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ABSTRACT 

In the Weyl-Dirac non-relativistic hydrodynamics approach, the non-linear interaction between sub-quantum level and 
particle gives non-differentiable properties to the space. Therefore, the movement trajectories are fractal curves, the 
dynamics are described by a complex speed field and the equation of motion is identified with the geodesics of a fractal 
space which corresponds to a Schrödinger non-linear equation. The real part of the complex speed field assures, through 
a quantification condition, the compatibility between the Weyl-Dirac non-elativistic hydrodynamic model and the wave 
mechanics. The mean value of the fractal speed potential, identifies with the Shanon informational energy, specifies, by 
a maximization principle, that the sub-quantum level “stores” and “transfers” the informational energy in the form of 
force. The wave-particle duality is achieved by means of cnoidal oscillations modes of the state density, the dominance 
of one of the characters, wave or particle, being put into correspondence with two flow regimes (non-quasi-autonomous 
and quasi-autonomous) of the Weyl-Dirac fluid. All these show a direct connection between the fractal structure of 
space and holographic principle. 
 
Keywords: Holographic Principle; Non-Differentiability; General Relativity 

1. Introduction 

The General Relativity states that there is a reciprocal 
conditioning between geometry and matter so that the 
guiding mechanism is governed by the motions of the 
matter itself. However, the same guiding mechanism is 
neglected when it is used in the study of particle dynam- 
ics at microscopic scale. Such “apparent contradiction” is 
can be solved, for example by means of Weyl-Dirac 
(WD) theory [1-3]. 

After the development of general theory of relativity, 
Weyl extend this theory for electromagnetic processes, 
from the dominance of light rays for physical measure- 
ments, where the phenomena are also described geomet- 
rically. This theory had some features that not gain the 
general acceptance. Later, Dirac introduces some modi- 
fications which removed the theory difficulties and he 
made use of the theory to provide a framework to explain 
his large number hypothesis. 

Different formalisms have been developed in WD the- 

ory. Among the most known and useful ones we mention 
the Gauss-Mainardi-Codazzi (GMC) formalism [4-6]. 
Using the GMC formalism in WD theory, important re- 
sults were obtained (the particle is represented by a 
spherically symmetric thin-shell solution to Einstein’s 
equations; a geometric model with conformal invariance 
broken in the interior space; a new possibility to consider 
non-local effects, when the interior curved space—time 
has non causal properties, such as closed time-like curves; 
a transfer mechanism for energy—momentum between 
the thin shell and the Madelung fluid; a geometric guid- 
ance condition for the bubble at microscopic scale and a 
Hamilton-Jacobi equation that can be directly applied to 
the thin shell so that the bubble could move in step with 
the Madelung fluid) [4-6]. 

In [7-9] we have shown that the wave-particle duality 
may be associated with a phase transition of supercon- 
ducting—normal state type. More recently [10], using the 
hydrodynamic model of the WD theory in the non-rela- 
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tivistic approach, we established some properties of vac- 
uum states. 

This paper analyzes the wave-particle duality in the 
WD non-relativistic hydrodynamics model from the per- 
spective of the non-differentiability of motion curves of 
the WD non-relativistic fluid particles. The paper is 
structured as follows: in Section 2 the non-differentiabil- 
ity of the motion curves in the WD non-relativistic hy- 
drodynamics model; in Section 3 the wave-particle dual- 
ity through cnoidaloscillation modes of the states den- 
sity. 

2. Non-Differentiability of the Motion 
Curves in the WD Non-Relativistic 
Hydrodynamics 

The way in which the geometry of space-time affects the 
dynamics of the particle in the WD theory is given by the 
covariant Equation [5] 

2
0  

1 1

6 3
R

               (1) 

where   is the covariant derivative, R is the Ricci 
scalar, Λ is the cosmological constant and   is the 
wave function associated of the particle. So, “it is con- 
sidered a matter shell on a cosmological background de- 
scribed by the field   which is also a source of the 
wave function. The law of parallel transport common to 
this theory requires a vector to change not only in direc- 
tion but also in magnitude, after transport along a closed 
space-time loop. This result is given by a quantum force 
due to both the curvature of space-time and wave func- 
tion, and consequently, due to the loss of the micro- 
scopic distinguishability of the particle’s trajectories” 
[5]. Since 

2  is taken to represent the probability 
density, Equation (1) enables the quantum mechanical 
interpretation of the WD theory in the sense of Bohm 
[11]. 

In the weak field approximation (WFA) [10,12-19] 
and low speeds as compared to speed of light in vacuum,  

the WD equation with  2
oS m c t   exp i   is  

reduced to the set of equations: 
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In (2a,b) and (3a-f), 

                      (3f) 

  is the states density, v  is the 
ical phase S  , u  is the speed speed associated to class

associated to state density,  1Q  is the quantum potential, 
Q

 po n
Ricc

proa
 i

en
 potential,  1Q , as 

w

scr

The

 2  is the potential associated to space-time-sub-quan- 
tum medium interaction,  3Q  is the te tial associated 
to space-time,  1R  is the i scalar in the WFA ap- 

ch [12-19], ħ is Planck’s reduced constant, c is the 
light speed in vacuum, 0m s the rest mass of material 
“entity” and t is the classical time. 

Now, certain conclusions are obvious: i) Any material 
“entity” is in a perman t interaction with the “sub- 
quantum level” through the quantum

ell as through the “perturbations” at the quantum po- 
tential as  2Q  and  3Q ; ii) The “sub-quantum level” 
is identified with a non-relativistic WD fluid de ibed 
by the probability density and the momentum conserva- 
tion laws, see (2a,b). se equations correspond to the 
generalised quantum hydrodynamics model (WD non- 
relativistic hydrodynamics model); iii) In space-time 
topology. 

 
2

1 0Λ 0, 6
m c

R
                 (4) 
 

Equations (2a,b) become: 

  0;
 


t
 v                 (5a)



    1

0

Q
m

          (5b) 

 

1

t


   


v v v

These equations define the standard model
hydrodynamics [11]; 

iv) The Equation (2a) can be written under the form: 

 of quantum

 
02t m


 

u 
0  v u v          (6) 

This result is obtained through the followin
tions: multiplication with 



g opera- 

02m  , inte
null integration constant, applying the gradient and using 
th

on (6) w

ent equation results: 

gration with a 

e relation (3f). 
Let us multiply the relati ith i  and also, let 

us multiply the Equation (2b) with 1
0m . By summing 

them, the movem
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   2 3

ˆ
ˆ ˆ ˆi

ˆd

2

ˆ

dt t m


   

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        (7) 

 
0

0Q Q



  

where V̂  is the complex speed field (for s
see [20-24]) 

imilar results 

0 0

i i lnˆ
2

S
m m

     v uV    (8a)
 

 

0

i ln
m

     


           (8b) 

ie s                        (8c) 

  is the scalar potential of the complex speed and d̂ dt  
is the “covariant derivative” 

    2 3ˆd
i

d 2
Q Q

t t m


    


 V 
   (9) 

0

ˆ

Thus, the movements of material “entity” on continu- 
ous and non-differentiable curves (fractal curve
fractal dimension 2FD  ) are proved by “activating” a 
sp

s with 

ace with a special topology, i.e. the fractal space 
[23-26]. Once such a space admitted, the following con- 
sequences result: iv1) The dynamics of physical system 
are described through fractal functions that depend both 
on space-time coordinates and on the de Broglie scale 
resolution. Thus the physical quantities, which define 
these dynamics of the physical system, are complex 
functions (for example the complex speed field (8a) and 
the pure imaginary coefficient 0i 2m , corresponding 
to the fractal-non-fractal transition [23,24]). Moreover, 
the real parts of physical quantities are differentiable and 
independent on scale resolution  the imaginary 
parts are non-differentiable and dependent on the resolu- 
tion scale; iv2) The scale resolution reflects a certain 
degree of non-differentiability of the movement curve; 
iv3) The movement operatoris identified with the “co- 
variant derivative” 

, while

d̂ dt ; iv4)The use of a generalized 
Newton principle turns the movement Equation (7) into 
geodesics of a fractal space; iv5) Chaoticity, either by 
turbulence as in the  non-relativistic hydrodynamics 
approach, either by stochasticization as in the generalized 
Schrödinger approach, is achieved through non-differen- 
tiability of a fractal space. Indeed, by substituting (8a,b) 
in (7) and using the method described in [27,28], it re- 
sults: 

WD

    2 3

0
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0Q Q
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ˆ ˆd ln
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d 2t m t m

 
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 V

   

     (10) 

Equation (10) can be integrated in a universal way and 

yields 

    2 3

0 0

1
i 0

2
Q Q

m t m

 
    


 

up to an arbitrary phase factor which may be set to zero 
by a suitable choice of the phase of 

   (11) 

 . Thus, the non- 
lin

cs is obtained. We note that in the WD non-rela- 
tivistic hydrodynamics, 

ear Schrödinger type equation (NSE) as fractal space 
geodesi

 (through ln  ) is the
potential of the complex speed and in GSE is 

n 

 scalar 
a wave 

function; iv6) The compatibility between the WD non- 
relativistic hydrodynamics model and the wave mechan- 
ics (WM) implies, through the relation (3d) and (3e) the 
quantization conditions: 

0 d d d , 1,2,m S s nh    v r       (12) 

iv7) The mean value of the fractal potential (the imagi- 
nary part of the scalar potential of the complex speed) 
can be identified, without a constant factor, with the 
Shanon informational energy [24,29,30] 

ln dfE    r               (13) 

Now, accepting a maximization principle for the in- 
formational energy in the form: 

ln d 0E     r             (14) 

for constrains with radial symmetry, we get 
 0exp r r    with 0 constr  . In

pol

 

 the space-time to- 
ogy (4), by substituting this value in the expression 

 1Q , the force is found 
2

2
0 0

1
F r

m r r
    

force. T s the type of force “stor- 
ed and “transmitted”. 

3. Wave-Particle Duality through Cnoidal 

            (15) 

Therefore, in the WD non relativistic hydrodynamics 
model and space-time topology (4), the information is 
“stored and transmitted” by the sub-quantum level as a 

he choice of 0r  specifie

Oscillations Modes of the States Density 

In one-dimensional case, the Equations (2a,b) 

  0v
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in non-dimensional coordinates 

,t


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,kx                    (17b) 
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0

v
V
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                    (17c) 

and with the restriction 0 1kv   , become 
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In the above relation   is a lsation, k is 
the inverse nd 
These para rs ar posed both 
erties of the ub-qua  level” and by space topology 
specified through Λ  1R . 

plies changing the variable 
,

critical pu
of 

mete
 “s

The stationary case im

a critical length a
e im

ntum
 and 

0v  is a critical speed. 
by the intrinsic prop- 

M     situation in which the Equations
are written as follows: 
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where M is equivalent with the Mach number. Hence, 
through integration, is found 
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constants. 

ssion The solution of this equation has the expre

 
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where   K s , E s  are the complete elliptical
grals of first and second kindof modulus s, cn is the 
Jacobi elliptical function of argument 

 inte- 

 0   and 
modulus s [31], a is an amplitude and   is an average 

parame- value of the states density. Details on defining 
ters s, and a   ore t

ave-particle duality is achieved through spac
can be found in [31]. Theref he 

w e-time 
cnoidal oscillation modes of the states density-see Figure 
1. The oscillation modes are explained through m
s of the elliptical function cn, non-linearity parameter 

ing am g othe

odulus 

depend on rs space-time topology. Moreover, 
the oscillation modes are self-similar via the non-linear- 
ity parameter-see Figures 2(a)-(c), which specifies the 
fractal character of the space. 

The self-similarity of the cnoidal modes specifies the 
existence of some “cloning” mechanisms (full and frac- 
tional wavefunction revivals—a wave function evolves 
in time to a state describable as a collection of spatially 
distribuited sub-wave-functions that each closely repro- 
duces the initial wave-function shape) [32]. All these 
show a direct connection between the fractal structure of 
space and holographic principle [23,24,30,33]. 

The space-time cnoidal oscillation modes have the 
following characteristics: 

i) Wave number 

 
1 2a

k
sK s




                (23) 

ii) Phase velocity 
 

 

Figure 1. Space-time cnoidal oscillation modes of states den- 

sity versus   0   and non-linearity parameters s. 
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 
 

 

Figure 2. Self-similar contour curves of state density versus 
non-linearity parameters: (a) 0 ≤ s ≤ 1; (b) 1 ≤ s ≤ 0.5; (c) 0 
< s ≤ 0.2. 
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iii) Pulsation 
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Various sequences are obtained through the following 
degenerations: 

i) For s→0, (22) reduces to the harmonic wave pack- 
ages 

 0cosa a k                 (26) 

characterized by wave number 1 2 ,2k a s  phase ve-
locity 26 8 ,U a k    and pulsation  

3Ω 6 8 ;k ak k     
ii) For s→1, (22) reduces to the soliton-packages 
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characterized by wave number  
 1 2

1 1 1 12 4 , 2 , 2 ,a k a a k k     phase velocity 

 1

2

1

1

16 2 1 ,2U a k a    and the pulsation  

 2
1 1 1 1 1

1 2
4 4 ;Ω 12 2k a k k a    

iii) For s = 0, (22) reduces to the harmonic wave, while 
for s = 1 to the soliton one. 

Eliminating the amplitude a, between (23) and (24) we 
obtain the relation 

   26 16 ,U A s                 (28a)

 2
,k


                          (28b) 



         2 2 23 1A s s K s E s s K s      (28c) 

Non-linearity s generates two distinct flow regimes of 
the non-relativistic WD fluid: non-quasi-autonomous 
flow regime (by harmonic wave, harmonic wave package, 
etc.) and quasi-autonomous flow regime (by soliton, 
soliton package). The dependence A(s), see Figure 3, 
specifies that the value 0.7s   separates these two flow 
regimes. For 0 0.7s  , i.e. for non-quasi-autonomous 
flow regime,   constA s  , situation in which (28a) takes 
the form 

  26 const.U              (29) 

while for 0.7 1s  , i.e. for quasi-autonomous flow 
regime, the relation (29) loses its validity. The non-quasi- 

ne. 

autonomous regime will be associated to the wave char- 
acteristic while the quasi-autonomous regime to the cor- 
puscular o
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Figure 3. Flow regimes of the no c WD fluid 
versus λ and non-linearity parameters. It res s the change 
of flow . 

n-relativisti
ult

 for s 0.7
 
4.

In the WD non-relativistic hydrodynamics 
non-linear interaction between the sub-quantum
particles induces non-differentiable properties to the 

nt takes place on contin- 
uum and non-differentiable curves ); b) 
Particle dynamics are desc uantities 
both by spatial-temporal coo dinates a n 
(d

d; c) Motion stand operator 

 
 region

 Conclusion 

model the 
 level and 

space. Thus: a) Particle moveme
 (fractal curves

ribed by depending q
r nd scale resolutio

e Broglie), fractal functions. They contain a real part, 
differentiable and independent on the de Broglie scale 
and an imaginary part, fractal and dependent on the de 
Broglie scale. An example of this kind is given by the 
complex speed fiel ard d dt  
is replaced by the covaria vnt deri ative d̂ dt ; d) Apply- 

plex speed field, the 
 

ing the covariant derivative  a com
particle’s motion e
fractal space. Thes
dinger equation; e) Chaoticity, either by turbulence like 
in the case of hydrodynamics, or by stocasticit
Sch

io
principle 

ith radial sym
uantum potential gradient, a force field results. 

Thus, the sub-quantum level will “stor
informational energy as a force; h) In

lity is rea

aracter, and another one through quasi- 

autonomous structures (soliton, soliton package, etc.) 
which assures dominant particle character. Moreover, the 
self-similarity of cnoidal oscillation modes specify a di- 
rect connection between the fractal structure of space and 
holographic principle, i.e. a holographic type gravitation. 
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