     .   

For any   ,1r L   , since  

   1

lim 1,
1 1

n n

n

r L
H r H

  
 

 
   

 
 

so there exists a natural numbers m, if , such that  n m

1

n
nH

 

    

 

and constant 1mN H  . 
Considering mixed monotone operator  and con-

stant 

mB
mN H , by Theorem 3 in reference [3], then we 

know  has an unique solution  ,mB x x x x , and for 
any coupled solution ,x y D  such that  

x y x  . 

From  

    
      

, , ,

, , , ,

m

m m

B B x x B x x

B B x x B x x B x x

   

      
 

and uniqueness of solutions with , then we 
have  and 

 ,mB x x x
 ,B x x x    ,A x x x  

 
. 

We take note of that ,A x x x  and  , x xB x   
have same coupled solution, therefore coupled solution 
for  must be coupled solution for  ,B x x x  ,mB x x  
x, consequently, (C1) has been proved. 

Considering that iterative sequence (2) and set iterative 
sequences: 

where ,0 0,u u v v   it is obvious that  

  
 

1 1 1 1, , ,

,

n n n n n n

n
n n

x B x y y B y x

v u H v u
    

   

 ,

,n

 

by the mathematical induction and character of mixed 
monotone of B, then 

* , ,n n n n n n nu x v u x v u y v       

hence  

  ,

, 1, 2,3,

n n n n n

n n n

x y u N v u

x u N v u n

  

    ,
 

moreover, if , we get n m

  2 2

2 ,
1

n
n n n n

n

x y x N v u N H v u

N u v
 


    

    

 

consequently, .  ,n nx x y x n   
0


Remark 1. When   , Theorem 1 in [4] is a spe-

cial case of this paper Theorem 2.1 under condition (H1) 
or (H2). 

Corollary 2.1. Let :A D D E   be L-ordering sym- 
metric contraction operator, if there exists a  0,1   
such that A satisfies condition of Theorem 2.1, then (C1), 
(C2) hold and the following statements holds: 

(C3) For any   ,1r L   and 1   , we make 
up iterative sequences 

 
  

1 1

1 1 1 1

, ,

, ,

1, 2,3, ,

n n n

n n n n n

u A u v

v A v u v u

n


 

   



  

 
        (3) 

or 

   
 

1 1 1 1

1 1

, ,

, ,

1, 2,3, ,

n n n n n

n n n

u A u v v u

v A v u

n

   

 

  



 
       (4) 

where 0 0,u u v v   thus  * *,n nu x v x n  
n m

, 
and there exists a natural numbers m, if , we have 
error estimates for iterative sequences (3) or (4):  

   * n

n nu v x N u v     .      (5) 

Proof. By the character of mixed monotone of A, then 
(1) and (C1), (C2) [in (1), (C2) where 0  ] hold. In the 
following, we will prove (C3).  

Consider iterative sequence (3), since 

u x v  , 
so we get 

   
 

1

1 1

, ,

, ( )

u A u v A x x

,x A v u v v u v

 



 

     
 

   1 1 1 1, , ,n n n n n nu B u v v B v u     ,  
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by the mathematical induction, we easily prove  

, 1n nu x v n    

hence  

, .n n n n n nx u v u v x v u           

It is clear 

   
   

1 1

, 1.

n n n n

n

v u L I v u

L I v u n

 



     

   
 

For any   ,1r L  , 1   , since  

     
1

lim 1
n n

n
L I r L I r L    


        , 

thus there exists a natural numbers m, if , such 
that 

n m

    .
n n

L I      

Moreover,  

   

   

*

, ,

n

n n

n

u v x N L I u v

N u v n



 

   

    m
 

consequently,  , . ,nu x n

Similarly, we can prove (4). 
v x  n 

Theorem 2.2. Let :A D D E   be L-ordering sy- 
mmetric contraction operator, if there exists a  0,1   
such that  

       1 , , , 1u A u v A v u v     , 

then the following statements holds: 
(C4) Operator equation  

   , 1A x x x   

has an unique of solution x D  , and for its any cou- 
pled solution ,x y D , such that x y x  ;  

(C5) For any 0 0 0 0, , ,x y w z D , we make up symmet- 
ric iterative sequence 
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1 1

1
, ,

1
1

,
1

1,2,3, ,

n n
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            (6) 
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1 1 1
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,
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n n n n

n n n n

w A w z w
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n




  

  

 

 

 
          (7) 

then  

and that for any   ,1r L   and 1   , there 
exists a natural numbers m, if , then we have error 
estimates for iterative sequences (6) and (7) respectively: 

n  m

 

   

2 ,
1

2 .

n

n n

n

n n

x y x N u v

w z x N u v




 





     

   

      (8) 

Proof. Set  

   1
, ,

1
B x y A x y





 

or  

   , ,C x y A x y x  , 

we can prove this theorem imitate proof of Theorem 2.1, 
over. 

Similarly, we can prove following theorems. 
Theorem 2.3. Let :A D D E   be L-ordering sy- 

mmetric contraction operator, if there exists a  0,1   
such that  

   , , ,u v A u v A v u v u     , 

then the following statements holds: 
(C6) Equation 

   , 1A x x x   

has an unique solution x D  , and for any coupled so-
lution ,x y D  such that x y x  ; 

(C7) For any 0 0,x y D , we make up symmetric it-
erative sequence 

 



1 1

1 1

1
, ,

1
1

,
1

1,2,3, ,

n n

n n

x A x y

y A y x

n





 

 







 

 ,

n

n           (9) 

then that  ,n nx x y x n    , moreover,  
  ,1r L  , there exist natural number m, if , 

then we have error estimates for iterative sequence (9): 
n m

  2
1

n

n nx y x N u v



      

; 

(C8) For any   ,1r L   ,  1   0 0,w z D , 
we make up symmetry iterative sequence  
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and there exists a natural numbers m, if , we have 
error estimates for iterative sequence (8). 

n m
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Remark 2. When 0  , Corollary 2 in [4] is a spe-
cial case of this paper Theorem 2.1 - 2.3.       

 

2 ,
2

0,1 , 1,2,3, .

n

n n

mp q
x t y t x t

t n

     
 

  
 

Remark 3. The contraction constant of operator in [5] 
is expand into the contraction operator of this paper. 

Remark 4. Operator A of this paper does not need 
character of mixed monotone as operator in [6]. 

3. Application 

We consider that two point boundary value problems for 
two degree super linear ordinary differential equations 

     

     

1
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1

0 1 0. 2 .

0, 0,1m

b t x

x x m

x a t x t


  

   
    (10) 

Let  be Green function with boundary value 
problem (7), that is 

 ,k t s

   
, ,

, min ,
, .

t t s
k t s t s

s s t


   

 

then that the solution with boundary value problem (7) 
and solution for nonlinear integral equation with type of 
Hammerstein  

             11

0
, 1 d

m
t s a s x s b s x sx t k


     s  

(11) 

is equivalent, where 

 
 1

00,1

1
max , d

2t
k t s s


 . 

Theorem 3.1. Let    ,a t b t
]

 are nonnegative con-
tinuous function in [0  ,1

 
 

 
 

0,1 0,1
max , max
t t

q bp a t
 

 t . 

If , then boundary value problem (7) 
have an unique solution 

1, 2p mp q  
 x t  such that 

   0 1x t t   0,1 ; 

Moreover, for any initial function    0 0,x t y t  such 
that  

      0 00 1, 0 1 0x t y t t     ,1 , 

we make up iterative sequence 
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d ,
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Then  nx t ,  ny t  uniform convergence to  x t  
on  0,1 , and we have error estimates 

Proof. Let 

      0,1 , 0, 0,1E C P x E x t t     , 

 
 

0,1
max
t

x x t


  denote norm of E, then that E has be-  

come Banach space, P is normal cone of E and its nor-
mal constant N = 1. It is obvious that integral Equation (8) 
is transformed to operator equation  ,A x x x , where  

             
 

1

0

1
, ,

1

0,1 .

m
d ,A x y t k t s a s x s s

b s y s

t

         




 

Set  

   0, 1u u t v v t    , 

then  0,1D   denote ordering interval of E,  
:A D D E   is mixed monotone operator ,and  

    1
0 0,1 , 1,0

2

p
A A


1   . 

Set  

           1

0
, dLx t k s t ma s b s x s s t    , 0,1 , 

then  is bounded linear operator, its spectral 
radius  

:L E E

  1
2

mp q
r L


  , 

and for any ,x y E ,    0 1x t y t    such that 

        0 , ,A y x t A x y t L y x t    , 

that is, A is L-ordering symmetric contraction operator, 
by Theorem 2.1 (where 0  ), then Theorem 3.1 has 
be proved. 
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