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ABSTRACT 

In genetic association studies of complex diseases, 
endo-phenotypes such as expression profiles, epige- 
netic data, or clinical intermediate-phenotypes pro- 
vide insight to understand the underlying biological 
path of the disease. In such situations, in order to es- 
tablish the path from the gene to the disease, we have 
to decide whether the gene acts on the disease pheno- 
type primarily through a specific endo-phenotype or 
whether the gene influences the disease through an 
unidentified path which is characterized by different 
intermediate phenotypes. Here, we address the ques- 
tion that a genetic locus, given its effect on an 
endo-phenotype, influences the trait of interest pri- 
marily through the path of the endo-phenotype. We 
propose a Bayesian approach that can evaluate the 
genetic association between the genetic locus and the 
phenotype of interest in the presence of the genetic 
effect on the endo-phenotype. Using simulation stud- 
ies, we verify that our approach has the desired 
properties and compare this approach with a media- 
tion approach. The proposed Bayesian approach is 
illustrated by an application to genome-wide associa- 
tion study for childhood asthma (CAMP) that con- 
tains expression profiles. 
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1. INTRODUCTION 

Following the paradigm that the biological road from a 
genetic locus to the disease phenotype of interest leads 
through expression data, the combination of genetic and 
expression data provides a unique opportunity to identify 
the path from gene to disease, and ultimately, the under- 
standing of the genetic causes of the disease. Conse- 
quently, it has become more common to collect expres- 
sion profile data in genetic association studies [1]. Other 
endo-phenotypes, such as epigenetic data, genomic data 
or clinical intermediate phenotypes can provide similar 
insight into the path from gene to disease. Complex dis- 
eases are often defined or characterized by a set of clini- 
cal intermediate phenotypes that describe the different 
features of the disease, such as respiratory phenotypes 
and atopy phenotypes. By definition, asthma affection 
status and the two types of endo-phenotypes will be cor- 
related. If an association between a genetic locus and 
asthma affection status is observed, associations between 
the same genetic locus and the endo-phenotype will also 
be visible. It is crucial for the understanding of the dis- 
ease to be able to determine whether the effects of the 
genetic locus on affection status can be explained by its 
influence on just one endo-phenotype (i.e. respiratory or 
atopy) or whether there are additional avenues via dif- 
ferent endo-phenotypes. For expression profiles, epigen- 
tic data, etc., the goal of an integrated analysis should be 
to conclude that the genetic association is completely  *Corresponding author. 
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explained by particular genomic associations, i.e. asso- 
ciations between the genetic locus and genomic data. 
This establishes a path from the genetic locus through the 
expression data. 

While endo-phenotypes are available in many genetic 
association studies, its integration in the statistical analy- 
sis is not trivial. Methods have been proposed that use an 
adjustment procedure to test the null hypothesis of no 
direct genetic effect on the disease phenotype in the 
presence of another association between the same marker 
locus and an endo-phenotype [2-4]. However, this me- 
thod allows one only to test if the genetic locus has a 
direct, causal effect on the disease. In many applications, 
particularly for expression profiles or epigenetic data, 
one may be interested in testing the reversed null hy- 
pothesis, i.e. the presence of a direct genetic effect on the 
disease phenotype, given the genetic association with the 
particular endo-phenotype [5-11]. A rejection of this null 
hypothesis allows one to conclude that there is no direct 
genetic effect between the genetic locus and the disease. 
This means that the gene acts on the disease primarily 
through a specific endo-phenotype. This allows us to 
eliminate other potential disease paths. A mediation ap- 
proach by Imai et al. can be used to test for both the in- 
direct and direct effect of the gene on the phenotype of 
interest via the endo-phenotype [12-15]. Using a Bayes- 
ian framework in order to simultaneously test whether 
the SNP is associated with the phenotype through the 
endo-phenotype or through another path, we propose an 
approach that evaluates the origin of the genetic associa- 
tion in the presence of the genomic association. Using 
simulation studies, we verify that the proposed Bayesian 
approach has the desired properties and compare this 
method to the mediation approach by Imai et al. [12]. 
The approach is illustrated by an application to ge-
nome-wide association study for childhood asthma with 
expression profile data [16,17].  

2. METHODS 

Let n denote the number of subjects in a genetic associa- 
tion study. Let Y denote the phenotype of interest; for 
example, Y could be Body Mass Index (BMI) or Forced 
Expiratory Volume (FEV). Let X denote the coded 
genotype of the marker locus (i.e. X = 0, 1, 2 for an addi- 
tive genetic model) and K denote the endo-phenotype 
such as expression profiles, epigenetic data, or an inter-
mediate phenotype such height.  is the mean-centered, 
residuals which are obtained by regressing the phenotype 
of interest on the endo-phenotype K. Let Zj for j = 1,...,m 
denote covariates to be included in the model such as age 
or gender. For now, assume that 

Y
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m
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where 1, ,i n   and   is normally distributed with 
mean 0 and variance 2 . 

If the SNP acts primarily through the endo-phenotype 
and does not have a direct effect on the disease pheno- 
type Y, then the genotype X is independent of the pheno- 
type of interest Y given the endo-phenotype K and any 
confounders. As a result, in the frequentist setting, an- 
swering the question of interest whether the SNP acts on 
the phenotype through the endo-phenotype is equivalent 
to testing the following null and alternative hypothesis: 
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Since the alternative hypothesis is a singularity in the 
1-dimensional space for the regression parameter   
and the likelihood function is continuous, the likelihood 
ratio test is always 1 and the score test 0. Standard fre- 
quentist approaches, such as fitting a linear regression 
model and testing if   =0 will not work here. Instead, 
there are several causal methods that can be used to test 
this indirect effect of X on Y through K, especially in the 
context of genetic and genomic data [5-11]. 

The method by Imai et al. allows one to test for both a 
direct and indirect effect using a mediation approach 
[12-15].  

In the mediation framework, Y can be viewed as the 
outcome, K the endo-phenotype can viewed as the me- 
diator, and X can be viewed as the non-binary treatment 
variable, which Imai et al. can accommodate [14]. Imai 
et al. method and subsequent R package rely on the fol- 
lowing identification result obtained under the sequential 
ignorability assumption of Imai et al. [12] for any two 
levels of the treatment such that x1 ≠ x0 
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where  t  is the average causal mediation effect 
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where  t  is the average direct effect. Causal media- 
tion analysis under these assumptions require two statis-
tical models to be fit: one for the mediator  

 ,i i if K X Z  and the other for the outcome variable  

 , ,i i i if Y X K Z . The estimated causal mediation effect 
and direct effect are calculated using algorithms detailed 
in Imai et al. [13] and implemented using the corre- 
sponding R package mediation [12]. 

While the mediation approach by Imai et al. can be 
used to test the null hypothesis (2) and the direct effect of 
the SNP on the phenotype of interest, we propose a  

           (1) 
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Bayesian approach that allows us to simultaneously test 
the indirect effect in addition to the direct effect. In the 
Bayesian framework, testing (2) is equivalent to fitting 
the full model (1) and determining which coefficients 
can be dropped from the model, which is equivalent to 
covariate selection and coefficient estimation in the 
standard normal linear regression model. Classical vari- 
able selection methods use either the Akaike information 
criterion or the Bayes information criterion to choose 
among possible models using −2log (max likelihood) 
plus a penalty term based on the dimensionality of the 
model [18-21]. However, in practice, this type of method 
is implemented using either forward selection or back- 
ward elimination, which can result in a locally optimal 
solution instead of the globally optimal solution. Fur- 
thermore, in this situation, using a method that depends 
on maximizing the likelihood will always favor the null 
hypothesis which would not be beneficial here. To cir- 
cumvent both of these problems, we propose a Bayesian 
method which uses a spike and slab prior which allows 
  = 0 [22,23].  

In order to develop this approach, we re-write model 
(1) as follows: 
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The prior for the mean parameter   is defined as 
follows: 

, ~ 0, x xc N c               (6) 

where cx is a constant and γ = 0 or 1. The model is rela- 
tively insensitive to cx with choices cx = 2.852 or 

 [18,19]. Consequently, based on both 
these recommendations and on simulation studies that we 
performed, we recommend setting cx = 10. The parame- 
ter γ controls the probability that 

10,10000xc  

  is drawn from a 
point mass at zero. If γ = 0, then   is drawn from a 
point mass at zero and if γ = 1, then   is drawn from a 
normal distribution. The following prior is used for γ: 

 ~ Bernoulli               (7) 

where π is a constant. This model selection approach is a 
form of a spike and slab prior since it amounts to setting 
  to zero with some nonzero probability. In order to 
put equal weight on the null and alternative hypothesis so 
that the type-1 error rate is not inflated, we suggest set- 
ting π = 0.5. Based on simulation studies, the model is 
relatively insensitive to the choice of π as long as π is not 
set to a value near zero or one. For example if π = 0, then 
γ = 0 for every iteration of the Markov chain Monte 
Carlo (MCMC), which is used to sample from the poste-
rior distribution. This will prevent the MCMC from 
mixing well or converging. 

To be as non-informative as possible, Gelman (2006) 

suggests putting a flat prior on σ [24]. For αj for j = 1, ..., 
m, we suggest the following prior: 

~ 0, j zc N c z              (8) 

where cz is a constant. Based on the literature and simu- 
lation studies, we recommend setting cz = 10 [18,19]. 

This model can be fit using Markov Chain Monte 
Carlo (MCMC) [19,25]. The conditional posteriors for σ2, 
  and α have a closed form, but the conditional poste- 
rior for γ does not have a closed form. Consequently, a 
Gibbs sampler can be used to sample from the condi-
tional posteriors for σ2,   and α and a Metropolis 
Hastings Independence Sampler can be used to sample 
from the conditional posterior for γ [19]. 

3. SIMULATIONS 

To evaluate how the proposed approach compares to 
Imai et al.’s mediation approach, we preformed simula- 
tions based on 1,000 replications. Figure 1 shows the 
three scenarios under which the data was simulated. 
Scenario 1 is generated under the alternative hypothesis 
where the effect of X on Y is mediated through K. Sce- 
nario 2 is generated under the null hypothesis where the 
effect of X on Y is not mediated through K. Scenario 3 is 
a combination of the first two scenarios, where the effect 
of X on Y is mediated through K and also through some 
other endo-phenotype. 

For all three scenarios, X is generated with an allele 
frequency of 20% for n = 1000 subjects. For scenario 1, 
K is generated from a normal distribution with mean ζxX 
where ζx is chosen such that the correlation between X 
and K is 0.2 and Y is generated from a normal distribu- 
tion with mean ζkK where ζk is chosen such that the cor- 
relation between K and Y is 0.1. For scenario 2, K is gen- 
erated from a normal distribution with mean ζxX where ζx 
is chosen such that the correlation between X and K is 
0.2 and Y is generated from a normal distribution with 
mean ζxX where ζx is chosen such that the correlation 
between X and Y is 0.2. For scenario 3, K is generated 
from a normal distribution with mean ηxX where ηx is 
chosen such that the correlation between X and K is 0.2 
and Y is generated from a normal distribution with mean 
ζxX + ζkK where ζx is chosen such that the correlation  
 

 
Figure 1. Figures illustrating how the data was simulated. K 
denotes the endo-phenotype of interest, Y denotes the pheno-
type of interest and X denotes the SNP of interest. The first plot 
represents scenario 1, the alternative hypothesis where the ef-
fect of X on Y is mediated by K. The 2nd plot represents the 
null hypothesis, where the effect of X on Y is not mediated 
through K. The 3rd plot represents a combination of the null 
and alternative hypothesis where X acts on Y through K and X 
also directly acts on Y. 
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between X and Y is 0.1 and ζk is chosen such that the 
correlation between X and K is 0.2. 

simulation took less than two minutes to run on a stan- 
dard laptop, which demonstrates that this method is not 
computationally cumbersome. For all three scenarios, the MCMC was run for 3 

chains of 80,000 iterations with a burn-in of 10,000. We 
checked that the MCMC converged and mixed well. All 
of the trace plots had no noticeable pattern and all 3 
chains overlapped evenly. The Gelman Rubin statistic 
was 1 and the effective sample size was extremely high 
for all of the parameters. For the autocorrelation plots, 
the autocorrelation drops to 0 quickly and stays there. 
The acceptance rate for the Metropolis Hastings inde- 
pendence sampler for γ was around 40% - 45%. Each  

A sample of the posterior density plots of   for the 
3 scenarios are given in Figure 2. As shown in Figure 2, 
the majority of the posterior mass for   is around 0 for 
scenario 1 (generated under HA), which indicates that   
= 0. For scenario 2 (generated under H0), the majority of 
the posterior mass for   is not at 0, which indicates 
that   ≠ 0. Scenario 3, is a combination of scenario 1 
and 2 with some of the posterior mass at 0 and some 
away from 0.  

 

   
(a)                                                             (b) 

 
(c) 

Figure 2. The top left plot is a sample posterior density plot of β from one of the simulations under the alternative hypothesis 
(i.e. β = 0) where X acts on Y through K. Note that most of the posterior mass for β is at zero. The top right plot is a sample 
posterior density plot of β from one of the simulations under the null hypothesis (i.e. β ≠ 0) where X acts on Y but not through K. 
Note that most of the posterior mass for β is not at zero. The bottom plot is the sample posterior density plot of β from one of 
the simulations under a combination of the null and alternative where X acts on Y through K and X also directly acts on Y. Note 
that this plot looks like a combination of the first 2 plots.     
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Table 1 shows the percent of simulations where 0 is in 

the 95% credible band for β and the percent of simula- 
tions the mediation effect and direct effect are significant. 
For Scenario 1 generated under the alternative hypothesis, 
99.7% of the simulations have 0 contained in the 95% 
credible bands for β where as 79.1% of the simulations 
are significant for the mediation effect. In scenario 2 
generated under the null hypothesis, 0.8% of the simu- 
lations contain 0 in the 95% credible bands and 6.7% of 
the simulations have a significant mediation effect. For 
scenario 3, a combination of 1 and 2, 40.2% of the simu- 
lations contain 0 in the 95% credible bands and 71.5% of 
the simulations have a significant mediation effect and 
67.2% of the simulations have a significant direct effect, 
which accurately captures the simulated scenario of both 
a direct and indirect effect. 

We also simulated the three scenarios above with 
known confounders and an unmeasured confounder, the 
results where similar to those seen above so they are not 
depicted here. 

4. DATA ANALYSIS 

We applied the proposed approach to the CAMP Study 
which was a multicenter, randomized, double-blind, pla- 
cebo-controlled trial for childhood asthma which was 
established to investigate the long-term effects of inhaled 
corticosteroids and inhaled nedocromil, a non-steroidal 
anti-inflammatory medication [16,17]. Children enrolled 
in CAMP had mild to moderate persistent asthma based 
on the demonstration of increased airway responsiveness  

and at least two of the following: asthma symptoms at 
least twice weekly, use of inhaled bronchodilator at least 
twice weekly, or use of daily asthma medication for at 
least six months in the year prior to screening. Expres- 
sion data is now also available in the CAMP study. 

For the data analysis, we selected immunoglobulin E 
(IgE) as the target phenotype Y. We applied our method 
5 times to determine if the SNP is associated with IgE 
through the expression profile of interest for the follow- 
ing 5 SNPs and expression profile pairs: rs9388766/ 
L3MBTL3, rs9388766/ L3MBTL3, rs11778556/NRBP2, 
rs10739927/CENPP, and rs1293764/OAS2. These 5 
SNPs/expression profile pairs were chosen since they 
achieved genome-wide significant with the phenotype of 
interest IgE after adjusting for age and gender. 

Table 2 shows the posterior means for β and the 95% 
credible bands. For all 5 SNPs/expression profile pairs, 0 
is contained in the 95% Credible Bands. The table also 
shows the p-values for the mediation and direct effect. 
Figure 3 shows the posterior density plots for β with the 
majority of the posterior mass at zero. There is a spike at 
zero which occurs when γ = 0 and there is a normal curve 
centered near 0 when γ = 1. As seen in Figure 3 for SNP 
rs10739927/expression profile CENPP, the majority of 
the posterior mass is at zero and the posterior density 
plot of β for this pair is the most similar to the posterior 
density plot of β simulated under the alternative as seen 
in Figure 2. Therefore, these results indicate that SNP 
rs10739927 may be associated with IgE through the cor- 
responding expression profile CENPP. 

 
Table 1. Pseudo power and type-1 error rate for the simulations. 

Simulated Scenario Bayesian Approach Mediation Effect Direct Effect 

1) Power (X− > K− > Y) 99.7% 79.1% 3.0% 

2) Type-1 Error Rate (X− > Y) 0.8% 6.7% 98.1% 

3) Combination of 1 and 2 40.2% 71.5% 67.2% 

a. For the Bayesian approach, above is the percent of simulations where 0 is in the 95% Credible Interval for the 3 simulated scenarios depicted in Figure 1. 
The first row of the table is scenario 1 where the data is generated under the alternative, where the effect of X on Y is mediated through K. Note the improve-
ment of the Bayesian approach over the Mediation approach (i.e. 99.7% vs 79.1%) The second row of the table represents the type-1 error rate, where the effect 
of X on Y is not mediated through K. Note that both the Bayesian approach and the Mediation approach are near or below 5%. The last row represents the 
scenario where the effect of X on Y is only partially mediated by K. Both approaches detect this effect. For the Bayesian Approach, it is easier to see this con-
cept by looking at the posterior distribution in Figure 2. For the mediation approach, this can be seen by there being both a mediation and direct effect as seen 
in table above. 
 
Table 2. Below are posterior means and credible bands for β for the corresponding SNP and expression profile from the CAMP data-
set and the p-values for the mediation and direct effect. 

SNP/Expression Profile Posterior Mean 95% Credible Interval p-value for Mediation Effect p-value for Direct Effect 

rs9388766 L3MBTL3 1.70 (−2.51,6.90) 0.31 0.16 

rs9388766 L3MBTL3 1.67 (−2.49,6.82) 0.34 0.17 

rs11778556 NRBP2 1.37 (−2.99,6.68) 0.86 0.19 

rs10739927 CENPP 0.42 (−4.76,5.93) 0.25 0.44 

rs1293764 OAS2 −1.86 (−7.01,2.35) 0.48 0.08 
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(a)                                                        (b) 

  
(c)                                                        (d) 

 
(e) 

Figure 3. Posterior density of β for the corresponding SNP and expression profile. 
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5. DISCUSSION 

This proposed Bayesian approach is comparable to the 
mediation approach proposed by Imai et al. Both meth- 
ods perform similar in scenario 2 when the data are simu- 
lated under the null hypothesis that the effect of X on Y is 
not mediated by K. For scenario 1 (the effect of X on Y is 
mediated by K) the proposed approach performs better 
than the mediation approach by Imai et al. For scenario 3 
(a combination of scenario 1 and 2), it is not clear which 
approach is better. For this case, it is also best to look at 
the posterior density plot for β in addition to the 95% 
confidence bands since this provides additional informa- 
tion. 

OPEN ACCESS 

The strength of this Bayesian approach is that in this 
framework one does not need to reject the null hypothe- 
sis as in the frequentist framework. As a result, one can 
conclude that there is a direct or indirect effect, whereas 
in the frequentist setting, most approaches require fitting 
two models to make both of these conclusions since one 
can only reject the null hypothesis or fail to reject it. The 
weakness of this proposed approach is that Y must be 
continuous whereas the approach by Imai et al. can ac- 
commodate a broader range of phenotypes. 

In conclusion, the increasing availability of expression, 
epi-genetic profile, genomic data, and other endo-pheno- 
types in genetic association studies poses a great oppor- 
tunity and challenge at the same time. While the wealth 
of data provides the prospect for a better understanding 
of the disease paths, the analysis of the data is not trivial. 
To identify indirect effects, direct effects, or a combina- 
tion of these effects, the proposed Bayesian approach 
provides a suitable alternative to the mediation method 
proposed by Imai et al. in this context. Given expression, 
epi-genetic, genomic data, or other endo-phentoypes, our 
approach allows us to rule out direct genetic effects on 
the disease phenotype, implicating that the path of the 
disease phenotype leads through the components de- 
scribed by the expression, epi-genetic or genomic data. 
While our approach allows the powerful analysis of 
quantitative disease traits, extensions to other disease 
phenotypes have still to be investigated and are part of 
our ongoing research. The code for this analysis is 
available by emailing the corresponding author. 
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