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ABSTRACT 

The uniqueness theorem of time-harmonic electromagnetic fields, which is the theoretical basis of boundary value 
problem (BVP) of electromagnetic fields, is reviewed. So far there are many versions of the statements and proofs on 
the theorem. However, there exist some limitations and lack of strictness in these versions, for instance, the discussion 
of the uniqueness of solution without considering the existence of solution and the lack of strictness in the case of loss-
less medium. In contrast with the traditional statements and proofs, this paper introduces some important conclusions 
on operator equation from modern theory of partial differential equation (PDE) and attempts to solve the problems on 
the existence and uniqueness of the solution to operator equation which is derived from Maxwell’s equations of 
time-harmonic electromagnetic fields. This method provides a novel and rigorous approach to discuss and solve the 
existence and uniqueness of the solution to time- harmonic fields in the new mathematical framework. Some important 
conclusions are presented. 
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1. Introduction 

In the electromagnetics it has important significance to 
research time-harmonic electromagnetic fields. On one 
hand, most fields appeared in practical engineering prob-
lems have harmonic time variation and we can solve 
these engineering problems directly through researching 
time-harmonic fields. On the other hand, time-varying 
fields can be transformed into the superposition of 
time-harmonic fields with the Fourier series or Fourier 
transform [1,2]. Therefore, a thorough understanding and 
discussion on the existence and uniqueness of the solu-
tion to time-harmonic electromagnetic fields are impor-
tant in the study of all electromagnetic fields and elec-
tromagnetic wave phenomena. 

The necessity and importance of the uniqueness theo-
rem consist in that if the appropriate initial-boundary 
value conditions of Maxwell’s equations are given, then 
the solution is determined uniquely. So regardless of the 
method by which the equations are solved, the same solu-
tion will be obtained. Recently, the issue on the unique-
ness has aroused much concern [3-9]. In this paper we 
mainly deal with the existence and uniqueness of the so-
lution for time-harmonic electromagnetic fields. Firstly, 

this paper quotes some most influential versions of the 
uniqueness theorem of traditional time-harmonic elec-
tromagnetic fields theory and presents their proof method. 
Secondly, we point out the limitations and lack of strict-
ness of traditional theory and make a result that the tradi-
tional theory has not yet solved the existence and 
uniqueness of the solution completely. Moreover, we cite 
the proof of existence and uniqueness of the weak solu-
tion to 0-Dirichlet problem of the Poisson equation as an 
example to indicate that it is a rigorous method adopting 
functional theory to discuss the existence and uniqueness 
of the solution to PDE. Finally, we introduce a novel 
consideration of the operator equation based on the mod-
ern theory of PDE, derive the operator equations of the 
time-harmonic electromagnetic fields from Maxwell 
equations, point out the substaintial difficulty in the 
process of proving the existence and uniqueness of the 
solutions and present some important conclusions. 

2. The Statements and Proof Method of  
Traditional Theory 

Maxwell’s equations for time-harmonic fields are 

( ) ( ) ( )H r J r j D r  
     

        (1.1) 
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( ) ( )E r j B r  
   

          (1.2) 

( ) ( )D r r 
 

  
             (1.3) 

( ) 0B r                  (1.4) 

The electric current continuity equation is 

( ) ( )J r j r  
  

          (1.5) 

w   is called the electric field intensi /m), here ty (V( )E r
 

( )H r
 

 the magnetic field intensity (A/m), ( )D r
 

 the 
electric displacement or electric flux intensity (C/m2), 

 the m etic induction or magnetic flux intensity 
(Wb/m2), 

( )B r
 

agn
( )J r


 the electric current density (A/m2) and 
( )r


 the electric charge density (C/m3). 
There are many versions of the statements and proofs 

of the uniqueness theorem of time-harmonic fields in 
classical monographs and literatures. One of the most 
well known versions is cited as follows with the form of 
proposition. 

Proposition 1. Uniqueness theorem of time-harmonic 
fields in simple connected domain 

For the time-harmonic fields, considering a simply 
connected domain V bounded by closed surface S, the 
medium is isotropic and linear, where both V and S con-
tain only ordinary points. The solution satisfied Max-
well’s Equations (1) and its boundary conditions must be 
unique if the following items are specified: (1) the 
sources density within V, that is, current density distribu-
tion J


 and equivalent magnetic current density distri-

bution mJ


; and (2.1) the tangential components of the 
electric field or the tangential components of the mag-
netic field over whole boundary surface S or (2.2) tan-
gential electric field over part of the surface S and tan-
gential magnetic field over the remainder of S. 

For the proof of Proposition 1, almost all the mono-
graphs and literatures adopt the method which belongs to 
a kind of “energy integrals” method [10]. Through con-
structing an expression of “energy integrals” based on 
Poynting theorem or Maxwell’s equations, the “energy 
integrals” method has been applied to the proof of 
uniqueness theorem of the time-varying fields [11]. 

The proof of Proposition 1 under the assumption that 
the medium is lossy can be seen in [2,12-15]. For the case 
of a domain with complicated boundary, the entire do-
main can be divided into a number of sub-domain and 
make every sub-domain correspond with the simply 
boundary. So the multiply connected domain can be ana-
lyzed by decomposing it into the union of simply con-
nected domain. The statements and proof can be seen in 
[2,14]. 

It is assumed that medium is isotropic, linear and 
sources are located inside domain V in Proposition 1. In 

fact, it can be generalized to the case of anisotropic me-
dium and sources located outside domain V. For simpli-
fication, the isotropy and linear medium is discussed in 
this paper and the argument in linear anisotropic medium 
is similar. 

3. Deficiency of the Traditional Theory 

There exist some incompleteness in Proposition 1 and we 
explain it as follows. 

3.1. Existence of the Solution Has not been 
Proved Rigorously 

For the proof of uniqueness, traditional theory implies a 
physical judgment or premise that the solution must exist. 
It does not prove the existence of the solution and merely 
states that if a solution exists for given BVP then the so-
lution is the only solution. However, it has been con-
firmed that the solution of many PDE do not exist really. 
For some equations if we assume the existence of the 
solution and construct the form of the difference solution, 
we can formally “obtain” the proof of the uniqueness. 
Obviously, the treatment is meaningless because the so-
lution may not exist. For example, H. Lewy [16] pro-
vided an equation as follows: 

  2x y tu iu ix y u f x y t , ,       in  Ω   (2) 

where   is a set satisfied 2 2x y a  , t b , a and b 
are arbitrary fixed positive number. Under the premise 
about existence of the solution of Equation (2) we can 
“obtain” the uniqueness of the solution by using reduc-
tion to absurdity. However, in fact there exists a function 

 f C   (    
0

m

m

C C






    such that Equation (2) 

has no solution in  C1  . Since a and b are arbitrary, 
Equation (2) has no solution in set  

  3 2 2 2 2, ,r x y t E x y t r       for all . 0r 

Detailed discussion of Equation (2) can be seen in [17]. 
In the sense of physics, the solution of practical elec-

tromagnetic BVP always exists. However, it does not 
mean that mathematical equations derived from the prac-
tical BVP must have a solution and the solution is unique. 
The existence of the solution still needs a rigorous 
mathematical proof and the judgment of physical concept 
is insufficient. Consequently, it is absolutely necessary 
and important to describe the reasonableness of mathe-
matical model and prove the existence of the solution 
rigorously. 

3.2. The Lossless Case has not been Really Solved 

In the process of the traditional proof on Proposition 1, 
lossy medium is assumed, that is, at least one of conduc-
tion loss, polarization loss and magnetization loss is not 
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ess theorem in lossless me-
di

 this paper at-
te

y and Application of Functional 

Ti tion and frequency domain wave 

 

0-Dirichlet BVP of Poisson equation 

0-Dirichlet BVP of Poisson 
eq

equal to zero. The field in a lossless medium is treated as 
the limit of the corresponding field in a lossy medium 
when the dissipation approaches to zero. In sense of 
mathematics this treatment is not rigorous because the 
validation in the case of a parameter approaching zero 
does not guarantee the validation in the case of the pa-
rameter at the point of zero. 

The proofs on the uniquen
um appeared in many books and literatures such as [2] 

[14] are only an interpretation based on the assumption 
that the case in lossless medium has been validated. The 
discussion on uniqueness theorem in lossless medium is 
avoided in [15], which write “The proof of the theorem 
hinges on the assumption that the permittivity and the 
permeability of the medium have a small imaginary part. 
Assume the medium is slightly lossy.” Similarly, [18,19] 
have not made a definite conclusion and proof on the 
lossless case. Pozar in [20] considers that the solution for 
the lossless medium may be not unique unless the dissi-
pation of medium is added. Hence, traditional theory has 
not given the proof of the uniqueness theorem in lossless 
medium strictly, which is a long-neglected problem. It is 
to be confirmed and proved whether there exists the 
uniqueness theorem in lossless medium. 

For the final settlement of the problem
mpts to analyze the existence and uniqueness of the 

solution of time-harmonic fields by using related theory 
of functional analysis and PDE, offer a new kind of 
statement and proof method including considering of the 
existence. 

4. Theor
Analysis to PDE 

me domain wave equa
equation (Helmholtz equation) in electromagnetic fields 
belong to hyperbolic equation and elliptic equation, re-
spectively. Obviously, PDE is a kind of operator equation.
We will give a very famous example in which 0-Dirichlet 
BVP of Poisson equation is analyzed successfully to il-
lustrate the application of functional analysis to the prob-
lem on the existence and uniqueness of the solution of 
operator equation. 

Historically, the 
2u f   had been calculated directly for a long time. 

there exist great difficulties in proving the 
universality of the existence of the solution. After 
long-time endeavor, the idea is changed into the present 
method, that is, the weak solution of the equation is 
sought firstly, then its existence and uniqueness is proved, 
and finally its smoothness is determined. Thus, the fol-
lowing theorem is obtained. 

Theorem 1. Consider the 


However, 

uation 

2u f      (in Ω)          (3.1) 

0u


                     (3.2) 

 2f L  
lution, wher

, the equation must have a unique week so-
e nR   is a bounded open domain, 

 2L   represen atic integrable function space. 
definition of weak solution of Poisson equatio

ts quadr
The n 

(3

has become a basic re-
se

e discussion to operator equation, 
w

) For any 
bo

.1), (3.2) is given in [21]. The Poincare inequality and 
Riesz representation theorem are used to prove the exis-
tence of weak solutions and reduction to absurdity is used 
to obtain the uniqueness of the solution [21]. Hence, the 
proof of Theorem 1, which is based on the theory of 
functional analysis, is rigorous. 

Such mathematical method 
arch method in modern theory of PDE. As an indis-

pensable tool in modern theory of PDE, functional analy-
sis provides an important idea and model for solving the 
existence and uniqueness of time harmonic electromag-
netic fields solutions. 

For convenience of th
e cite some related definitions and important theorems 

in functional analysis ([21-25]) as follows. 
Lemma 1. (Riesz representation theorem
unded linear functional f defined in a Hilbert space H, 

there exists unique fy H  such that    , ff x x y  
and ff y  for every x H , where   represents 
a no rily, for any H , a b ded linear 
functional f can be defined in f  

rm. Contra  fy 
 term

oun
s o  , ff x x y , 

and furthermore, ff y  holds (see [2
Riesz representation t em indicates that a conti

1,22,25]). 
nu-he

ou

. Assume 

or
s linear functional can always be represented by an 

inner product. 
Definition 1  ,a u v  

, 
is a bilinear functional 

defined in Hilbert space H
1)  ,a u v  is called symmetrical if  such 

th
 ,  u v H 

at    ,a v u ;  ,a u v  is c jugate 
symm H

,
,  u v

a u v
etrical if 

alled con
   such that    , ,a u v a v u . 

2)  ,a u v  is called unded if   atbo 0M   such th  
 , u va u v M    ( ,  u v H  ). 

 ,a u v  is called weakly coercive if 3)   0   
su hat ch t  2

,
H

a u v u  for any u H . 
4)  ,v  a u rcive or po  dis called coe esitive finite if   

0  hat   such t
2

,
H

a u v u  for any u H . 
inition 2. A inDef ssume A is a linear operator ed

H
onjugate or self-adjoint operator in 

X 

def  in 
ilbert space X, 
1) A is called self-c
if conjugate operator *A  of A exists and *A A . 
2) A is called symmetric operator X in  if 

   , ,Au v u Av  for any ,u v X . 
 weakly c  operator i3) A is called oercive n X if   

0  such that  c
2

,Au u c u  for any u X . 
A is called  4) positive definite operator ifin X    

0  such that  c
2

,Au u c u  for any u X . 
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Th initions still apply when e above def  D A  (the 
de

. (The Lax-Milgram theorem [22]) Assume 

finition domain of operator A) is a dense linear sub-
space of X, 

Lemma 2
 ,u v  is a bounded, coercive and conjugate bilinear 

al defined in a Hilbert space H, then there must 
exist a unique continuous linear operator 

a
function

 A L H  
such that    , ,a u v u Av  ( ,  u v H  ). Fu  rthermore,

1 1
H

A   , where   is 

fu

 

Th of the existence and uniqueness theorem of the 

 and Uniqueness of the Solution 

The losed convex subset of real 

pos er. 
ilgram theorem indicates that t

itive numb
The Lax-M he bilinear 
nctional satisfied specific characteristic can constitute a 

linear operator with continuous inverse. The generalized 
Lax-Milgram theorem can be obtained when the coercive 
condition becomes the weak coercive condition [21]. 

5. Modern Theory of Operator Equation in
PDE 

e proof 
solution to operator equation will be realized through the 
following steps. 

5.1. The Existence
to Variational Equation as Well as Its    
Relation with Corresponding         
Variational Problem 

orem 2. Assume U is a c
Hilbert space H. If  ,a u v  defined in U is a bounded, 
coercive and bilinea ional, then for any *r funct f H  
( *H  is a conjugate space of H, for Hilbert   space

*H H ) there must exist unique u U  such that 

   , ,      ( )a u v f v          (



v H 4.1) 

and u is the solution of the following variational problem 

       1
, ,

2v H v H
I u Min I v Min a v v f v

 
   

 
  (4.2) 

Furthermore, the solution of variational problem is also 
un

nal” condition of Theorem 2 is 
ch

 

ique (see [22,25-27]). 
If the “bilinear functio
anged into the “conjugate bilinear functional” condi-

tion, then the conclusions of Theorem 2 still hold for a 
complex Hilbert space, except that the expression of (4.2) 
is changed into the corresponding expression: 

        , , ,
2v H

1
I u Min a v v f v v f


   . 

The coercive condition plays a very crucial role in the 
pr

tric c

to 
w

 3 ([27]). Assume U is a closed convex sub-
se

oof of Theorem 2 because it guarantees the existence 
and convergence of minimization sequence which is con-
structed in the proof. The completeness of space U en-
sures that u U is the limit of the sequence. Meanwhile, 
the symme ondition guarantees that the minimum 
expression of functional has the meaning of existence. 

If coercive condition in Theorem 2 is weakened in
eak coercive condition, then the following theorem is 

obtained. 
Theorem
t of real Hilbert space H. If  ,a u v  defined in U is a 

bounded, weak coercive and bilinear functional, then for 
any *f H  there must exist unique u U  such that 
   , ,a u v  ( v Hv f   ) and u make first order 

nc  
 the 

variatio  fun of tional I v  equal to zero, where 
     1 2 , ,I v a v v f v  . 
If the “bilinear functional” condition of Theorem 3 is 

changed into the “conjugate bilinear functional” condi-
tion, then the conclusions of Theorem 3 still hold for a 
complex Hilbert space, only the corresponding expres-
sion of variational problem becomes  

        ,1 2 , ,I v a v v f v   v f . 

5.2. The Existence and Uniqueness of the Solution 

Theo lished the existence and 

ear, 
co

of Weak Form of Operator Equations as 
Well as Its Relation with Corresponding 
Variational Problems 

rem 2 and 3 have estab
uniqueness theorem of the solution to variational equa-
tions and indicated the only solution can be obtained by 
solving its corresponding variational problems. Accord-
ing to the relation between bilinear functional and linear 
operator, which can be found from Lemma 2, the exis-
tence and uniqueness theorem of the solution to weak 
form of operator equation can be obtained as follows. 

Theorem 4. If A defined in a Hilbert space X is a lin
ntinuous and positive definite operator, then for any 

*f H  there must exist unique u X  such that 

   , ,       ( )Au v f v          (v X 5.1) 

and u is the solution of the following variational problem 

       1
I , ,

2v X v X
u Min I v Min Av v f v

 
   

 
   (5.2) 

Theorem 4 can be derived from Theorem 2 and its de-
ta

 

iled proof can be seen in [22,25-27]. Equation (5.1) is 
called the weak form of operator equation Au f  be-
cause compared with the original operator equation, Eq. 
(5.1) weaken the requirements to u. Theorem 4 can be 
generalized to the case of complex Hilbert space, except 
that the expression of corresponding variational problem 
becomes 

        1
, , ,

2v H
I u Min Av v f v v f


      (5.3) 

Clearly, positive definite operator is a stronger condi-
tion in the practical application. When the weak coercive 
condition of A is satisfied, the following theorem will be 
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 5. If A defined in a Hilbert space X is a linear, 
co

obtained. 
Theorem
ntinuous and weak coercive operator, then for any 

*f H  there must be unique x X  such that 

   , ,    ( )Ax v f v           v X   (6.1) 

and x satisfied , where   0I x 

      1
, ,

2
I x Ax x f x             (6.2) 

that is, x make the first order variation of functional 
 I x  equal to zero [27]. 

 proof of Theorem 5 The can be realized through taking 
advantage of the conclusion of Theorem 3. Theorem 5 
can be generalized to the case of complex Hilbert space, 
except that the functional expression of corresponding 
variational problem becomes 

        1
, , ,

2
I x Ax x f x x f        (6.3) 

5.3. The Existence and Uniqueness Theorem of 

Let rt space H 

Solution to Operator Equation 

( )D A  be a linear dense set in real Hilbe
and or A be mapping from ( )D A  to H. For sim-
plification, we assume the discuss uation 

operat
ed eq Au f  

belongs to a kind of BVP of differential equation.  
time operator A is a differential operator and domain 

( )D A  consists of smooth functions with certain differ-
order, which is greater or equal the order of differ-

ential operator. Therefore, the solutions of BVP on linear 
set ( )D A  belong to the common sense solutions. If 
BVP  solutions on ( )D A , then the solutions is 
called classical solution of  or its equivalent varia-
tional problems. However, in general we can not guaran-
tee the existence of the solution to operator equation or 
variational problem. For BVP of Poisson equation in 
Theorem 1, if function f has no continuity on bound-
ary  , then the equation has no solution in linear set 

 

 At this

ential 

 have
 BVP

  2 , 0D u C u    . But, when ( )D A  is extended A


to a linear set of Sobolev space 

     1 2
0 ,H v L Dv    2 , 0L v


   , 

at this time the weak form of the original equation on 

r dense set 

in erato

expended domain always has solutions. Obviously, this 
solution is not the solution of the original BVP in the 
sense of classical signification and is called a weak solu-
tion of the original equation [28-30]. We will build the 
connection between operator equation and variational 
problem through the weak form of operator equation and 
obtain the existence and uniqueness proposition of op-
erator equation in the sense of weak solution. 

Proposition 2 ([25]). Let  D A  be a linea

 real Hilbert space X and op r A:  D A X . For 
operator equation 

  Au f u D A              (

 can be extended 

7.1) 

where the definition domain of A to 
space AH , AH  is a Hilbert space which is obtained by 
comple  otion f  D A  in terms of norm 

A
  and 

 ,
A

u Au u  is a linear, continuous, sym. If A metric 
and positive def

y

inite operator, then the following conclu-
sions hold. 

1) for an  *f X  there must exist unique 0 Au H  
such that 

   0 , ,     ( A )Au v f v v H            (7.2) 

and is the only solution of the following 0u  
lem

variational 
prob  

       1
, ,

2A Av H v H
I u Min I v Min Av v f v

 

    
 

   (7.3) 

2) If  0u D A
.1). If 

, then is the classical solution of 
Eq

0u  
uation (7  0u D , then 0u  is the weak so-

lution of Equation (
Proof: It can be proved

A
7.1). 

 directly by using Theorem 4 
an

ork and (7.3) 
co

d, the following proposi-
tio

. Let be a linear dense set 
in

))

d the definition of weak solution directly. 
(7.2) corresponds to principle of virtual w
rresponds to energy method. 
If the conditions is weakene
n will be obtained. 
Proposition 3([27])  D A  

perato real Hilbert space X and o r A:  D A X . For 
operator equation 

  ( (Au f u D A              (8.1) 

where the domain of A can be extended to space AH . If 
A is a linear, continuous, symmetric and weak co ive 
operator, then the following conclusions hold. 

1) for any *

erc

f X  there must exist unique 0 Au H  
such that 

   0 , ,     ( A )Au v f v v H          (8.2) 

and  satisfied 0u  0 0I u  , where 

    1
, ,

2
I u Au u f   u        (8.3) 

2) If  0u D A
 (11.1). If

, then is the classical solution of 
Eq

be generalized to the case of 
co

0u  


. 
uation  0u D A , then 0u  is the weak 

solution of Equation (
Proposition 2 and 3 can 

8.1)

mplex Hilbert space, only need to change the func-
tional expression of corresponding variational problem 
(7.3) and (8.3) into (5.3) and (6.3). In Proposition 2 and 3, 
symmetry condition guarantees that the values of func-
tional expression must be real and makes the computation 
of extreme values feasible. The positive definite or weak 
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coercive condition guarantees the existence of inverse 
operator and make the solution of weak form of operator 
equation exist. 

Proposition 2 and 3 have summarized the existence 
an

ation of Operator Equation 

Ba on the 

following we firstly prove the existence and 
un

s 

For e scalar Poisson 

d uniqueness theorems of weak solution to operator 
equation, moreover, provided a feasible and effective 
solving method of operator equation in the view of varia-
tional principle. 

6. The Applic
Theory in the Time-Harmonic Fields 

sed on the statements above, we can get an idea 
proof of uniqueness theorem of time-harmonic electro-
magnetic fields. First we should deduce an operator 
equation (or weak form of Helmholtz equation and varia-
tional problem) from Maxwell’s equation, then examine 
whether the operator is a linear, continuous, symmetric 
and positive definite (or weak coercive) operator, finally 
by means of Proposition 2 and 3 obtain a conclusion 
about it. 

In the 
iqueness theorem of Poisson equation in the lossless 

case in brief, then deduce the weak form of Helmholtz 
equation and its variational problem, finally point out the 
substaintial issues appeared in the process of proving the 
existence and uniqueness of the solution to Helmholtz 
equation in the view of modern mathematical theory. 

6.1. The Realization on Proof of the Uniquenes
Theorem of Poisson Equation 

simplification we only discuss th
equation to show the application of Proposition 2 and 3. 
The argument in the case of vector Poisson equation is 
similar because vector Poisson equation can be decom-
posed into scalar Poisson equation. 

Case A: For 0-Dirichlet BVP ( 0u


 2L

 ) of the Poisson 

eq

 1, L

uation 2u f    ( u , f   ), which is dis-

cussed in Theorem et A    . By specifying the 

inner-product  ,u v uv  can verify that op- *d


, we 

ar, self-adjoint and positiveerator A is line  definite. Hence, 
in accordance with Proposition 2, we know that both the 
solution of BVP of operator Equation (3) and the solution 
of the minimum value problem of the corresponding 
variational problem      1 2 , ,J u Au u f u   exist 
uniquely and are equal. d with 
the isotropic and uniform linear medium and under ho-
mogeneous boundary conditions, the weak solution of 
scalar Poisson equation must exist uniquely. 

Case B: For Poisson equation with homog

 So within the region fille

eneous and 
mixed boundary conditions 

 u                         (9.1) 

1
2

0,   0
S

S

u
u u

n
 

  


           (9.2) 

where 1 2S S S   is the boundary surface. By specify- 

r-product ing inne   *,u v uv d


  , we can easily verify 

that if   and   are non-negative and not equal to zero 
simultaneity, then operator  A      is self-adjoint 
and positive definite. By Pr e unique weak 
solution must exist and it can be obtained by solving the 
minimum point of corresponding variational problem. 

Case C: For Poisson Equation (9.1) with non-hom

oposition 2 th

o- 
geneous boundary conditions, the boundary conditions is 
specified as follows: 

1
2

,   
S

S

u
u p u q

n
 

  


          (10) 

Through a transform u u    , we can get the new 
unknown function u , where   is arbitrary function 
which satisfies non-homogeneous boundary conditions 
(10). Adopting the definition of inner-product 

  *,u v uv d


  , operator  A      on variable 

u  
fun

becomes a se rator and welf-adjoint ope  can write the 
ctional expression of u by the functional expression of 

u . In terms of the discussion of segment B, we know 
t when tha   and   are real or real function, A is a 

self-adjoint operator So . Ju  can be written by the rela-
tion between the function xpression of u and the func-
tional expression of u

al e
 . By the standard variational prin-

ciple, the extreme p int of o Ju  must exist uniquely. 
Hence, the extreme point of Ju  must exist. When   
and   are real and real funct , the weak solution of 
Poiss n equation with non-homogeneous boundary con-
ditions must exist. Thus, we finally obtain the existence 
and uniqueness theorem of the solution to Poisson equa-
tion with non-homogeneous boundary conditions within 
region filled with the isotropic and uniform linear medium. 

6.2. The Application of Operator Equation  

ion
o

As a  conclusions in 

tional of Helmholtz Equation with 

By tw  (1.1) and (1.2) of Maxwell’s equa-

Theory in Helmholtz Equation 

 kind of elliptic PDE, the available
[25,26,28,30,31] can not be applied to scalar wave equa-
tion. We will discuss vector wave equation of electric 
field by using of Proposition 2 and 3. The argument in 
the case of vector wave equation of magnetic field is 
similar. Scalar wave equation is a special case of vector 
wave equation. 

6.2.1. The Func
Homogeneous Boundary Conditions in the 
Lossless Case 
o curl Equations
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tions we can deduce the double-curl equation of electric 
field as follows: 

2
0 0

1
r

r

E k E j J 


 
     

 

  
     (11.1) 

As a vector problem, inner-product 

is  

  *
,u v uv d


 

  
 

 specified. For the double-curl equation, let

2
0

1
r

r

A k 


 
    

 
        (11.2) 

And we have 

  * 2
0

1
, r

r

AE F F E k E d


  
       

  
 



  
   (12) 

By the second vector Green theorem, (12) is changed 
in

  

to 

 

    

* *2
0

* *

1
,

1
              

r
r

S
r

AE F E F k F d

E F F E n








  
       

  

         





    

   
 dS


 (13) 

If both E and F satisfy homogeneous Dirichlet bound-
ary condition 


10                       on    n E S 


   (14.1) 

and homogeneous Neumann boundary condition 

      2

1  
0      on    e

r

n E n n E S


         (14.2) 

where , then surface integral in (13) is equal 1 2S S S 
 If rto zero.   and e  are real or real function, then (13) 

can be wri  into:    , ,tten AE F E AF
   

, that is, A is a 
self-adjoint operator. djointness of A 
defined by (11.2) need the following conditions: 1) r

Hence, the self-a
 , 

r  and e  are real or real function; 2) boundary con -
s are mogeneous. With these conditions substitut-

ing (11.2) (11.1) into (7.1) (5.3), we have 

di
tion ho

* 21 1   
0

* *0 0

( )
2

        
2 2

r
r

J E E E k E d

j j
E J d J E d




 



 


      

 


     



 
   

   (15) 

Assume that the medium is uniform and quote the first 
vector Green theorem and boundary conditions (14.1) 
and (14.2), (15) becomes 

   * *2
0

1 1

 
   

2

* *0

*

        
2

1
        

2 eS

j
E J E J d

n E n E dS






     

   





   

            (16) 

We can know that (11.1) corresponds 
tion (7.1) or (8.1), (13) corresponds to weak form of op-
erator Equation (7.2) or (8.2), (16) corresponds to the 
fu

to operator equa-

nctional of variational problem (7.3) or (8.3). Mean-
while, the weak form of Helmholtz equation (13) is 
agreement with its corresponding variational problem 

 Min JE


 or 0JE 


. 
In the following we will discuss the property of the 

operator A. By definition we have 

  * 2
0

1
,  r

r

AE E E E k E d


  
       

 


 

    
 (17) 

By the first vector Green theorem and boundary 
tions (14.1) and (14.2), (17) becomes 

condi-

     * *2
0

1 1
,  

2 r
r

   
2

*
              eS

AE E E E k E E d


 

n E n E dS

        

   

     

 


 

(18

By (18), we can not confirm that operator A is positive 
definite or weak coercive because 

) 

 ,AE E
 

e of
 may

equal to zero. Because of the existenc  term
 be 
 of 

2 r
r

E E E k E E d


        
  

  

*2
0 rk E E 
 

 in integrand of (18), the P lity 
can not be used to prove the positive definite or weak 
coercive of the operator A. It is the substantial difficulty 

ss of the application of Proposition 2 and 3. 
In mathematical, it belongs to one kind of eigenvalue 
problems, and its physical meaning represents resonance 
of electromagnetic fields. So this problem is an inherent 
property for time harmonic electromagnetic fields. For 
static fields no resonance can occur so the Poincare ine-
quality can be used to prove the positive definite of Pois-
son operator. Therefore, for a concrete BVP of time- 
harmonic field if the frequency range is selected so as no 
resonance can occur, the operator in this frequency range 
will be positive definite or weak coercive. If the fre-
quency is closed to resonance frequency of the structure 
to be analyzed, the operator will not be positive definite 
or weak coercive. For this situation if the operator equa-
tion is changed into linear algebraic equations in numeri-
cal algorithms we can find the matrix determinant is 
closed to zero or equal zero. 

6.2.2. The Further Discussion on the Solution to 
Helmholtz Equation 

Although the Lax-Milgram theo

oincare inequa

in the proce

rem plays a very impor-
meri-

J

tant role in the solving of the weak solution and nu
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cal sol ive or weak coercive condi-

e positive definite or the weak coercive conditions 
of

ution to PDE, the coerc
tion of the theorem greatly limit its application scope. In 
[32] I. Babuska and A. K. Aziz generalized the Lax- 
Milgram theorem under the weaker coercive condition, 
which greatly extends the application of the theorem. 
Furthermore, I. Babuska has also introduced another kind 
of coercive condition in [33], that is, strong Babuska 
condition, which further exert the application of the Lax- 
Milgram theorem in finite element numerical method. 
However, It is to be determined whether strong Babuska 
condition of operator A to Helmholtz equation is satis-
fied. 

In the discussion of variational formula of FEM (finite 
element method [34]), some books and literatures think 
that th

 operator is not necessary, only requiring that the op-
erator is linear, continuous and symmetric, and the ex-
tremal solution of variation formula must be the solution 
of the original equation. Clearly, by Proposition 2 and 3 
we can know that the above viewpoints are incorrect in 
the sense of modern mathematics theory. Proposition 2 
and 3 have clearly indicated that the positive definite or 
the weak coercive conditions of operator is sufficient 
condition of the existence of 1A , that is, sufficient con-
dition of the existence of extreme value of functional. 

7. The Uniqueness of the Solution to Linear 
Algebraic Equations 

In terms of Proposition 2 and 3, operator equations can b
solved with two kinds of distinct methods: variationa

thod and the direct solving

e 
l 
 me  method of the weak form

ns of corresponding operator are satisf
th

the uniqueness theorem of time-harmonic electromag-

tional theory are pointed out; a new 

of operator equation. These numerical methods are even-
tually reduced to find the solution of linear algebraic 
equations, that is, to find the solution of matrix equations. 
Various methods of numerical solutions can be seen in 
[22, 35-42]. 

By Lax equivalence theorem (see [21]) and Lemma 2, 
we obtain that if the positive definite or the weak coer-
cive conditio ied, 

en matrix determinant of linear algebraic equations 
obtained by the discretization of the operator equation is 
not equal to zero. For linear algebraic equations in which 
the number of unknown variables is equal to the number 
of equations, if matrix determinant of linear algebraic 
equations is not equal to zero, then the solution of linear 
algebraic equations must exist uniquely. Hence, the posi-
tive definite or the weak coercive conditions of operator 
guarantee the uniqueness of solution to matrix equation 
obtained by the discretization of the operator equation. 

8. Conclusions 

In this paper, the limitation and the lack of strictness on 

netic fields in tradi
idea to solve the existence and uniqueness of the solution 
to time-harmonic fields’ equations by means of the mod-
ern theory of PDE and functional analysis is described. 
The substantial difficulty is that the existence of term of 

*2
0 rk E E 
 

in integrand make the Poincare inequality 
not be used to prove the positive definite or weak coer-
cive of the operator. The property of operator depends on 
whether onance frequency of the structure to be ana-
lyzed belongs to the interested frequency range. The 
study work is being done and further results will be pre-
sented in future. Whether other mathematical method 
such as differentiable manifolds may be used to solve this 
problem is also interesting (private discussion with Dr. Q. 
Wang, 2006). 
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