
Optics and Photonics Journal, 2013, 3, 305-310 
http://dx.doi.org/10.4236/opj.2013.35047 Published Online September 2013 (http://www.scirp.org/journal/opj) 

Application of the Sampling and Replication  
Operators to Describe Mode-Locked Radiation 

Andrey V. Gitin 
Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Berlin, Germany 

Email: agitin@mbi-berlin.de 
 

Received May 9, 2013; revised June 12, 2013; accepted July 8, 2013 
 

Copyright © 2013 Andrey V. Gitin. This is an open access article distributed under the Creative Commons Attribution License, 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

ABSTRACT 

Sampling and replication operators are used for a description of the mode-locking radiation. Such description allows 
taking into account the influence of the shape of the gain curve of the active medium of the mode-locking laser on the 
form of the pulses generated by it. 
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1. Introduction 

According to the uncertainty principle, the shorter the 
pulse duration, the wider the bandwidth of its spectrum. 
The cycle period of the central frequency of the spectrum 
is the natural limit of the pulse duration. The pulse whose 
duration is near this natural limit, is called an ultra-short 
pulse (USP) [1-3]. 

The main method used to generate USPs is the mode- 
locking technique [4-10]. Traditionally, more than forty 
years, the formation of mode-locking radiation is de- 
scribed in the form proposed by Yariv [10]. However, in 
recent papers [11-13] this process is described by using 
mathematical properties of the “Dirac comb”. Note that, 
in contrast to traditional one, this description allows tak-
ing into account the influence of the shape of the gain 
curve of the active medium on the form of the generated 
USPs. Therefore, it makes sense to consider this ap- 
proach in more detail, using canonically mathematical 
forms. These canonical forms are sampling and replica- 
tion operators [14,15]. 

2. Fourier Transformations and Their  
Properties  

Let us define a forward Fourier transformation [14-16] as 

     1
exp d

2π
tF ω t t






   i  ,    (1a) 

and an inverse Fourier transformation as 

     1 1
exp d

2π
tF iω t 







   .    (1b) 

For example,   t  g F g t  . Hereafter, a bar on 
top of the symbol indicates the corresponding function in 
the frequency domain.  

Translation property 
For any real number 0, if    0g h     , then  

     0expg t h t it    .           (2) 

Modulation property 
For any real number t0, if      0expg h it      , 

then 

   0 g t h t t  .              (3) 

Scaling property 
For a non-zero real number  (the so-called “width 

parameter”), if  g h



   
 

 , then  

   g t h  t     .           (4) 

Two functions g(t) and  g  , each of which is the 
Fourier transform of the other, are a so-called Fourier 
transform pair. Usually the functions g(t) and  g   are 
different. For example, if  

 
1 2

rect
0 2

if
g

if

 
 

          

 


 
   (5a) 

is a rect-function (top-hat function), then  

   1 sin
rect

2π
t

t
g t F

t

 
 




            
.  (5b) 

In contrast, a Gaussian function  
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 
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and its Fourier transform  
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        (6a) 

both are bell-shaped functions. 
Convolution theorem 

      1
tF g h g h t  

    ,        (7) 

where       g h t g h t d  




     is a convolu- 

tion, i.e.,  denotes the convolution operator. 
Dirac delta function 
The Dirac delta function can be abstractly defined by 

two conditions 
1) (t) = 0 for t  0; 

2) .    1t dt





This function has the “sifting property”  

     g t a t dt g a




   .        (8) 

Dirac comb (“sampling function”) 
The Dirac comb is a periodic function constructed 

from Dirac delta functions [14,15]. In the frequency- 
domain, the Dirac comb is defined as (Figure 1(a)). 

   comb
m

m    




   ,     (9a) 

and in the time-domain, it is defined as (Figure 1(d))  

   combT
m

t t m




  T .       (9b) 

The Fourier transformation of a Dirac comb in the fre- 
quency-domain is proportional to a Dirac comb in the 
time-domain (Figures 1(a), (d)). 

    1 comb comb
2πt

T
TF t  

   ,     (10) 

where the time-domain “tooth spacing” T and the fre- 
quency-domain “tooth spacing”  are related by the 
expression. 

2π
T


 .                 (11) 

Two operators are closely related with the Dirac 
combs and the convolution theorem: the sampling opera- 

tor and the replication operator [14,15]. 
Sampling operator  
If we take a continuous function  g 

 sg

 (Figure 1 (b)) 
and multiply it by a Dirac comb, comb () (Figure 1 
(a)), we obtain a sampled version   of this func- 
tion, i.e., a series of spikes with amplitudes that are equal 
to the continuous function at a set of discrete points, 
m (Figure 1 (c)). 

    combsg g        .        (12) 

Remarks: 
Theoretically, the sampled result is a string of delta 

functions, each of which has an area that equals the value 
of the continuous signal at the corresponding discrete 
point, where the digitized points are of the form m. 
Practically, we can view this result as a series of spikes 
with amplitudes that are equal to the continuous signal at 
the discrete points m. This view corresponds to view-
ing the Dirac comb as having teeth, each with unit am-
plitude and separated by , even though this is formally 
incorrect [15]. 

Replication operator  
The Fourier transformation of a Dirac comb in the 

frequency-domain (Figure 1(b)) is a Dirac comb in the 
time-domain (Figure 1 (e)), as shown in Equation (10), 
and multiplication in the frequency domain is equivalent 
to convolution in the time domain, as shown in Equation 
(7). Thus, in the time domain, Equation (12) takes the 
form  

     1 comb
2πs t s T

T  g t F g g t 
   .   (13) 

If a continuous function g(t) is 0 everywhere except  

for 
2 2

T
t

T
    (Figure 1(e)), then its convolution in  

the time domain with a Dirac comb, combT(t) (Figure 
1(d)), replicates g(t) and gives a periodic function gs(t) 
with periodicity T (Figure 1(f)). 

3. Amplifier for USPs 

A USP can be described by a complex amplitude U(t) or 
by its complex spectrum  U  , which presents the USP 
as a set of monochromatic waves with different angular 
frequencies . Both descriptions are complete and also 
equivalent, because one can be derived from the other by 
Fourier transformation.  

According to Parseval’s theorem  

     22
dE U t t U d 

 

 

    .     (14) 

if a the distribution of a function u(t) resembles a bell 
curve (Figure 1(a)) with a temporal peak at  
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Figure 1. An illustration of the operation of the sampling 
operator in the frequency domain (a, b, c) and of the repli- 
cation operator in the time domain (d, e, f). (a) The Dirac 
delta comb. (b) The function to be sampled. (c) The result of 
multiplying parts (a) and (b) together, resulting in a sam- 
pled function in the frequency domain. The right column 
shows the corresponding time-domain functions. The sym- 
bol  denotes Fourier transformation.  
 

 

 

2

0
2

d

d

t U t t

t

U t t












,            (15a) 

and a standard deviation (duration) of 
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then its Fourier transform also resembles a bell curve 
(Figure 1(b)) with a central frequency of 
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and a standard deviation (that is, the bandwidth of the 
spectrum) of 
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1

2t    .               (17) 

The uncertainty inequality given by (17) is the limiting 
case of the general inequality obeyed by the product of 
the variances of Fourier transform pairs. The equality  

1

2t                   (18) 

holds only if U(t) has the form of a Gaussian function. 
Note that the convention is to define the duration of a 
laser pulse, t, and its spectral width, , as the “full 
width at half maximum” (FWHM) of the functions  

  2
U t  and   2

U  , respectively [18]. When the con-  

sidered functions are the Gaussian distributions, the rela- 
tionships between the FWHM and the standard devia- 
tions (15b) and (16b) are    

 2 2ln2 tt   ,            (19a) 

 2 2ln2    .           (19b) 

In these terms the “uncertainty relation” (17) takes the 
form [3] 

4 ln 2t    .            (20) 

An amplifier is an active filter with a frequency char- 
acteristic  g   [1,3] such that 

    out inU g U      ,         (21) 

A quantum amplifier transforms an input pulse 
 inU   into an output pulse  outU  . In this case the 

role of the frequency characteristic is played by the gain 
curve of the active medium that the amplifier is con- 
structed from. As a rule, the gain curve has a maximum 
M (M > 1) at a frequency 0 and a width :  

  0g M h
Δ

 



  

 
 

 ,         (22) 

where 0h
Δ

 




 
 

  is the gain curve normalized by the 

condition  0 1h  .   

In a quantum amplifier, the bandwidth of the spectrum 
of the input pulse is limited by the bandwidth  of the 
gain curve of the active medium  g   as may be in- 
ferred from Equation (21). Note that any active medium 
corresponds to the perfect input USP in which a complex 
amplitude UPerfect(t) = Uin(t) is proportional to the inverse 
Fourier transformation of the normalized gain curve of 
the active medium oh

 



  

. Thus, taking into ac- 
count the translation (2) and scaling (4) properties, we 
have  


.      (16b) 

 

In general, the trade-off between these standard de- 
viations can be formalized in the form of an uncertainty 
principle [17]:     Perfect 0expU t M h t it          .   (23) 
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According to the uncertainty principle (20), the shorter 
the pulse is, the broader its spectrum must be (and vice 
versa). The duration of the perfect USP is the minimum 
duration for the pulse, which is acceptable for amplifica- 
tion in the active medium that has a gain curve of band- 
width . Thus, for amplification of extremely short 
laser pulses, the gain curve of the active medium must 
have the widest possible bandwidth .  

4. Mode-Locked USP Generator  

Note that an input pulse  inU   to a quantum amplifier 
is often called its “seed pulse”  seedU  . Before am- 
plifying the seed pulse, it is necessary to generate it. An 
amplifier can be converted into a generator, provided a 
positive feedback loop is entered [19]. Noise, produced 
by the amplifier, travels around the loop through a filter 
and is re-amplified. The spectrum of a generated seed 
pulse  seedU   is related with the frequency characte- 
ristics of the amplifier  g   and the feedback filter 
 f   by the equation   

     seedU g f     .          (24) 

In quantum optics, the feedback is provided by a 
resonant cavity around the gain material. The simplest 
resonant cavity consists of only two plane mirrors (a high 
reflector and an output coupler) facing each other, sur- 
rounding the gain medium (this arrangement is known as 
a Fabry-Perot cavity). Since light is a wave, when bounc- 
ing between the mirrors of the cavity, the light will con- 
structively and destructively interfere with itself, leading 
to the formation of standing waves or modes between the 
mirrors (Figure 2). The condition for constructive inter- 
ference is  

m = 2L,              (25) 

where L is the cavity length and m is a large integer rep-
resenting the number of modes in the standing wave pat-
tern [10].   

The condition (25) for the existence of the m-th mode 
of the laser cavity corresponds to the condition for its 
frequency   

2πm m T  ,              (26) 

where T  2L/c is the resonator (cavity) round-trip time. 
Hence, the frequencies of the adjacent modes are separated 
by the intermode frequency spacing:   

1 2πm m T      .          (27) 

Thus, the complex amplitude of the m-th mode of the 
resonator is [10]  

 mi m
mU e   t   ,             (28) 

where Um is the amplitude, and m is the phase.  
If the width  of the gain curve of the active laser  

Circulating USP 
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reflector

4 

5 

6 

7

L
8 

T 

Seed USP 

 

t

Output 
coupler 

Longitudinal cavity modes 

 

Figure 2. When all the longitudinal modes of the laser cavity 
oscillate in phase, the laser generates USPs.  
 
medium is much broader than the intermode frequency 
spacing , then the radiation of the laser consists of 
N     modes generated at once. The resulting 
radiation of the laser is a sum of the modes. The summa- 
tion of the complex amplitudes of the individual modes 
depends on their phases. If the phases m change ran- 
domly in time, the sum produces only a rather noisy sig- 
nal. However, if the phase m of all the modes are 
“locked” [10], i.e.,   

1 constm m      ,        (29) 

then the sum forms a pulse localized in a small time 
interval, i.e., a USP. Note that the condition (29) can be 
written as the product of the intermode frequency 
spacing and any value t0:  

0t    .            (30) 

The value t0 can be interpreted as the time of the peak 
of the pulse. Thus, for the case of phase-locking, the 
complex amplitude of the m-th mode Equation (28) can 
be rewritten in the form   

 0
im t t

mU e
 

.            (31) 

Thus, assuming that all the amplitudes of the oscillat- 
ing modes are equal   

Um = const for all modes, m  N,      (32) 

the frequency characteristic of the resonant cavity 
 f   can be written using the translation property (2) 

and the definition of the Dirac comb (9a) as (Figure 
3(a))  

     0exp combf i t      .       (33) 

Let us suppose that the influence of the dispersion of 
the gain material on the intermode frequency spacing  
can be neglected. Then, according to Equation (24), the 
spectrum of the radiation  seedU   from a mode-locked 
generator can be written as a sampled version (Figure 
3(c)) of the continuous gain curve of the active medium 
(Figure 3(b)) in the frequency-domain  

      seed 0comb expU g w i  t      .  (34) 
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Figure 3. Mode-locked radiation in the frequency-domain 
(a, b, and c) and in the time-domain (d, e, and f).  
 

By using the convolution theorem and the translation 
and modulation properties of the Fourier transformation, 
we obtain an expression for the complex amplitude of the 
mode-locked radiation in the time domain, which con- 
sists of the perfect pulse replicated infinitely by the rep- 
lication operator. It is given by   

    
  

1
seed seed

0

  1
comb

t

T

U t F U

g t t

 






  


(35) 

Since the round-trip time T is much greater than the 
duration t of the perfect USP, the pulses are well sepa- 
rated from each other. In this case, using the “sifting 
property” of the Dirac delta function (8) and the defini- 
tion of the perfect USP (23), Equation (35) can be re- 
written as a train of perfect USPs  “replicated” 
infinitely with period 

 0
seedU t

2πT  :   

  0
seed seed 0

m

U t U t t T m




    ,        (36) 
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   

0 1 0
seed

0

1
F

exp

tU t M h

M h t i


 

 


t 






        


   


     (37) 

is the single seed pulse of the train.  
Several important properties of the mode-locked radia- 

tion:  
1) The amplitude of the single seed pulse  0

seedU t  is 
proportional to the inverse Fourier transformation of the 
normalized emission spectrum of the gain material  

0h
 




  
 

 . The laser pulse duration is the shortest  

when the quantum generator and amplifier are based on 
the same gain material.  

2) If the normalized gain curve of the active medium is 
sufficiently approximated by the rect-function (5a)  

0 recth 0  
 
         

  
 , then according to Equation 

(5b),  

    0
seed 0

sin
exp

t
U t M N i t

t

 

 

  
 

.   (38) 

If the gain curve is approximated by the Gaussian 
function (6a)   

2

0 0exp 4ln 2h
   

 

                
  

with a spectral width , Eq.(19b), then according to 
Equation (6b),  

 

    

0
seed

2

0exp 4ln 2 exp

U t

M t i


t 



     
. (39) 

5. Conclusion 

The sampling and replication operators obtained from the 
Fourier analysis are elegant and fruitful mathematical 
tools for the description of the radiation of a mode- 
locked laser. They allowed the effect of the shape of the 
gain curve of the active medium on the form of the 
generated UPS to be taken into account. 
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