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ABSTRACT

In this paper we consider the Nemytskii operator, i.e., the composition operator defined by (Nf)(¢)=H (1, f (1)),

where H is a given set-valued function. It is shown that if the operator N maps the space of functions bounded
@, -variation in the sense of Riesz with respect to the weight function « into the space of set-valued functions of
bounded ¢, -variation in the sense of Riesz with respect to the weight, if it is globally Lipschitzian, then it has to be of

the form (Nf)(¢)=A(z) f(¢)+B(), where A(t) is a linear continuous set-valued function and B is a set-valued

function of bounded ¢, -variation in the sense of Riesz with respect to the weight.

Keywords: Bounded Variation; Function of Bounded Variation in the Sense of Riesz; Variation Space; Weight

Function; Banach Space; Algebra Space

1. Introduction

In [1], it was proved that every globally Lipschitz Ne-
mytskii operator

(Nu)(£) = H (£.u(7)

mapping the space Lip([a,b];cc(Y)) into itself admits
the following representation:

(Nu)(t)=A(t)u(t)+B(t),

u eLip([a,b];cc(Y)), te[a,b],

where A(¢) is a linear continuous set-valued function
and B is a set-valued function belonging to the space
Lip([a,b];cc(Y )) The first such theorem for single-
valued functions was proved in [2] on the space of
Lipschitz functions. A similar characterization of the
Nemytskii operator has also been obtained in [3] on the
space of set-valued functions of bounded variation in the
classical Jordan sense. For single-valued functions it was
proved in [4]. In [5,6], an analogous theorem in the space
of set-valued functions of bounded p -variation in the
sense of Riesz was obtained. Also, they proved a similar
result in the case in which that the Nemytskii operator N
maps the space of functions of bounded p -variation in
the sense of Riesz into the space of set-valued functions
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of bounded ¢ -variation in the sense of Riesz, where
I<g<p<w,and N is globally Lipschitz. In [7], they
showed a similar result in the case where the Nemytskii
operator N maps the space RV, ([a,b];K ) of set-
valued functions of bounded ¢, -variation in the sense of
Riesz into the space RW, ([a,b];cc(Y )) of set-valued
functions of bounded ¢, -variation in the sense of Riesz
and N is globally Lipschitz.

While in [8], we generalize article [6] by introducing a
weight function. Now, we intend to generalize [7] in a
similar form we did in [8], i.e., the propose of this paper
is proving an analogous result in which the Nemytskii
operator N maps the space RV, , ([a,b];K) of set-
valued functions of bounded ¢, -variation in the sense of
Riesz with a weight « into the space
RW, |, ([a,b] see(Y )) of set-valued functions of bounded
@, -variation in the sense of Riesz with a weight « and
N is globally Lipschitz.

2. Preliminary Results

In this section, we introduce some definitions and recall

known results concerning the Riesz ¢ -variation.
Definition 2.1 By a ¢ -function we mean any non-

decreasing continuous function @: [0,+oo) - [O,+oo)
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such that ¢@(x)=0 if and only if x=0, and
p(x) > as x—>o.

Let A be the set of all convex continuous functions
that satisfy Definition 2.1.

Definition 2.2 Let (X, ) be a normed space and
@ bea @ -function. Given I R be an arbitrary (i.e.,
closed, half-closed, open, bounded or unbounded) fixed
interval and o :1 >R a fixed continuous strictly in-
creasing function called a it is weight. If pe N , we
define the (total) generalized ¢ -variation V¢( f )E
V,(f.1,a) of the function f:1—>X with respect to
the weight function o in two steps as follows (cf- [9]).
If 1=[a,b] is a closed interval and w is a partition

nia=t, <t <---<t =b ofthe interval I (i.e., neN),
we set
_e )= )]
V(p(f,n,a). Z¢(|a a(tzl)| | ) a(ti—1)|'

Denote by IT the set of all partitions of [a,b] , We
set

V¢(f)EV;,,(f,[a,b],a):=sup{V¢(f,n,a):neH}.
If I isanyintervalin R, we put
V,(f)=V,(f-I.a)=suwplV,(f.[a.b].a):[a.b]I}.

The set of all functions of bounded generalized ¢ -
variation with weight « will be denoted by

RV, (1) =RV, (I,a)={f:[a.b] > X|V, (f.],a) <o}

If a(t)=id(t)=t,rel=[a,b], and ¢(p)=p’,
P20, g>1, the ¢-variation V, (f,1,&), also
written as ¥, (), is the classical g -variation of f in
the sense of Riesz [10], showing that ¥, (/) <oco if and
only if feAC(I) (ie., f:I—>R is absolutely con-
tinuous) and its almost everywhere derivative f' is
Lebesgue q-summable on 7. Recall that, as it is well
known, the space RV, (I) with I, ¢ and a as above

and endowed with the norm |f|q =|f(a)|+(V (f))l/q

q

is a Banach algebra forall ¢g>1.

Riesz’s criterion was extended by Medvedev [11]: if
pe N, then feRV,(I) if and only if f e AC(I)
and [io|7'(1)
ized ¢ -variation with ¢ e N' and a=id (also call-
ed functions of bounded Riesz-Orlicz ¢ -variation) were

studied by Cybertowicz and Matuszewska [12]. They
showed that if f e RV, (1), then

= [l (@)])ar

|)dt <oo. Functions of bounded general-

and that the space
GV, (I)={f eR’ such that lim ..., (A1) =0}
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is a semi-normed linear space with the Luxemburg-
Nakano (cf. [13,14]) seminorm given by

p, (f)=inf{r>0[¥,(f/r)<1}.

Later, Maligranda and Orlicz [15] proved that the
space GV, (I) equipped with the norm

171, = sup,oi| /() + P, (f)

is a Banach algebra.

3. Generalization of Medvedev Lemma

We need the following definition:
Definition 3.1 Let ¢ be a ¢ -function. We say ¢
satisfies condition o, if
t
1imsupM:oo. )
t—0
For ¢ convex, (1) is just lim,.¢(t)/t = . Clearly,
for id =1 the space RV, (f,[a,b],id
the classical space B V( f ,[a,b]) of functions of bounded
variation. In the particular case when X =R and 1<

p <o, we have the space RV, (f,[a,b];X) of func-

) coincides with

tions of bounded Riesz p -variation. Let ([a,b],z, ,ua)

be a measure space with the Lebesgue-Stieltjes measure
defined in o -algebra ) and

L,,lab]=
{f : [a,b] — R/ f is u, integrable and Lb|f|p da< +oo}.

Moreover, let a be a function strictly increasing and
continuous in [a,b]. We say that E [a,b] has u,-
measure 0, if given &£>0 there is a countable cover
{(an ,b,) / ne N} by open intervals of E', such that

Zolab)-alq,)]<e.

Since « is strictly increasing, the concept of “ u
measure 0 coincides with the concept of “measure 07
of Lebesgue. [cf. [16], §25].

Definition 3.2 (Jef) 4 function f :[a,b] >R is said
to be absolutely continuous with respect to o, if for
every & >0, thereexists 6 >0 such that

Zjﬂq’(‘f(bf)‘f(“;))ﬁe,

for every finite number of nonoverlapping intervals
(aj,bj), j=L--,n with aj,bjlc[a,b] and

2 a(b;)-a(a,)

The space of all absolutely continuous functions
f:[a,b] > R, with respect to a function « strictly in-
creasing, is denoted by a—AC . Also the following

<J.
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characterization of [17,18] is well-known:
Lemma 3.3 Let fea—AC[a,b]. Then f, exists
and is finite in [a,b], except on a set of p,-measure

Lemma 3.4 Let fea—AC[a,b]. Then f, is inte-
grable in the sense Lebesgue-Stieltjes and

f(x)= f(a)+(L—S).[:fa' (r)da(t), xela,b].

Lemma 3.5 Let ¢pe N such that satisfies the o,
condition. If [ €RV, (f,[a,b],a), then f is o -ab-
solutely continuous in [a,b] ,Le

RV,(f.[a.b].a)c a-AC[a,b].

Also the following is a generalization of Medvedev
Lemma [11]:

Theorem 3.6 (Generalization a Medvedev Lemma)
Let @oe N such that satisfies the o, condition,

f:[a,b] > X . Then
1)If f is o -absolutely continuous on [a,b] and

[lo(f: () de

f eRV,(f.]a.b].a)

(x) <400,

then

and

R, (1-[aba)< [jo(|; (x))dar(x).
2)If feRV,(f.[ab].a) (ie, RV,(f)<+wx), then

f is « -absolutely continuous on [a,b] and

[io(1: (x))der(x) < RY, (1.[a.b].a).

Proof. 1) Since f is « absolutely continuous,
there exists f,, ae. in [a,h] by Lemma 3.3. Let
.t €la,b], t <t

by Lemma 3.4 and ¢ is strictly increasing

< J:z £, (£)|dex (2)
"V a(o)—aln)

211 (1)|de
| -ate

Lzz|da(t)|

using the generalized Jenssen’s inequality

Copyright © 2013 SciRes.

ol (1)) da ()
o [Ma()

1

|a(tz)—a(tl)|

= [%o(| £ (1)) de(2).
Let m:a=t,<---<t, =b be any partition of interval
[a,b]; then
7(t)
Z(P[M]Mfz)—“(h )|
1

ST ol ) aeto)= Lol () detr) <

i=1 li1

and we have

V,(f.[a.b].a

)< [l

Thus feRV(p(f,[a b}

2) Let feRV,|ab]. Then f is «a -absolutely
continuous on [a,b] by Lemma 3.5 and f, exist a.e.
on [a,b].

For every n e N, we consider

))der(x).

m,a=t,, <t,6 <<t =b

ln

a partition of the interval [a,b] define by

b =a+ib_a , 1=0,1,---,n
n
Let {f,} beasequence of step functions, defined by
1 [a,b] ->R
t - t
f(Hl,n) f(zn)’ t <t<tl+1”
= f;l (Z) = a(tHl,n ) a(tl n
0, t=b

{/,},., converge to f, ae. on [a,b]. It is sufficient
to prove {f,} — /. in those points where [ is « -
differentiable and different from ¢ ,, i=0,---,n for
neN,ie.,in

A ={te[a,b]/f(; (t
—{ti,n/neN,i:O,l,---,n}

) exists}

For te A, and each neN, there exists k €{0,---,n}
such that ¢ <7<t SO

k+1,n >

F(tean) =1 (8)

fn(t) (tk+1n) Of(tkn)
_ a( k+1n) a(t (tk+1n) ff
(tkﬂn) (t ) (tk+1 n) 0! f

a(t)-a(t,) f()-1(4)
a(tin,)=a(t,) a(0)-alt,)
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Therefore, f,(¢) isa convex combination of points

Si)=10) S0 (1)

a(fk+1,n)—0!(t) o a(t)_a([k,n).

Now if n—oo, then ¢, —>¢ and ¢, ,6 —¢ and
since [ is « -differentiable for ¢, the expressions

Hlta)=£(0) o 01 (1)
(i)l " a)=als,)

tend f(z) to which is o -differentiable from f in
t . So results

lim, (¢)= 12 (1) (te Aae.in [a,b]).
Since ¢ is continuous, we have
L(0))=o{tim] 7, (1) | = (22 (1)) 1= A

Using the Fatou’s Lemma and definition of f
sequence, results that

Lol da (e

fime(.

(1)) da (1)
S (0)])de(z)
= hmlnfz_[ ZZI " (|fn |) )

n—»00

= [ timeo

<timinf[[ (|,

By definition from f

[|f )= 1 (60)
")

= liminf ZI "

n—w gt in

n—w  j_q

nl f ti+ n
:nmian(p[ (i

—hmlanCﬂ
o 5 et

[a b] < +oo,

which is what we wished to demonstrate.

Corollary 3.7 Let ¢ e N such that satisfies the »,
condition, then f € RV ( ) if and only if f s
a -absolutely continuous on [a b] and

[i(1/: ()] der () < 0.
Also
[Lo(f (x)))da(x) = &Y, (1 [a.b].2).

Corollary 3.8 Let ¢ e N such that satisfies the o,
condition. If f eRV (1) , then f is «a -absolutely
continuous on [a,b] and

Copyright © 2013 SciRes.

[lo(1; (x))de

4. Set-Valued Function

Let cc(X) be the family of all non-empty convex
compact subsets of X and D be the Hausdorff metric
in cc(X),i.e.,

D(A,B)::inf{t>0:AgB+tS,BgA+tS},

(x)=RYV, (f,[a,b],a).

where S = { yelX: || y|| < 1} , or equivalently,
D(A4,B)=max{e(4,B),e(4,B): 4,B e cc(X)},
where
{e(A,B):sup{d(x,B):xeA},

d(x,B)=inf{d(x,y):yeB}. @)

Definition 4.1 Let ¢pe N, a a fixed continuous
strictly increasing function and F :[a,b] - cc(X). We
say that F has bounded @ -variation in the sense of
Riesz if

14 (F,[a,b],a)

_ ( ( )F (t4))

where the supremum is taken over all partitions n of
[a,b] .
Definition 4.2 Denote by

RW, (F.[a.b].)

3)

={F:[a,b] > cc(X):W,(F,[a,b],a) <} @
and
RW,(F.[a,b],a):={F :[a,b]
— cc(X): RW, (AF) < for some 4 >0}, ©
both equipped with the metric
D, (F.F)= D(F (a).F: o) o
+inf {£>0:7, (F/g F/g)s 1},
where
W, (F.F)

supZ(p (

T o=l

-|a(tl.)—a(t,71 )|

Now, let ( I ), (Y,||||) be two normed spaces and
K beaconvex cone in X . Given a set-valued function
H:[a,b]xK - cc(Y) we consider the Nemytskii
operator N :K“"' 5yl generated by H , that is

(F (1) +F (4 )F(t,-_l)+Fz(f,-))J
|a () —a(t,._l)|
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the composition operator defined by:
(NF)(t)=H(t.f(t)). f:[a.b] > K;t €[a,b].

We denote by L(K;cc(Y)) the space of all set-
valued function 4:K —cc(Y), i.e., additive and posi-
tively homogeneous, we say that A is linear if
Ae L(K;cc(Y)).

In the proof of the main results of this paper, we will
use some facts which we list here as lemmas.

Lemma 4.3 ([19]) Let (X,||||) be a normed space
and let A,B,C be subsets of X. If A,B are convex
compact and C is non-empty and bounded, then

D(A+C,B+C)=D(4,B). )

Lemma 4.4 ([20]) Let (X,|[|), (Y.||) be normed
spaces and K be a convex cone in X. A set-valued
function F:K —cc(Y) satisfies the Jensen equation

F(izyjzé(F(x)+F(y)),x,yeK, ()

if and only if there exists an additive set-valued function
A:K —>cc(Y) andaset Becc(Y) such that

F(x):A(t)+B, xek.

We will extend the results of Aziz, Guerrero, Merentes
and Sanchez given in [8] and [21] to set-valued functions
of ¢ -bounded variation with respect to the weight
function « .

5. Main Results

Lemma 5.1 If @oeN such that satisfies the o,
condition and

FeRW, ([a,b];cc(Y),a) ,

then F [a,b] - cc(X) is continuous.
Proof. Since F e RW, ([a,b],a) , exists M >0
such that

v (D(F(),F (1))
Z‘P[ |a(fl-)_a(ti-1)|

i=1

J|a(tl.)—a(ti1 <M, 9

for all partitions of [a,b] , in particular given
1,4, €[a,b], we have

¢[D(F<t>,F<zo))
|a(t)—a(t0)|

Since ¢ is convex ¢ -function, from the last inequa-

}|a(t)—a(to)|SM. (10)

lity, we get
s
)-alt,
D(F(1).F (1)) |a(3 “() (in
|ee(£) ()|
By (1),
limD(F (), F (1))
(PI[M] (12)
<lim |O!(t)—a(t0)| im Mp _o.
11, p»w@(p)

|a(t)—a(t0 )|

This proves the continuity of F at #,. Thus F is
continuous on [a,b].

Now, we are ready to formulate the main result of this
work.

Main Theorem 5.2 Let (X,”- ), (Y, . ) be normed
spaces, K be a convex conein X and ¢,p, be two
convex @ -functions in X , strictly increasing, that
satisfy o, condition and such that there exists constants
¢ and T, with ¢, (t)S(p1 (ct) for all t>T,. If the
Nemitskii operator N generated by a set-valued function
H: [a,b]xK - cc(Y) maps the space
RV‘/,l (f,[a,b],a;K) into the space

RW, (f,[a,b],a;cc(Y)) and if it is globally Lipschitz,
then the set-valued function H satisfies the following
conditions:

1) For every te[a,b] there exists M (t)e[0,+),
such that

D(H(t,x),H(t,y))SM(t)"x—y" (x,yex). (13)

2) There are functions A:[a,b]—>L(K,cc(Y)) and
BeRW, (f.[a.b],a;cc(Y)) such that

H(t,x):A(t)x+B(t) (te[a,b],xeK) (14)

Proof. 1) Since N is globally Lipschitz, there exists a
constant M €[0,+0) such that

D,, (Nfi,Nf,)

15)
<M|fi- £, (fi- /s € RV, ([a:5].a:K)).

Using the definitions of the operator N and metric
D, wehave

T =]

w (D(h, N, ,,h N
D(Nfl(a),Nfz(a))ﬂnf{g>O:sup2(ﬂ2[ U N f"fz)]|a(t,-)—a(ti_1)|s1}

<M|fi-£l, (fif R, ([a.b].:K)),

Copyright © 2013 SciRes.

g|a(t,. )l )|
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where N F,)(¢). In particular,

I = (Nf ) (s)+(N:

mf{wo:%{“d”“ﬁ paa (H’t’t))}“(’_)—a(fﬂSl}ﬁM”f]—fz||«a’
P24

)-a(1)

for all f,,fzeRleqa,b],a;K) and 1,7 €[a,b] ,
t#1¢ ,where
dfl,fz (H,s,t)z

H(s,f1 (s))+H(t,f2 (t)) .

Since ¢, and ¢, satisfy

rp,-{fﬂ{MD|a(?)—a(z)|=l, i=1,2, (16)

we obtain

inf{e > o;%[D(df"fz (jat(t) i (HT t))]|a(t_)—a(t)| 31} = D(d,, (H1)d, , (H,T,0)).

a(t)

Therefore

D(dﬁ,fz (H.t.7).d; (H’t_’t)) <M|f, _fz"(p1 |“(7)_0‘

Define the auxiliary function 7:[a,b]

{a(r)a(u)

—[0,1] by:

a()=ala) =7 (18)

t<t<bh.

n(z)=

1
Then 7eRV, (
a)=

[a,b], )and

(—|a a(a)|]|a(t)—a(a)|.

15 =AM, =]/ (a)- 1 (a)]

(77 [a,b],

(1) {—Ia (t_)l—a (t)J. (17)

Let us fix x,yek
fi:la.b] > K (i=1,2) by:
fi(7)=x,

f(7)=n(r)(y-x)+x, (19)
rea,b].

and define the functions

Then the functions f; € RV, ([a,b],a;K) (i=12)

and

+1nf{g 5 0: sﬁp;(pl (" /iz J;z|a - (g(;j”z)ﬁ(’f-l )"]|a(zi)—a(t“ )< 1} @0
From the definition of £ and f,., we have
15~ 41, :inf{g>0:¢1[%J|a(t)—a(a)|Sl}. @1)
From (16), we get
inf{g>0:¢1 [%Jp(;)—a@ﬂ}: -] 1 )
(1)~ a(a)|g” [P(’)—O‘(CINJ
Hence,
Copyright © 2013 SciRes. APM
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Mla(T)-a(t)p;' [M]"x—yﬂ

-l 1
()~ a(a)| g GaU)-a@MJ

D(d/i>./'z (H.t,7).d,; (H’f_’t)) S (23)

Hence, substituting in inequality (5) the particular functions f; (i = 1,2) defined by (19) and taking a(t_) =a (a)

in (23), we obtain

1
st
D(H(t,x)+H(a,x),H(a,x)+H(t,y))SM |a(t)1 ( )| ||x—y

? |a(t)—a(a)|J

[ , (24)
forall te[a,b], x,yeK. a(r)-a(a)
By Lemma 4.3 and the inequality (24), we have h (T) = a (b) —a (a) - TE [a,b]. (25)
;! [| (t) la(a)J Then the function 7, € RV, ([a,b],a) and
D(H(1.3).H (1) < M - !
V. =¢| —— b)- .
o 1 o (771) 2 |Ol(b)—0{(a)| |a( ) a(a)|
' a(r)-a(a)
Let us fix x,yeK and define the functions
for all te[a,b],x,yeK. ﬁ:[a,b]—)K (i=1,2) by
Now, we have to consider the case a(t)=a(b). H(2)=x, fi(z)=n(7)(x—y)+y; r€[ab]. (26)
Define the function 7, :[a,b] - [0’1] by Then the functions f; € RVM ([a,b],a;K) (i=1,2) and

. ) ) ||x— " <
14~ £, —||x—y||+lnf{€ >0:9, (W]Mb)‘“(“» —1}

=[x=sl+

=[x=o| 1+

Substituting @(7)=a(a) and a(r)=a(b), and K(a box, v, ¢-1)
Uy Ay Vs P 5§
consider a =a(b)—a(a), we obtain

D(H(b,x)+H(a,y),H(a,x)+H(b,x))

1 1
" 7) =|a|p,' (—]llx-y" T —
SMK(a,b,x,y,(pll,(pzl) g |a|¢11( 1 ]

forall x,ye K, where o

Copyright © 2013 SciRes. APM
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By Lemma 4.3 and the above inequality, we get
D(H(a,y),H(a,x))

1
Sy e
e |a|¢11(1]

o]

for all x,ye K. Define the function M : [a,b] —>R by

Hence
D(H (1.x).H(t.y))
t) |x—y||(x,ye X, te [a,b]),

and, consequently, for every fe[a,b] the function
H :[a,b]xK — cc(Y) is continuous.

This completes the proof of part 1).

Now we shall prove that H satisfies equality 2).

Let us fix ,7, €[a,b] such that 7, <7 . Since the
Nemytskii operator N is globally Lipschitzian, there
exists a constant M , such that

J (28)

D(dw(H,tt (H ty,t )
(t)) . Define

<M||u v" |a 2[|a(t

where d, ,(H,s,t)=H(s,u

the function nz.[a,b]—>[0,1] by

The function 7, € RV, ([a,b],a) .

Letus fix x,y € K and define the functions
fi:[a.b] > K by

Copyright © 2013 SciRes.

fl(r)::%n2 (r)x+(l—%772 (1)))}, rela,b);

£ ()= (Ve () e S (1-m (). w<fab]

The functions f; € RV, ([a.b],a;K) (i=1,2) and
_= y||

(29)

1A= %, =

Hence, substituting in the 1nequal1ty (28) the particular
functions f; (i=1,2) defined by (29), we obtain

1

D[H(to,x)+H(t,y),H[;O,HTyJJrH(t’x;)’)]

< Mla(r)-als)lo: (MJ”)C— .

Since N maps
RV, ([a,b],a;K) into RW,, ([a,b],a;cc(Y)),

then H(-z) is continuous forall ze K . Hence letting
t T ¢ in the inequality (30), we get

D(H(t,x)+H(faJ’)»H[t’HTyJ+H(t’x;yD &)

:0’

forall re[a,b] and x,yeK.
Thus forall ¢ e€[a,b], x,y € K, we have

A2 e

Since H is convex, we have
x+y 1
H(t,Tj :E[H(t,x)+H(t,y)J, (33)

for all re [a,b], x,ye K. Thus for all te [a,b] , the
set-valued function H(t,-):K —cc(Y) satisfies the
Jensen Equation (33). Now by Lemma 4.4, there exists
an additive set-valued function A4(¢):K —cc(Y) anda
set B(r)ecc(Y), such that

H(t,x):A(t)x+B(t), (xeK,te[a,b]). (34)
Substituting H (,x)= A(t)x+B(¢) into inequality

(13), we deduce that for all te[a,b] there exists
M (1) €[0,+0), such that

D(A(t)x,A(t)y)<M

consequently, for every te[a,b] the set-valued func-
tion A(7): K — cc(Y) is continuous, and

A(1)(4) eL(K,cc(Y)) )

Since A(r)(-) is additive and 0eK , then
A(r)={0} forall re[a,b],thus H(-0)=B().

(Ox=s (x.yeK),
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The Nemytskii operator N maps the space
RV, ([a,b],a;K) into the space R, ([a,b];cc(Y)),
then

H(-0)=B(-)e RW, ([a.b].a:K).

Consequently the set-valued function H has to be of

the form

H(t,x): A(t)x+B(t), te[a,b], xek,

where A(t)e L(K,cc(Y)) and
BeRW, ([a,b],a;cc(Y)) )

Theorem 5.3 Let (X,"”), (Y,"") be normed spaces,
K a convex cone in X and ¢,,¢, be two convex
@ -functions in X , strictly increassing, satisfying oo,
condition and 1im,..9;' ((p1 (t))/t =o0. If the Nemytskii
operator N generated by a set-valued function
H:[a,b]xK —)cc(Y) maps the space RV{p2 ([a,b]a;K)
into the space RW, ([a,b],a;cc(Y)) and if it is
globally Lipschizian, then the set-valued function H
satisfies the following condition

H(t,x)=H(t,0) (t ela,b], x EK);

i.e., the Nemytskii operator is constant.
Proof. Since the Nemytskii operator N is globally

Lipschizian between RV, ([a,b],a,K ) and the space

RW{p1 ([a,b],a;cc(Y)) , then there exists a constant M ,
such that

1= £l,, =/ (a)-

_i . [
= 1nf{g >0:0, [WJWU

Hence, substituting in the inequality (36) the auxiliary functions f (i =1,

D(H (t.x)+ H (ty,x), H (1. x) + H (£,0)) < M |ex (1

By Lemma 4.3 and the above inequality, we get

Copyright © 2013 SciRes.

D, (Nfi.Nf,)
<M||f = 1l,,, (fi- 5 € RY,, ([a,b], & K)).

Let us fix 1,7, €[a,b] such that ¢, <r. Using the
definitions of the operator N and of the metric D, ,
we have

D(H(t,f1 (0))+H (2, /3 (1))
H (10, 1))+ H (1.1, (1)

(36)
L )| 1A _f2”</>z ” (m}

(fl,f2 €RV, ([a,b],a;K))
Define the auxiliary function 7, :[a,b] —[0,1]. by

(35)

20,

SM|a(t)—a
1, a<t<t,,
t, ST,

The function 7, € RV, ([a,b],a) and

Y, (:[a.b]) =l () - ()| 03" [MJ

Let us fix xeK and define the functions
fi:[a.b] > K (i=1,2) by
H(D)=x, fo(r)=n(r)x, 7e€[ab] 37)

The functions f; € RV, ([a,b],a,K) (i=12) and

|| +inf {g >0: supZ(p2
n =1

)-a(t)

(= 72) ()= (= 1) (0 ||]| (1)~ a(z,l)lsl}

g|a t)— ( )|

3

2) defined by (37), we obtain

N R S
# [|a(t)—a(t0)|J I
af v
(1)~ (1,)| o (p(z)—a(%)l]
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D(H (t,x),H(t,0)) < M| (t) - (1, )

Since  lim,.0' (@, (t))/t =, letting ¢, T¢ in the
above inequality, we have

D(H (t,x),H(t,0))=0.
Thus for all ¢e [a,b] and forall xe K, we get
H (t,x)=H/(t,0).

Theorem 5.4 Let (X,"”), (Y, |||) be normed spaces,
K a convex cone in X and ¢ be a convex ¢ -
function in X satisfying the oo, condition. If the
Nemytskii operator N generated by a set-valued func-
tion H:[a,b]xK—)cc(Y) maps the space
RVw([a,b],a;K) into the space BW([a,b];cc(Y))
and if it is globally Lipschizian, then the left re-
gularization H*:[a,b]xK—>cc(Y) of the function
H defined by

. H(t,x), te(a,b],xeK;
i (t,x):: 1ian(s,x), t=a,xek,

satisfies the following conditions:
o forall re[a,b] thereexists M (z),such that

T =l

=1, =||f1(a)—fz<a)||+inf{8>0:supi¢

From the definition of f; and f,, we obtain

1= £all, == 1+

W.AZIZ

D(H*(t,x),H*(t,y))SM(t)"x—y” (x,y eK).

o H(t,x)=A(t)x+B(r) (t ela,b]xe K) , Wwhere
A t) is a linear continuous set-valued function, and
Be BW([a,b];cc(Y)).

Proof. We take €[a,b], and define the auxiliary
function 7, :[a,b] —>[0,1] by:

1, a<rt<{t,
n(o)=ia) o)
a(t)-a(b)’

The function 7, € RVW ([a,b],a;K) and

v, (774,[a,b]) = ¢{m]|a(b)—a(t)|.

Let us fix x,yeK and define the functions
fi:[a.b] > K (i=1,2) by

H(2)=x, f,(z)=n,(7)(y—x)+x, 7€[a,b].
The functions fl.eRV(p([a,b],a;K) (i=12) and

(3%

|4 = 2) ()= (= 1))

5|a(t.)—a(t__l)| J|a(ti)_a(ti1)|£l} (39)

1

Since the Nemytskii operator N is globally Lip-
schitzian between

. (40)
) 1
|a(b)—a(t)|(ﬂ (|a(b)—a(t)|}

RV,([a,b).a;K) and BW ([a,b];cc(Y)),
then there exists a constant A/ , such that

D(H (b, £,(5))+H (. £, () H (1. () + H (b, £ (b)) < M | i £,

for f,,f, €eRV, ([a,b] ;o K ) . By Lemma 4.3, substituting the particular functions f; (i = 1,2) defined by (38) in the

above inequality, we obtain

D(H (b, f; (b)) + H (1. £, (1)) H (1. £, (1)) + H (b, £ (6))) < M (1) [x = 3], -

Copyright © 2013 SciRes.

(41
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forall x,yeK,te[a,b]. By Lemma 4.3, we get
D(H (t,x),H(t,y)) < M (1)[|x~y],

forall re[a,b) and x,yeK.
In the case where t=5b, by a similar reasoning as

(42)

573

above, we obtain that there exists a constant M (b) ,
such that

D(H(b,x),H(b,y))SM(b)"x—y"(ﬂ (x,yeK). (43)

Define the function M :[a,b] >R by

M) M| 1+ ! ,ast<b, (44)
)= _ 1
|a(b)—a(t)|§0 1(|a(b)—a(t)|]
M (b), t=bh.

Hence, fine the partition 7, of the interval [z,,7] by

D1 (1), 1(1.3)) £ ()1,

te[a,b],x,yeK. where ti—fFl:t;—tO, i=1,2,---,2n.

n

By passing to the limit in the inequality (41) by the
inequality (43) and the definition of H~ we have for all
tela,b] thatthere exists M (¢), such that

D(H" (t,x),H" (t,y)) < M (t)|x -],
(t ela,b]x,ye K)

Now we shall prove that H~ satisfies the following
equality

H (t,x):A(t)x+B(t) (t e[a,b],xeK),

where A(t) is a linear continuous set-valued functions,
and

Be BW([a,b];cc(Y)).

Let us fix #,4,€[a,b],neN such that 7, <r. De-

s (T)ZZ

The function 7, RV(p ([a,b],a;K) and

V¢7 (US’a;[a’b]) :|a(t)_a(to)|¢(

The Nemytskii operator N is globally Lipschitzian
between RV, ([a,b],a;K) and BW([a,b];cc(Y)) ,
then there exists a constant A > 0, such that

;D(dfl,fz (HJZZi’IZi—I)’dfi,f'z (H’tZifl’ZZi))
<M|fi-1£l,

where

(45)

A eRVw([a,b],a;K)
and
dg . (H,s,t) =H(S,f1 (S))+H(t,f2 (t)) .

We define the function 7, :[a,b] »[0,1] in the fol-
lowing way:

a<7<ty,
t,<t<t,i=13,---2n-1;
t,<t<t,i=2,4,-2n

2n J
(1)~ a(s)] )

Letus fix x,y €K and define the functions f;:[a,b] > K by:

Copyright © 2013 SciRes.
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.. 1 1 .
f,(z’).zzns(r)x—i- 1—5775(7) ¥, e[a,b],
(46)
1 1
fz(r):5[1+775(r)]x+5[1—775 }y, rela,b].
The functions f; € RV, ([a,b],a K) (i=12) and
X~ y
I, -E2A
Substituting in the inequality (45) the particular functions f; (i =1, 2) defined in (46), we obtain
o + + 1
ZD[H(tzl.l,x)+ H(t2i,y),H(12”,%j+ H(I%%jj < EM"x—y"(p x,yeKk. 47)
i=1
Since the Nemytskii operator N maps the spaces 547-12-05-B.
RV, ([a,b],a;K) into BW([a,b];cc(Yg[), then for all
ze K , the ‘funcn.on H.(~,z) e BW a,b];cc(Y)) ) REFERENCES
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