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ABSTRACT 

Dynamics of a particle in confined-harmonic potential, subjected to external static electric and time-dependent laser 
fields is studied. The energy levels and wave functions of unperturbed harmonic oscillator are evaluated using 
B-polynomial Galerkin method. Matrix formulation is used throughout the procedure. This procedure is very simple and 
efficient in comparison with other methods. Modifications of wave functions and energy levels due to static electric 
field are also calculated. Finally, absorption spectra of such a driven oscillator are studied and explained. 
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1. Introduction 

The systems for which exact quantum mechanical solu- 
tions for Schrödinger equation can be found are few in 
number, for example, the harmonic oscillator potential 
and nonrelativistic hydrogen atom. The harmonic oscil- 
lator potential is a model of great practical importance, as 
it approximates any arbitrary potential close to equilib- 
rium. In nanotechnology, potentials of simple shape such 
as quantum dots are often well approximated by such 
parabolic potentials. In fact, almost all exactly solvable 
problems in Quantum Mechanics are harmonic oscillator 
problems in disguise. 

The confined-harmonic oscillator potential plays an 
important role in many applications of Quantum Me- 
chanics. Such a potential is extensively used to describe 
the bound states of nonrelativistic systems. It also plays a 
basic role in chemical and molecular physics. In quantum 
chemistry, simple harmonic potential is used as a simpli- 
fied model to describe vibrational motion of two atoms, 
where, more precise model is the Morse potential. In 
nonrelativistic quantum mechanics, the Schrödinger equ-
ation for this potential has been studied for systems 
ranging from 1-Dimensional to D-Dimensional Space 
[1-4]. Such a system has been widely studied as it can be 
exactly solved and is a very relevant system [5]. 

The perturbation of quantum harmonic oscillators with 

external fields has recently attracted a renewed interest 
due to different aspects of the problem, catalysed by re- 
cent developments as follows: 1) quantum dynamics of 
ion in a Paul trap [6], 2) confining potentials for various 
quantum heterostructures, which leads to modifications 
of various physical properties of the media they are 
composed of [7,8] 3) dynamics of a harmonic oscillator 
with time-dependent force constant and perturbed by 
weak quartic anharmonicity [9], 4) need for exact pro- 
pagators for the anisotropic two-dimensional charged 
harmonic oscillator in presence of external fields [10]. 

The effects of external fields on systems under the ef- 
fect of other types of potentials like pseudo-harmonic 
oscillator potential have also been explored in literature. 
For example, the effect on energy levels of a 2D Klein 
Gordon particle under pseudo-harmonic oscillator inter- 
action has been studied [11]. The Schrödinger equation 
has been solved for a particle in the general 1D 
time-dependent linear potential [12]. The quantum mo- 
tion of an electron driven by a strong time-dependent 
linear potential in a 1D quantum wire has been investi- 
gated and interesting physical properties studied [13]. 
The possibility of exactly manipulating the quantum mo- 
tional states of a single particle held in a double cosine 
potential by using laser beams has been explored [14]. 

Time-dependent perturbations of such systems have 
also been studied extensively [15,16]. Explicit wave *Corresponding author. 
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functions and geometric phases of time-dependent har- 
monic oscillator in external time-dependent magnetic and 
electric field have been derived [17]. The exact wave 
functions and eigenvalues of a 2D time-dependent har- 
monic oscillator under the influence of a static magnetic 
field have been calculated [18]. The time evolution of a 
2D harmonic oscillator, with time-dependent mass and 
frequency, in a static magnetic field has also been studied 
analytically [19]. 

An electron in confined-harmonic oscillator potential 
exposed to an external electric field is equivalent to a 
charged harmonic oscillator in a uniform electric field or 
a harmonic oscillator in an external dipole field. Such a 
system has an important role in quantum chemical appli- 
cations [20]. Recently, O. Kidun and D. Bauer [21] have 
studied two interacting electrons in harmonic potential 
driven by a strong laser field. They have studied popula- 
tion dynamics of the system. They have further shown 
the conditions of complete survival and complete deple- 
tion of the ground state of “harmonium”. C. Liang et al. 
have studied the properties of Hooke’s atom (two elec- 
trons interacting with Coulomb potential in an external 
harmonic oscillator potential) in an arbitrary time-de- 
pendent electric field [22]. The dynamics of a perturbed 
quantum Hooke’s atom exposed to intense ultrashort 
laser pulses has been studied by Torres and Vicario [23]. 

The traditional techniques of studying such quantum 
mechanical systems have lately been supplemented by 
finite basis set methods like B-spline [3,24-26] and Bern- 
stein-polynomial (B-polynomial) methods [27-29]. Re- 
cently, Heidari et al. [30] have investigated the case of 
Hydrogen atom in spherical cavity using B-spline basis 
functions. The energy spectra of one- and two-electron 
atoms centered in an impenetrable spherical box have 
been calculated by Shi Ting Yun et al. by applying B- 
spline method [31]. The B-spline basis set is highly flex-
ible and localized which leads to very accurate results. 
The B-spline basis functions of degree  are piecewise 
polynomials defined on a knot sequence. When the 
number of B-splines is taken as , the basis set be- 
comes a set of continuous B-polynomials over the range 
under consideration [32]. These B-polynomials are inde- 
pendent of the grid defined by knots and are simple alge- 
braic polynomials. Each of these polynomials is positive 
and their sum is unity. 

n

1n

Polynomials are incredibly useful mathematical tools 
as they can be calculated very easily and accurately on 
computer systems. Their evaluation is also fast. They are 
capable of representing a tremendous variety of functions, 
can be differentiated and integrated quite easily, and can 
be pieced together to form spline curves that can ap- 
proximate any function to any desired accuracy. The 
B-polynomial method is, therefore, much simpler and 
efficient. Recently, J. Liu et al. have proposed a new 

numerical method based on B-polynomials expansion for 
solving one dimensional elliptic interface problems [33]. 
B-polynomial basis has also been used for numerically 
solving differential equations [34-36]. 

In this paper, the dynamics of an electron in a con- 
fined-harmonic potential in static electric and strong laser 
fields is studied. We have used B-polynomial Galerkin 
method to solve static field modified harmonic oscillator 
system. The populations of states modified by static 
electric field are calculated. The eigenenergies, eigen-
functions and dipole matrix elements of the system are 
also calculated. The interaction of static field modified 
confined-harmonic oscillator system with the laser field 
is taken into account by non-perturbative quasi-energy 
technique [37-40]. The sequence of the paper is as fol- 
lows. In Section 2, necessary description of B-polyno- 
mials is given. In Section 3, the model under considera- 
tion is defined and methods adopted for solving the 
time-independent as well as time-dependent Schrödinger 
equation are given. Section 4 deals with interpretation of 
results and finally, in Section 5, concluding remarks are 
made. 

2. Bernstein-Polynomial Basis 

The B-polynomials [41] of degree  over an interval [a, 
b] are defined as [27,32] 

n
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for 0, 1, ,i n  , where 
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
.                      (2) 

There are 1n  , n-th degree B-polynomials. For ma-
thematical convenience, we usually set  , 0i nB x   if 

0i   or . These i  n 1n   B-polynomials of degree n 
form a complete basis over the interval  ,a b . The 
B-polynomials can be generated by a recursive relation 
[33] 

       , , 1i n i n i n

b x x
B x B x B x

b a b a 


 

  1, 1 .   (3) 

More details of these polynomials are available in lit- 
erature [24,28,29,32,35,42]. 

The B-polynomial Galerkin method is employed to 
solve Schrödinger equation for the present case. In the 
area of numerical analysis, Galerkin methods are a class 
of methods for converting a problem such as a differen- 
tial equation to a linear system of equations. A few of the 
related formulas used are mentioned here for reference. 
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where the l  are expressed as 
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3. Problem Formulation and Method of 
Solution 

Consider an electron under the effect of a confined-har- 
monic oscillator potential subjected to an external static 
electric field 0E , where 0  is the strength of the elec- 
tric field. The units used throughout are the atomic units, 
i.e., . The confining potential is given 
by  

E

1e   m e

2 2V kx                    (9) 

where  is a positive constant representing the strength 
of the potential called the force constant. If the electric 
dipole moment of the electron is denoted by , the po- 
tential energy of the electron due to electric field is given 
by . The electric dipole moment of the electron is 
given by ,  representing the position vector 
of the electron with respect to the origin and , the 
charge. 

k

 d E

d

0

q d r r
q

Assume that the electric field is along x  direction, 
therefore the potential energy term becomes 0xE . The 
Hamiltonian for the system can be written as 

2 2

02

1 d

2 2d

kx
H xE

x
               (10) 

Therefore, the Schrödinger equation for the system 
becomes 

2 2

02

1 d

2 2d

kx
xE

x

                (11) 

A fixed interval  ,a b  is chosen to study the system. 
The desired solution may be expanded in terms of a set 
of continuous polynomials over the closed interval and is 
given by 

   ,
0

n

i i n
i

x c B x


  ,              (12) 

where s are the coefficients of expansion and ic  ,i nB x  

are B-polynomials of degree  as defined in Section 2. 
Substituting Equation (12) into Equation (11), taking 
scalar product with 

n

 ,j nB x  on both sides and using 
Equation (7), Equation (11) becomes 

 ,i j i jf , , ,i j i j ia b d cic ,          (13) 

where the matrix elements ,i ja , ,i j , ,i jb f  and ,i j  
assume closed forms by applying the formulas in Section 
2 [29]. Equation (13) in matrix form is 

d

 A B F C DC  

C

,              (14) 

where the column matrix  can be determined by 
solving this symmetric generalized eigenvalue problem. 

The interval  ,a b  is assumed to be  5,5  and the 
number of B-polynomials is taken to be 26. The accuracy 
and efficiency of the method depend on the number of 
B-polynomials chosen to construct the approximate solu- 
tions. In the present case, the number of B-polynomials is 
taken to be 26 as there is not much gain in accuracy be- 
yond this value. A , , B F  and  in Equation (14) 
are 26 × 26 matrices. The standard Fortran EISPACK 
library is used to solve the generalized eigenvalue prob- 
lem and find the eigenvalues and eigenvectors. The ei- 
genvalues 

D

  give the energy levels of the system. The 
initial eigenvalues for 0 0E   have been found to be 
correct to five places of decimal. The eigenvectors  
are used to calculate the corresponding wave functions 
using Equation (12). These wave functions are the 
dressed states of the system and are denoted by 

C

 . 
The system is now exposed to a time-dependent laser 

field coslE t  polarized along x-axis, where l  is the 
strength and 

E
  is the frequency of the laser field. The 

corresponding Hamiltonian becomes 

 col sH H xE t   ,              (15) 

where H  is given by Equation (10). The time-depen- 
dent Schrödinger equation for the system is now written 
as 

i H
t

 
  

 1e i
N

i t
i

m
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.                    (16) 




The solution of Equation (16) in quasi-energy formal- 
ism can be written as [43] 

 1e i m t
m m

      
 1

ia

 ,     (17) 

where i  are defined as quasi-energies and  are 
time-independent eigenvectors to be determined. 1

i
ma
  is 

the lowest energy level of the system under the effect of 
static electric field and  is the number of levels con- 
sidered. The i

N
   are the dressed states of the system in 

presence of laser field. The first six energy levels are 
taken into account and the range of  and  is cho-  k 0E

Copyright © 2013 SciRes.                                                                                 JMP 



S. LUMB  ET  AL. 1142 

sen such that three of them are bound. Substituting the 
above form of the solution into Equation (16), multiply- 
ing by *

m  and integrating over dx  for 1m   to 
results in a set of six homogeneous coupled equations 

in . Using the orthogonality property of wave func 
tions 

6
i
ma
  and applying the exact rotating wave approxi- 

mation [44], these equations assume the following form 
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The ,i j s are the dipole matrix elements and iV  s are 
the energies of first six levels. The s are defined as ,i jV

,i j i jV x                   (19) 

and can be easily evaluated using the calculated wave 
functions  . The set of Equations (18) can be solved to 
determine the quasi-energies i  and the corresponding 
eigenvectors . These eigenvectors can be used to de- 
termine the new dressed state wave functions i

i
ma

   given 
by Equation (17). In order to solve the set of Equations 
(18), it is written in matrix form and the corresponding 
matrix, called the quasi-energy matrix, is diagonalized 
using standard Fortran subroutines. The calculated ei- 
genvectors are used to determine the transition probabili- 
ties to study the absorption spectra. The transition prob- 
ability from ground state 0 to final state j can be com- 
puted from the eigenvectors of the quasi-energy matrix 
as [45,46] 

20
0,

1

N
j

j m
m

P a a


  m .               (20) 

The photoionization probability, ion , i.e., the prob- 
ability of electron to come out of bound states, is given 
by 

P

bound states1ionP P  ,               (21) 

where bound states  is the sum of the probabilities of the 
system being in various bound states. Using Equation (21) 
the phenomenon of photoionization is also studied. 

P

4. Results and Discussion 

A single electron in a confined-harmonic oscillator po- 
tential is considered to be under the effect of a static 
electric field. The B-polynomial Galerkin method is used 
to calculate the dressed states of the confined electron as 
discussed in Section 3. The variation of eigenvalues for 
the first six energy states with the static electric field 0  
and force constant  has been studied for this perturbed 
system. The values have been plotted in Figure 1 relative 
to those for 0

E
k

0E   a.u. so that the changes are evident. 
It is observed that with the increase in the strength of 
electric field, the energy values are deviated more from 
the corresponding values for 0  a.u. For a higher 
force constant, the change in energy values is less. 

0E 

According to the standard result from perturbation 
theory for a charged harmonic oscillator in electric field, 
the energy levels are always lowered by an amount 

2
0 2E k  (in atomic units) due to the field. The “dressed” 

potential [47] in this case is written as 
2 2

2 0
0

1 1

2 2

E E
kx E x k x

k k
     
 

0

2
       (22) 

which is just a shift of the harmonic potential. From 
Figure 1 it can be observed that the first two energy lev- 
els follow this pattern for low strengths of applied elec- 
tric field but with the increase in field value the perturba- 
tion theory result is not exactly valid and the deviation is 
found to increase. For the third level it is observed that 
with increase in k, the relative value is first positive and 
gradually it becomes negative. The pattern followed by 
the energy levels is due to the change in wave functions 
for the system. As a check on the calculations it has been 
verified that for 1k  , the energy values for the first few 
levels, for the range of electric field considered in Figure 
1, are in accordance with Equation (22). This is due to 
the fact that in this case perturbation is small. The in- 
crease in energy values with  is clearly seen in Figure 
2 for 

k

0 0E   a.u. 
The effect of  and  on the dipole matrix ele- 

ments 12 , 23 , 34 , 45  and 56V  can be seen from 
Figure 3. The plots with respect to 0  are for different 
values of  as mentioned in the respective graphs. The 
values plotted are relative to the corresponding ones for 

0

0

V
E k

V V V
E

k

0E   a.u. It may be mentioned that the dipole matrix 
elements for the harmonic oscillator potential are given as 

 
, 1 , 1

1

2 2
m n m n

nn
m x n

m k m k
  


 


.    (23) 

Since with the introduction of electric field the system 
is perturbed, this relation would not be valid. With in- 
crease in the value of 0 , the dipole elements diverge 
from the corresponding values for 0 . For example, 

 increases marginally for some  values but  

E
0E 

k12V     23V
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Figure 1. Variation of eigenvalues relative to those for 0 0E   a.u. with respect to static electric field 0E  for various values 
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decreases for all . The effect of electric field is much 
less for higher  values. The pattern followed by these 
values is again related to the change in wave functions. 

k
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The dipole matrix elements have been plotted with re- 
spect to  in Figure 4 for 0  a.u. 12  and 23V  
decrease with  but ,  and  increase with 

. The reason for this difference is the fact that in the 
system only three levels are bound. 

k 0E 
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k

The system is now exposed to laser field coslE t . 
The response of the perturbed system is now investigated 
by varying different control parameters like force con- 
stant , static electric field 0 , laser field strength l  
and laser frequency 

k E E
 . The variation of transition 

probabilities for first four energy states with respect to 
  has been depicted in Figure 5 for force constant 

0.06k   a.u. and laser field  a.u. The 
plots have been made for different values of static elec- 
tric field 0 . The values chosen to represent variation of 
transition probabilities have no special significance. 
These are just some typical values to show relevant ef- 
fects. It is observed that the resonant frequency for the 
first excited state shows red shift with increase in electric 
field but that for the second excited state shows blue shift. 
The resonance for the first excited state occurs exactly 
for 

0.0004lE 

E

  corresponding to the difference in the first two 
energy levels. The resonance for the second excited state 
is a two-photon process and occurs at exactly half the 
energy difference between the ground and the second 
excited state.  
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Figure 3. Variation of dipole matrix elements relative to those for 0 0E   a.u. with respect to 0E  for various values of force 
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The phenomenon of photoionization also shows up for 

some 0  values. The peaks for the fourth state, i.e., the 
first level in the continuum, represent photoionization 
probability. It is observed that the blue shift for this case 
is much more than that for the second excited state. It is 

evident that the first excited state peaks show exact re-
sonance as the probability reaches 0.5. For the peaks 
corresponding to the second excited state and the fourth 
level, there is variation in peak strength. This is because 
the particular frequencies do not represent the condition 
of exact resonance, i.e., they are slightly off-resonant. 

E

By keeping 0  as  a.u. and l  as  
a.u., the variation of transition probabilities with respect 
to 

E 0.003 E 0.0004

  has been shown for different values of force con- 
stant  in Figure 6. The figure shows blue shift in re-
sonant frequency for the first as well as the second ex- 
cited state with increase in value of . The blue shift for 
the second excited state is less as compared to that for the 
first excited state. The peaks for the fourth state, repre- 
senting the probability of photoionization, are very 
prominently seen for 

k

k

0.048k   a.u. and  a.u. and 
also show blue shift. It may be inferred that for these 
particular frequencies of the laser field, photoionization 
probability is more than transition probability. 

0.06

The probability for photoionization can be seen more 
clearly if total probability of bound states and continuum 
are represented separately. Figure 7 represents the proba-    
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bility of bound states and free states as a function of laser 
frequency for  a.u. and  a.u. at 
different values of 0 . With increase in electric field, 
blue shift in frequency for photoionization is observed. 
Similarly, blue shift is observed in Figure 8 where bound 
and free state probabilities are plotted for a.u. and 

 a.u. for different  values. 

0.04k 
E

0.0009lE 

0.0009lE  k

5. Summary and Conclusion 

The dynamics of an electron in confined-harmonic oscil- 
lator potential under the effect of static electric field and 
strong laser field is studied. The method based on B- 
polynomial basis set is employed to solve the Schrö- 
dinger equation for the charged confined-harmonic os- 
cillator. The static electric field modifies the wave func- 
tions and energies of such confined oscillator and hence 
the response of the oscillator to external applied laser 
field gets affected. Photoionization probabilities show 
strong dependence on the applied static as well as laser 
field parameters. 
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