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ABSTRACT 

Due to ethical and logistical concerns it is common for data monitoring committees to periodically monitor accruing 
clinical trial data to assess the safety, and possibly efficacy, of a new experimental treatment. When formalized, moni- 
toring is typically implemented using group sequential methods. In some cases regulatory agencies have required that 
primary trial analyses should be based solely on the judgment of an independent review committee (IRC). The IRC as- 
sessments can produce difficulties for trial monitoring given the time lag typically associated with receiving assess- 
ments from the IRC. This results in a missing data problem wherein a surrogate measure of response may provide use- 
ful information for interim decisions and future monitoring strategies. In this paper, we present statistical tools that are 
helpful for monitoring a group sequential clinical trial with missing IRC data. We illustrate the proposed methodology 
in the case of binary endpoints under various missingness mechanisms including missing completely at random assess- 
ments and when missingness depends on the IRC’s measurement.  
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1. Introduction 

When conducting a clinical trial that utilizes a subclinical 
and/or subjective primary endpoint it may be necessary 
to verify the local investigator assignment of the outcome 
variable. Sometimes this verification is mandated by a 
regulatory agency or it may be preferred by a study 
sponsor. The advantage to verify the outcome is that it 
may decrease misclassification of the outcome in studies 
performed at multiple sites. As a recent example, consid- 
er a phase II clinical trial to investigate the efficacy of an 
experimental monoclonal antibody in combination with 
chemotherapy in patients with relapsed chronic lympho-
cytic leukemia (CLL). A common endpoint in trials tar- 
geting CLL is a binary indicator of complete response 
(CR) of disease following the completion of the thera- 
peutic regime. To standardize the assessment of CR in 
CLL trials, most studies now use the NCI revised guide- 
lines for determining CR [1], as shown in Figure 1. It is 
clear that the CR criteria in Figure 1 are subclinical and 
subjective in nature, requiring radiographic assessment of  

lymph node size. In this case, the trial’s primary endpoint 
may be validated by an independent review committee 
(IRC). A recent a paper by Dodd et al. [2] reports an ad- 
ditional seven trials that used an IRC to review the can- 
cer progression measurements of a local investigator: two 
renal cell carcinoma studies, one colorectal cancer study, 
and four breast cancer studies.  

In the setting of the CLL trial described above, it 
would not be unusual for an independent data monitoring 
committee (IDMC) to periodically assess the futility, and 
possible efficacy, of the experimental intervention 
through formal hypothesis testing. In this case a group 
sequential framework would be natural for maintaining 
frequentist error rates after conducting multiple interim 
analyses of accruing data. A great deal of research has 
been conducted in the area of group sequential methods 
and it is well known that the operating characteristics of 
a group sequential design depend on, among other things, 
the exact timing of interim analyses. The timing of se- 
quential analyses is measured by the proportion of statis- 
tical information obtained at an interim analysis relative 
to the maximal information that is anticipated at the final 
analysis of the trial [3]. Thus it is important to reliably  
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Criteria for determining complete response (CR) 
 Absence of lymphadenopathy, as confirmed by physical  

examination and CT scan (i.e., all lymph nodes < 1.5 cm in  
diameter). 

 No hepatomegaly or splenomegaly, as confirmed by physical 
examination and CT scan. 

 Absence of B symptoms.  
 Normal CBC as exhibited by 

○ Polymorphonuclear leukocytes ≥ 1.5 × 109/L (without 
granulocyte colony stimulating factor [GCSF] or other 
colony stimulating factor support) 

○ Platelets > 100 × 109//L (untransfused) or Hemoglobin  
> 11.0 g/dL (untransfused and without erythropoietin or 
othercolony stimulating factor support) or Lymphocyte 
count ≤ 4 × 109/L 

 Bone marrow biopsy indicating that bone marrow is  
normocellular for age with less than 30% of the cells being 
lymphocytes and lymphoid nodules absent. 

Figure 1. Required criteria for determining a complete re- 
sponse (CR) in chronic lymphocytic leukemia (CLL). 
 
estimate statistical information at each interim analysis in 
order to properly implement and potentially re-power a 
chosen group sequential design [4,5]. However, when an 
IRC is used to adjudicate a trial endpoint there may be a 
subset of individuals who do not have verified IRC mea-
surements at the time of an interim analysis because the 
final assessment of their outcome has yet to be re- turned 
by the IRC. This results in a portion of trial pa- tients 
whose primary response from the IRC is missing but 
whose assessment from the local site (which is typi- cally 
much quicker to obtain) is known. Relying solely upon 
validated responses at the time of an interim analy- sis 
can result in misleading estimates of statistical infor- 
mation (at best) and opens the possibility of biased esti- 
mates of treatment effect (at worst) [2,6]. While the local 
investigator measurements only serve as a surrogate for 
the IRC outcome measurements, use of this information 
on observations that are missing validated outcomes may 
be helpful in estimating statistical information for sam- 
ple-size recalculations (also known as sample size re- 
estimation) and for timing future analyses.  

In the current manuscript we consider the use of in- 
formation from local assessments when monitoring an 
IRC validated binary endpoint such as that encountered 
in the CLL trial described above. This setting allows us 
to assess the proposed utility of local assessments in es- 
timating statistical information in clinical trials where a 
mean-variance relationship exists, and serves as a case 
study for the importance of information estimation when 
monitoring a clinical trial with group sequential stopping 
boundaries. In Section 2 we discuss the importance of 
accurately estimating statistical information when im- 
plementing group sequential stopping rules. This section 
concludes with an example to illustrate the impact that 
missing IRC data can have on the operating characteris- 
tics of a group sequential design. In Section 3, we pro- 

pose missing data techniques to aid in estimating statis- 
tical information and show how these methods can be 
used for implementing group sequential tests. In Section 
4 we present a simulation study to illustrate the utility of 
the proposed approach and conclude with a discussion of 
the challenges of monitoring group sequential clinical 
trials with IRC validated endpoints.  

2. The Role of Statistical Information in  
Implementing Group Sequential Trial  
Designs 

Consider the CLL trial where interest lies in estimating 
the effect of intervention on the probability of CR (a bi- 
nary endpoint). Further, suppose that the ratio of the odds 
of CR comparing intervention to control is used to assess 
efficacy. Let ki  denote the response of individual i in 
treatment arm k (k = 1 for control,  for interven- 
tion) with associated response probabilities given by 

Y
2k 

 Prp Y 1ik k  . The odds of CR for group k is then 
given by  1k k kOdds p p  , , and the log- 
odds ratio is given by 

1,2k
 log Odds  2Odds 1 . Finally, 

suppose that the null hypothesis to be tested is 0: 0H    
against the one-sided alternative : 0aH   .  

Now consider a group sequential test of the above hy- 
pothesis. For testing a one-sided alternative, many com- 
monly used group sequential stopping rules consider 
continuation sets of the form  ,j j jC a b    such that 

j ja b    for 1, ,j J   analyses. These bounda- 
ries may be interpreted as the critical values for a deci- 
sion rule. For instance, in the CLL trial a test statistic less 
than ja  would correspond to a decision in favor of su- 
periority of the intervention while a test statistic exceed- 
ing jb  would correspond to a decision of futility re- 
garding the intervention. Particular families of group 
sequential designs correspond to parameterized boundary 
functions that relate the stopping boundaries at succes- 
sive analyses according to the proportion of statistical 
information accrued. For instance, in the context of the 
CLL trial, if we calculate a normalized statistic  

ˆ ˆVarj jZ  j    where ˆ j  is the maximum like-  

lihood estimate of the log-odds ratio computed at analy- 
sis j with corresponding variance ˆVar j   , the propor- 
tion of statistical information accrued at analysis j can be 
calculated as  ˆ ˆVar Varj J j      where ˆVar j   
is the variance of the maximum likelihood estimate of the 
log-odds ratio computed at the final analysis of the trial 
under a presumed maximal sample size. That is, j  
represents the fraction of total statistical information, 
defined as the inverse of the variance of the final odds 
ratio estimate, available from all patients at the time of 
interim analysis j. It then follows that for some specified 
parametric functions  *f  , the critical values for a de- 
cision rule at analysis can be given by j  j a ja f   
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and  j b jb f  . For critical values on the normalized 
Z-statistic scale, popular examples of  *f   include a 
one-sided version of the Pocock [7] stopping rule that 
takes  a jf G 

 

,  and a one-sided ver- 
sion of the O’Brien-Fleming [8] stopping rule that takes 

 b jf   

1 2
a j jf G     , , where in both cases 

the value of G is chosen to maintain a pre-specified type 
I error rate.  

 b jf   

The choice of a stopping rule is generally based upon 
the assessment of a wide range of statistical operating 
characteristics across multiple candidate designs [3]. In 
addition to type I error, commonly considered frequentist 
operating characteristics include power, stopping prob- 
abilities at each analysis, and average sample size. These 
characteristics depend on the sampling distribution of the 
test statistic under a given group sequential sampling 
design. Unlike a fixed sample design where a single hy- 
pothesis test is performed after the accrual of all trial data, 
the sampling density of a test statistic in a group sequen- 
tial framework not only depends upon the total amount of 
statistical information accrued over the entire trial but 
also on the timing of interim analyses as measured by the 
proportion of the trial’s maximal statistical information, 

j , attained at each interim analysis [3]. Because of this, 
there are usually at least two complicating factors that 
must be dealt with during the monitoring of a clinical 
trial. First, the schedule of interim analyses may not fol- 
low the schedule assumed during the design of the trial. 
Often, meetings of an IDMC are scheduled according to 
calendar time, and thus the sample size available for 
analysis at any given meeting is a random variable. Si-
milarly, accrual may be slower or faster than planned, 
thereby resulting in a different number of interim analy- 
ses than was originally planned. Because the exact stop- 
ping boundaries are dependent upon the number and 
timing of analyses, either of these scenarios will necessi- 
tate modifications of the stopping rule. Second, the esti- 
mate for response variability that was assumed at the 
design phase is typically incorrect. As the trial progresses, 
more accurate estimates may be obtained using available 
data at each interim analysis. In this case, if one wishes 
to maintain the originally specified power of the trial 
then updates to the maximal sample size may be neces- 
sary due to changes in variance estimates. Of course, 
changes in maximal sample size will result in changes to 
the proportion of information at all previously conducted 
analyses. 

Two ways to adjust for deviations in the timing of 
planned analyses in order to maintain some of the trial’s 
original operating characteristics include the error spend- 
ing approach [9] and the constrained boundaries algo- 
rithm [5]. First and foremost, these methods are primarily 
used to maintain the size of the trial (type I error). A 
choice must then be made as to whether the maximal 

sample size or the power to detect a clinically relevant 
alternative should be maintained. Briefly, the constrained 
boundaries algorithm for maintaining the power of a 
one-sided group sequential hypothesis test is imple- 
mented as follows: At the design stage, boundary shape 
functions are specified as  and , where a jf    b jf 

j  denotes the planned proportion of maximal statisti- 
cal information attained at interim analysis j, 1, ,j J  , 
with 1J  . At the first analysis 1  is determined, 
and stopping boundaries 1  and  are computed. A 
schedule of future analyses, 2


1a b

, , J   , which may dif- 
fer from the originally assumed schedule of analyses is 
then assumed and a stopping rule using the design para- 
metric family  *f   (constraining the first boundaries to 
be 1  and 1 ) is found which has the desired power. 
This consists of searching for a new maximal sample size 
that has the correct type I error and power to detect the 
alternative for the parametric design family for the as- 
sumed schedule of interim analyses. At later analyses, 
the exact stopping boundaries used at previously con- 
ducted interim analyses are used as exact constraints at 
those analysis times, and the stopping boundaries at the 
current and all future analyses as well as the new maxi- 
mal sample size needed to maintain statistical power are 
re-computed using the parametric family of designs spe-
cified at the design stage and an assumed schedule of 
future analysis times. Reference [5] notes that when 

a b

 a jf   and  bf j  are defined on the type I and II 
error spending scales, this procedure is equivalent to the 
error spending approach given in reference [10].  

As noted above, in cases where power is to be main- 
tained the current best estimate of the variance of the 
response variable at each interim analysis is typically 
used in place of the variance assumed at the design stage. 
Use of a more accurate estimate of the response variabil- 
ity, and hence statistical information, at earlier analyses 
provides more accurate estimates of the maximal sample 
size, NJ, at earlier analyses. This will in turn lead to less 
variation in the relative timing of analyses as the trial 
proceeds and NJ is updated. In the context of the moti- 
vating CLL trial the variability associated with a single 
sampling unit's response is dependent upon the unit’s 
IRC response probability. Specifically, if kiY  denotes 
the response of individual i in treatment arm k (k = 1 for 
control, k = 2 for antibody) then    Var 1ki pkY p k , 
where k  is the response probability for group k. The 
result is that biased estimates of response probabilities at 
an interim analysis will lead to biased estimates of the 
variability associated with the response variable. To see 
the implication of this, consider the case where the con- 
strained boundaries algorithm described above is used to 
maintain statistical power by updating the trial’s maximal 
sample size using a biased estimate of response variabil- 
ity and statistical information. At the time of an interim 

p
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analysis, missing IRC validated outcomes may be more 
or less likely to be positive when compared to observed 
IRC outcomes. This may occur because positive out- 
comes often require an additional radiologic reading for 
confirmation, thus leading to a lagged reporting time. In 
this case, using only data on the available IRC outcomes 
would lead to downward bias in the event rate, and hence 
bias in the estimate of statistical information. The end 
result may be a tremendously (under-) overpowered 
study depending on the magnitude and direction of the 
bias.  

3. Example of the Impact of Missing Data 

In this section we demonstrate the impact on group de- 
sign operating characteristics when the timing of imple- 
mented interim analyses deviates from the originally 
planned analysis schedule. Using parameters similar to 
those that we have encountered in a previously con- 
ducted CLL trial, we consider a level 0.05 test of the null 
hypothesis 0 :H 0 

0
 against a lesser alternative  

a :H   , where   denotes the log-odds ratio com- 
paring intervention to control. We consider a study de- 
sign with 95% power for detecting a true odds ratio of 
0.65  under an assumed event rate of 0.2 in 
the control arm. We further consider implementing 4 
analyses that are equally spaced in information time. 
That is, the desired analysis schedule at the design phase 
is specified by .  

 0.43 

0.25 



 ,0.5,0.75,1
To illustrate the impact of changing the timing of ana-

lyses we consider a shift parameter l so that  
. Under the alternative 

hypothesis, Figure 2 depicts the maximal sample size 
and the average sample number (ASN) for the symmetric 
O'Brien-Fleming and Pocock designs as the timing of 
analyses shifts away from the originally desired equally 
spaced setting . Figure 2(a) shows that the mini- 
mum ASN attained by the O’Brien-Fleming design oc- 
curs at values of l between −0.1 and 0.1, while the mini- 
mum ASN for the Pocock design occurs at approxima- 
tely . In addition, Figure 2(b) shows that the 
maximal sample size for the O’Brien-Fleming design is 
fairly robust to the timing of analyses. It is clear that the 
ASN and maximal sample size for the Pocock design is 
more sensitive to shifts in the analysis timing when 
compared to the O’Brien-Fleming design. This is be- 
cause the Pocock is far less conservative at early analyses 
when compared to the O’Brien-Fleming design.  

0.25 ,0.5 ,0.75 ,1l l l    

 0l 

0.06l  



From Figure 2 it is clear that changes in the timing of 
analyses will affect the operating characteristics of a sta- 
tistical design.  

We now consider a single simulated example to dem- 
onstrate the implementation of the constrained bounda- 
ries approach for trial monitoring and how the stopping 
boundaries of a planned design and an implemented de-  

 
(a) 

 
(b) 

Figure 2. Effects of shifting information time for the first 
three of four analyses on information time on ASN and 
maximal sample size evaluated under the alternative hy-
pothesis ψ = −0.43. The x-axis is the l value in Π = {0.25 + l, 
0.5 + l, 0.75 + l, 1}. (a) Effect on ASN; (b) Effect on maximal 
sample size. 
 
sign can differ due to the estimation of information at 
interim analyses when this approach is utilized. For this 
example, a shift in the total information schedule from 
analysis to analysis will be due to an underestimation of 
a success probability for a binary endpoint, resulting 
from missing data. When monitoring a clinical trial with 
an IRC adjudicated endpoint missing data is likely due to 
lagged IRC response data. As such, IRC outcomes would 
be more frequently missing at early analyses, with com- 
plete data at the final analysis. In this case higher bias in 
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the estimated probabilities would be seen at earlier ana-
lyses. For illustration purposes the example assumes that 
only those who would have been classified as having an 
event by the IRC will have the possibility of being miss-
ing. The result is that the event probabilities will be un-
derestimated at each analysis and these estimates will 
trend upward from analysis to analysis until the final 
analysis where complete data will be available on all 
subjects. Specifically we assume that 39%, 16%, and 3% 
of IRC endpoints are missing at the first, second, and 
third interim analyses; and no IRC endpoints are missing 
at the final analysis. This setting reflects a similar sce- 
nario to trials we have previously monitored.  

We focus on a symmetric O’Brien-Fleming stopping 
rule with 4 equally spaced analyses, allowing early stop- 
ping for efficacy and futility, and 95% power for detect- 
ing an odds ratio of 0.65. This design specification re- 
sults in a maximal sample size of 1819 patients. In moni- 
toring the trial we consider re-powering the study at each 
interim analysis using the constrained boundaries ap- 
proach of [5] as described in Section 2. For this example, 
at the first interim analysis the estimated event rates are 

 and  with a sample size of 
436. With these observed estimates the study is then 
re-powered with a new maximal sample size of 2705 in 
order to maintain 95% power for detecting an odds ratio 
of 0.65. This results in a smaller proportion of informa- 
tion at the first analysis than originally planned (25% to 
16%). Using this estimate of information along with the 
current best estimate of variability, the efficacy and futil- 
ity boundaries at the first interim analysis are recomputed 
to be 0.26 and 2.47, respectively, under the pre-specified 
symmetric O’Brien-Fleming parametric stopping rule. 
The observed odds ratio at the first analysis, , is 
0.86 and this value lies within the continuation region of 
the stopping rule. At the second analysis, with data now 
available on 1145 subjects, the observed success prob- 
abilities are  and . These prob- 
abilities are higher than those observed at the first analy- 
sis, resulting in a reduction in the re-computed maximal 
sample size needed to maintain 95% power for detecting 
an odds ratio of 0.65. The newly re-computed maximum 
sample size is reduced to 2176, and the percentage of 
information for the first two interim analyses shifts to 
20% for the first analysis and 53% for the second. Con- 
straining on the first decision boundaries (shown in Ta- 
ble 1), the efficacy and futility boundaries at the second 
analysis are now computed to be 0.66 and 0.98, respec-
tively. The observed odds ratio at this analysis is 0.81, 
again implying continuation of the trial. As before, the 
study is re-powered at the third analysis and then contin-
ues to the final analysis where the final sample size is 
ultimately 1945 subjects. The final sample size is larger 
than what was assumed at the design stage due to the 

shifts in the timing of analyses that resulted from under-
estimation of the response probabilities at early analyses.  

 1
1ˆ 0.110p   1

2ˆ 0.096p 

0.146


1OR

 2
1p̂   2

2ˆ 0.122p 

Had unbiased estimates of the success probabilities at 
early analyses been available, the total sample size for 
the trial presented in Table 1 would have been much 
closer to that of the original design specification. Figure 
3 shows the estimated information growth curve at each 
analysis for the trial. As can be seen in this plot, at the 
first analysis, the information growth has substantially 
changed from the planned portioning of information. The  
 

 
(a) 

 
(b) 

Figure 3. (a) Estimates of information growth at each anal-
ysis. Differences are due to changes estimates of event rates 
and recalculating maximal sample size. (b) Deviations in 
ASN due to changes in the proportion of maximal infor- 

ation as a function of the log-odds.  m   
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Table 1. Example of planned and implemented stopping boundaries when statistical information is biased due to missing data. 
The planned design is a one-sided symmetric O’Brien-Fleming design with 95% power for an odds ratio of 0.65. The ob- 
served design is the implemented design. Π is the (biased) estimated proportion of information.  and  denote the 

probability estimates for the control and antibody arms, respectively. 

p̂1 p̂2

Analysis (j) 1 2 3 4 

Planned Design     

1 0.20p  , ,  2 0.14p  0.65OR      

Sample Size 454.8 909.61 1364.41 1816.22 

Information Fraction  j  0.25 0.50 0.75 1.00 

Decision Boundary Efficacy (Odds-scale) 0.42 0.65 0.075 0.81 

Decision Boundary Futility (Odds-scale) 1.54 1.00 0.86 0.81 

Implemented Design     

Analysis 1     

1
ˆ 0.110p  , , ,  2

ˆ 0.096p   0.86OR  0.49Z       

Sample Size 436 1192 1949 2705 

Information Fraction  j  0.16 0.44 0.72 1.00 

Decision Boundary Efficacy (Odds-scale) 0.26 0.61 0.74 0.81 

Decision Boundary Futility (Odds-scale) 2.47 1.06 0.88 0.81 

Analysis 2     

1
ˆ 0.146p  , , ,  2

ˆ 0.122p   0.81OR  1.19Z       

Sample Size 436 1145 1660 2176 

Information Fraction  j  0.20 0.53 0.76 1.00 

Decision Boundary Efficacy (Odds-scale) 0.26 0.66 0.75 0.81 

Decision Boundary Futility (Odds-scale) 2.47 0.98 0.86 0.81 

Analysis 3     

1
ˆ 0.165p  , , ,   2

ˆ 0.136p   0.80OR  1.63Z       

Sample Size 436 1145 1631 1945 

Information Fraction  j  0.22 0.59 0.84 1.00 

Decision Boundary Efficacy (Odds-scale) 0.26 0.66 0.77 0.81 

Decision Boundary Futility (Odds-scale) 2.47 0.98 0.84 0.81 

Analysis 4     

1
ˆ 0.170p  , , ,  2

ˆ 0.140p   0.79OR  1.83Z       

Sample Size 436 1145 1631 1945 

Information Fraction  j  0.23 0.59 0.84 1.00 

Decision Boundary Efficacy (Odds-scale) 0.26 0.66 0.77 0.81 

Decision Boundary Futility (Odds-scale) 2.47 0.98 0.84 0.81 

 
change in information growth is due to a recalculated 
maximal sample size, but this recalculation was only 
necessary because of the underestimated probabilities of 
success. Specifically, the recalculated maximal sample 

size at analysis one is much larger than the maximal 
sample size from the original design. This change in the 
maximal sample size is due to the dependence of the va-
riance of the log-odds ratio on the underlying prob- abili-
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ties of success. However, at the third analysis, the infor-
mation growth is approximately equal to the original 
design. Ultimately, both the original and observed design 
have similar maximal sample sizes, but the ASN, as seen 
in Figure 3 differs substantially. Specifically, the changes 
in ASN are due to the observed design not following the 
original intent of having four analyses that are spaced 
evenly with respect to information time. In turn, the 
changes in information alter the decision boundaries, as 
previously discussed. Ultimately, trials with different 
boundaries and information levels will have different 
probabilities of stopping at a given analysis, resulting in 
different operating characteristics. 

4. Using Local Investigator Assessment to 
Monitor Study Data with Missing IRC 
Assessments 

Had unbiased estimates of the underlying success prob- 
abilities been available at early analyses in the previous 
example the resulting changes to the maximal sample 
size would have been unnecessary. This would have re- 
sulted in decision boundaries similar to those originally 
specified at the design stage. In this section we discuss 
methods to improve the estimation of information using 
all of the observed local investigator assessments.  

When monitoring an IRC-validated primary endpoint, 
a reasonable approach might perform hypothesis testing 
using only complete IRC measurements but would use a 
missing data model that incorporates local investigator 
assessments in order to estimate response probabilities 
and hence statistical information. Provided that local 
assessment is predictive of the IRC-validated outcome, 
incorporation of local investigator assessment into the 
estimation of statistical information will result in im- 
proved estimates of statistical information, potentially 
minimizing changes to the trial design’s original operat- 
ing characteristics. Further, by only using the investigator 
assessment testing is based solely on observed IRC- va-
lidated data.  

For ease of exposition we consider the use of local in- 
vestigator assessments when an IRC response is missing 
at a specific interim analysis and drop the analysis sub- 
script. Assume that at a given interim analysis local in- 
vestigator assessments are available for nk subjects in 
group k, and without loss of generality assume that com- 
plete data are available for the first rk subjects while the 
remaining kkn r  subjects are missing an IRC assess- 
ment, 1,2k  . For complete pairs let  1 2,ki ki kiy yy  
denote the vector of binary local response  1kiy  and 
binary IRC response  2kiy  for subject i in group k, 

1, , ki r  , 1,k 2 . For subjects with only a local as- 
sessment and no IRC response, let  1 2,ki ki kiz yz

1, ,k

, 
where zki1 is the unobserved IRC response, ki r n   , 

1,k 2 . The total data available for group k can then be 
summarized in the contingency tables provided in Table 
2, where for complete cases  
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The unobserved cell counts for the incomplete cases are 
defined analogously as  
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In the context of the current problem, the common 
success probabilities  

 
 

1 2

1 2

Pr and

Pr and , , 0,1,

kab ki ki

ki ki

p Y a Y b

Z a Y b a b

  

   
 

must be estimated for study monitoring. Of course we do 
not observe kab . However, since the local assessments 
are observed, the marginal totals  and 

M

0km  1km   are  
 
Table 2. Aggregated complete and incomplete observations for group k, k = 1, 2 from a clinical trial with lagged IRC response 
data. 

 Review Type  Local Data 

Complete Cases  No Event Event Total 

 IRC Data No Event 00kn  01kn  0kn   

 Data Event 10kn  11kn  1kn   

  Total 0kn   1kn   kr  

Incomplete Cases  No Event Event Total 

 IRC Data No Event 00kM  01kM  0kM   

 Data Event 10kM  11kM  1kM   

  Total 0kM   1kM   k kn r  
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known, and conditional on  and ,  kabn k bm 

 , ~ ,M Bin p p p
kab kab kab k b k bm 

For the remainder of this section we consider three of 
many possible procedures to estimate  

 when missing IRC data are 
present at an interim analysis. Once estimated,  can 
then be used to estimate the sampling variability of a 
response and hence the available statistical information 
for sample size adjustment and planning of future analy- 
ses.  

y z 1



, . , 0,a b

 00 01 10 11, , ,k k k k kp p p pp
ˆ kp

4.1. Expectation Maximization Algorithm (EM) 

The EM algorithm [11] is a well-known approach for 
finding maximum likelihood estimates in the presence of 
missing data. Briefly, the EM algorithm augments the 
observed data likelihood with missing data so that maxi- 
mum likelihood estimates are easily found. That is, we 
assume an augmented likelihood  ,kL Y Zp  . We then 
compute the expected value (E-step) of the log-aug- 
mented likelihood with respect to the missing IRC data, 
conditional on the observed data and the current iteration 
value for k . In the M-Step, the log-augmented likeli- 
hood is maximized as if the conditional expectations 
were observed data. The E- and M-steps are repeated 
until convergence to get our estimate  for .  

p

ˆ kp k

Symbolically, for an initial estimate for k , , the 
estimate of  is updated using the following algo- 
rithm,  

p
p l

kp

kp

E-Step:     ,
, logl

k

l
k k kZ Y

Q E L Y , Z   p
p p p  

M-Step:  1 argmax ,
k

l l
k kQ  pp p kp , 

where Y and Z denote all observed and unobserved data 
on local and IRC responses. The algorithm is repeated 
until a distance metric between  and  is small, 
and the final estimate for k  is given by 

1l
k
p l

kp
p 1ˆ l

k k
p p . 

Appendix 7.1 provides more detailed steps of the EM 
algorithm to maximize a multinomial likelihood to obtain 
estimates of  when there are missing IRC data.  kp

4.2. Multiple Imputation 

Multiple imputation is another natural approach to ac- 
count for missing data. To perform multiple imputation 
in the case of missing IRC assessments we can first 
model the conditional distribution 1 ,ki kZ Y p  and impute 
the missing data from this distribution D times to obtain 
D estimates of k . In this manuscript we find the condi- 
tional distribution by using regression estimates from 
regressing the IRC data on the local investigator data.  

p

The estimator for  is calculated from kp  

1

1
ˆ

D
d

k
dD 

 kp p ,  

where  is the dth imputation estimate of .  ˆ d
kp kp

Multiple imputation can be carried out in the multino- 
mial example above by imputing the missing kij  values 
using a binomial distribution. One possibility is to use 
logistic regression for the imputation model. In this case 
we fit a logistic model using the complete data with the 
IRC data as the outcome and the local investigator data 
as a predictor. Letting 

z

ˆk  and ˆ
k  denote the estimated 

intercept and slope of the fitted logistic regression model 
for group k, the missing data can be imputed at the indi- 
vidual level as  

2

2

ˆˆ

1 2 ˆˆ

e
~ .

1 e

k k ki

k k ki

y

ki ki y
Z Y y Bernoulli

 

 





 
    

 

4.3. Complete Case Analysis 

The last method that we consider is the complete case 
analysis. This method is the simplest, as it only analyzes 
the complete data. While this method represents current 
practice, it assumes that missingness is missing com- 
pletely at random (MCAR, [12]) and ignores potentially 
useful information in local response data. In this case, 

 is simply given by ˆ kabp kab kn r .  

5. Simulation Study 

In Section 3 we demonstrated that the operating charac- 
teristics of a group sequential design depend on the tim- 
ing of interim analyses and showed how changes from 
planned information can occur when estimates of re- 
sponse probabilities are biased. In this section we present 
a simulation study to illustrate the type one error rate, 
power, ASN, and 75th percentile of the sample size dis- 
tribution using the three approaches for incorporating 
local investigator assessments that were described in 
Section 4.  

Following from the previous sections, focus is on test- 
ing the IRC validated log-odds ratio comparing control to 
antibody in the context of the CLL trial. Specifically, we 
consider testing a one sided lower alternative with a type 
one error rate of 5% and 95% power for the design alter- 
native of −0.43. The stopping rule is taken to be a sym- 
metric O’Brien-Fleming design with four equally spaced 
interim analyses that allow for early stopping in favor of 
futility or efficacy. The simulations are set so that the 
true odds ratio is 0.65, comparing antibody to control, 
regardless of whether outcomes are based on the local 
investigator or the IRC. However, the control arm event 
rate was assumed to be 0.20 for the IRC and 0.25 for the 
Local investigator. The missing data was defined differ- 
ently to illustrate three missing data mechanisms: MCAR, 
missing at random (MAR), and not missing at random 
(NMAR). Under MAR the probability of missing an IRC 
outcome depends on the assigned event assessment of the 
local investigator. Under NMAR only positive IRC out- 
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comes have the potential to be missing. In the MCAR 
simulation, at the first analysis, the probability of a 
missing IRC response was taken to be 17.5%. In the 
MAR simulations, at the first analysis, the probability 
that a positive IRC response was missing was taken to be 
35% if the local investigator response was positive. 
Lastly, under NMAR, at the first analysis, the probability 
that a positive IRC response was missing was taken to be 
35%, regardless of the local investigator response. Since 
interim tests are on accumulating data, the proportion of 
missing responses decreases with each analysis as all of 
the patients reach the time for evaluation.  

For the log-odds ratio, in contrast to the binomial va-
riance, the variance of the estimator increases as the suc-
cess probability moves away from 0.5. Given that the 
probability of a response was taken to be less than 0.5 in 
the simulation study, and because observed IRC response 
rates are biased downwards under the MAR and NMAR 
setups, the variance of the odds ratio will decrease as the 
trial continues. Thus a re-powering of the trial will result 
in an increase in the maximal sample size. However, be- 
cause an unbounded maximal sample size is unrealistic 
in practice (a study sponsor is sure to have logistical and 
financial constraints), the maximal sample size was con- 
strained so that it would not be larger than 1.25 times the 
originally planned maximal sample size (Nmax = 1812, 
ASNnull = ASNalt = 1172). If this restriction is removed, 

the observed differences between the missing data mod- 
els would be more extreme.  

The simulations reflect a scenario where the investi- 
gators are not expecting any missing information at the 
design stage of the trial. Thus, at the first analysis, all of 
the scenarios analyze the data at 0.25 × Nmax. However, 
due to missingness less than 25% of the originally 
planned maximal information is observed at the first 
analysis. The action is then taken to test the data at the 
current amount of information then recalculate maximal 
sample size to maintain power and plan for future analy- 
ses. Results are based upon 10,000 for each scenario.  

Table 3 depicts the results from the simulation study. 
Along the rows we consider the three missing data me-
chanisms (MCAR, MAR and NMAR). Under the column 
Future Timing in Table 3, we consider two ways to se-
lect the next interim analysis sample size: oversam- pling 
in anticipation of missing data (“Predict Info”), and ig-
noring the possibility of future missing data (“Info  N”). 
The later scenario is included to illustrate that the pri-
mary advantage of incorporating local investigator as-
sessments is in the sample size computation at the first 
analysis time.  

The three considered monitoring strategies are tabu- 
lated along the columns of Table 3. As can be seen, all 
of the approaches exhibit the desired type one error rates. 
However, when the data are NMAR the simulations  

 
Table 3. Simulations under MCAR, MAR, and NMAR showing type one error rates, power, ASN, and the seventy fifth per-
centile of the sample distribution for the available case analysis, multiple imputation, and the EM algorithm. Results are 
based on 10,000 simulated trials under each scenario. 

Information Estimation 

Complete Cases Multiple Imputation EM Simulation Parameter 
Future  
Timing 

Reject ASN 
75%  

Sample
Reject ASN 

75%  
Sample

Reject ASN 
75%  

Sample

Predict Info 0.045 1102 1314 0.045 1101 1314 0.045 1102 1314 
Null 

Info  N 0.050 1075 1208 0.050 1077 1206 0.052 1078 1314 

Predict Info 0.944 1286 1498 0.945 1285 1496 0.944 1286 1496 
MCAR 

Alt 
Info  N 0.951 1260 1420 0.950 1256 1412 0.951 1261 1420 

       

Predict Info 0.047 1084 1260 0.047 1055 1274 0.048 1053 1270 
Null 

Info  N 0.046 1057 1196 0.047 1040 1204 0.048 1038 1202 

Predict Info 0.959 1265 1450 0.952 1212 1436 0.953 1211 1436 
MAR 

Alt 
Info  N 0.956 1240 1424 0.951 1188 1366 0.953 1188 1366 

       

Predict Info 0.050 1205 1314 0.050 1124 1278 0.051 1125 1280 
Null 

Info  N 0.048 1182 1274 0.048 1099 1220 0.049 1100 1220 

Predict Info 0.972 1340 1718 0.963 1290 1534 0.964 1292 1616 
NMAR 

Alt 
Info  N 0.972 1321 1640 0.964 1271 1638 0.963 1274 1638 
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show that the power is higher than the specified 95%, 
ranging from 96% to 97%.  

Next we discuss the efficiency of the EM algorithm 
and multiple imputation approaches relative to available 
case analysis. Under the MCAR setting, the sample size 
statistics are roughly equal across each of the strategies 
for estimating statistical information (Null: ASNComplete = 
1102, ASNMI = 1101, ASNEM = 1102). This is to be ex- 
pected since the estimates of variability are valid under 
MCAR for all of the missing data models. In the MAR 
simulations, the sample size statistics show a larger sav- 
ings in ASN when local investigator assessments are 
used to estimate statistical information (Alt: ASNComplete = 
1265, ASNMI = 1212, ASNEM = 1211). These differences 
are due to the fact that the available case statistic tends to 
overestimate the variability associated with the final test 
statistic and project future analyses much too far into the 
future. Similar patterns are observed for the NMAR sce- 
narios. We note that the lower sample size estimates rela- 
tive to the “Predict Info” scenario is due to an overall 
shift in the originally proposed analysis times. 

6. Discussion 

It is becoming increasingly common for regulatory agen- 
cies to demand independent verification of study re- 
sponse in clinical trials that utilize a subclinical and/or 
subjective primary endpoint. Attaining IRC validation in 
these cases can result in significantly lagged data. The 
result is that during the monitoring of a trial, IRC-vali- 
dated data may only be available on a subset of patients 
which local investigator assessment of the primary out-
come is known at the time of an interim analysis. A fur-
ther complicating issue is that the observed IRC lag time 
may be dependent upon the response. For example, posi-
tive responses for disease progression in cancer studies 
may require an additional radiologic reading. This sce-
nario can result in biased estimates of the overall re-
sponse probability at the time of interim analysis, re- 
sulting in erroneous changes to the study’s maximal 
sample size if the study is to be repowered. In the current 
manuscript, we illustrated issues with the use of local 
investigator assessments to re-estimate maximal sample 
size at the time of an interim analysis. Specifically, we 
considered three different methods for dealing with 
missing data that can arise when an IRC is used to vali-
date local investigator response measurements. We have 
shown that using local investigator assignment of an 
outcome variable can be helpful when monitoring a 
group sequential trial by obtaining more precise esti-
mates of information. When testing is based upon only 
complete cases and local assessments are used to im-
prove information estimates, the proposed methods do 
not affect type one error rates, ASN, or power when 
missing IRC-validated outcomes are MCAR. However, 

when missing data are MAR or NMAR, use of local in-
vestigator assessments to estimate study response rates 
for the purposes of recomputing maximal sample size 
can be helpful in maintaining the planned operating 
characteristics of the design. In addition, since the true 
information will be known at the final analysis, type one 
error rates will be robust when using a miss-specified 
missing data model.  

Relative to the complete case analysis, use of local as- 
sessments for recomputing maximal sample size resulted 
in generally lower sample sizes (summarized by ASN 
and the 75th percentile of the sample size distribution) 
with little observed change in type I and II error rates. 
This is a result of lower observed event rates due to the 
missingness mechanism that was considered. In this case, 
early analyses that only use complete cases would tend to 
compute large sample size re-estimates to maintain study 
power while accounting for the low event rate. This, in 
turn, pushes future analyses back in information time 
resulting in generally higher sample sizes. In our experi- 
ence this is a realistic scenario because missing IRC- 
validated outcomes tend to have a higher probability of 
being a positive response since these cases generally re- 
quire more time and additional radiologic readings. 

The methods presented in this manuscript are easily 
implemented using any group sequential package that 
implements the constrained boundaries approach of [5]. 
One example is the RCTdesign package for the R statis- 
tical programming language or S+SeqTrial. Example 
code for computing decision boundaries at the first anal-
ysis while updating information using multiple im- puta-
tion is presented in the Appendix. The RCTdesign 
package is freely available by request from the authors of 
http://www.rctdesign.org.  

We have only advocated using local assessments to 
predict study response probabilities in order to obtain 
more precise estimates of statistical information. Another 
potential strategy when monitoring a test statistic with 
missing data is to test the imputed statistic; however, 
such an approach would be controversial for primary 
hypothesis testing since final inference would then be 
dependent upon a correctly specified missing data model. 
Further investigation of the use of local investigator as- 
sessments for estimating treatment effect remains area of 
open research. In addition, priors for the discordance 
between the local investigator and IRC measurements 
could be used at the design stage if available to help cor- 
rect for the issues discussed in this text. This also re- 
mains an area of open research.  
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Appendix 

A1. Steps for the EM Algorithm 

In the context of using local assessments to estimate IRC response probabilities it is straightforward to compute the 
conditional expectation of Z given Y. Using the notation of Section 4 and omitting the group indicator, the augmented 
likelihood is given by,   00 00 01 01 10 10 11 11

00 01 10 11, n M n M n M n ML Y Z p p p p   p , And log-augmented likelihood is then 

                00 00 00 01 01 01 10 10 10 11 11 11log , log log log log .L Y Z n M p n M p n M p n M p          p   

The log-augmented likelihood is linear with respect to abM , , 0,a b 1 , so the expected value is straightforward to 
compute. Thus, the conditional expectation of the log-likelihood (E-Step) results in 

                 00 0 00 00 01 1 01 01 10 0 10 10 11 1 11 11, log log log log ,lQ n m p p n m p p n m p p n m p p 
  

 
       p p  

with ab ab bp p p
 .  

For the M-step, maximizing  yields,   , lQ p p 
   1 ,* , , 0,1.l l l l

ab ab b ab ab j ab bp n m p n n m p p n a b         

A2. R 2.14 Code Example 

### Load required libraries 

library(cat); library(RCTdesign) 

 

### Set seed for reproducibility 

set.seed(1000) 

 

### Helper functions 

### Function to calculate odds 

Odds <- function(x){ x/(1-x)} 

 

### Function to obtain imputation summary 

impSummary <- function(s,theta){ 

 table(imp.cat(s,theta)[,1])[2]/sum(s$nmobs) 

} 

 

### Function to perform MI using library(cat) functions 

GetIRCmi <- function(D,Miss.Data,seed=1){  

 print('Note: The First Vector in Miss.Data is the IRC Data') 

 

### Pre calculations  

rngseed(seed)  

s <- prelim.cat(x=Miss.Data)     # preliminary manipulations 

P <- table(Miss.Data[,1],Miss.Data[,2])/sum(s$nmobs) 

 

### Perform D Imputations 

p.IRC.imp <- mean(replicate(D,impSummary(s=s,theta=P))) 

 

return(list(p.IRC.imp=p.IRC.imp,s=s)) 

} 

 

### Set parameters for simulated example 

pCont <- c(IRC=.2,LOC=.25) 

pTrt <- c(IRC=0.1397849,LOC=0.1780822) 

OR <- c(IRC=Odds(pTrt)[1]/Odds(pCont)[1],LOC=Odds(pTrt)[2]/Odds(pCont)[2]) 

 

### Use seqDesign() to find initial design  
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dsn <- seqDesign( prob.model = "odds", arms = 2, log.transform =T, null.hypothesis=c(0,0), 

    alt.hypothesis=c(log(OR[1]),0), sample.size=c(.25,.5,.75,1), 

variance=c(solve(pTrt[1]*(1-pTrt[1])),solve(pCont[1]*(1-pCont[1]))), 

nbr.analyses=4,test.type="less", size=.05,   

power=.95, P=1, display.scale = "X",early.stopping="both",design.family="X") 

dsn 

 

### Sample size per group 

sampleSize <- dsn$par$sample.size 

n1 <- ceiling(sampleSize[1]/2)      ### Analysis One Sample Size 

MaxN <- ceiling(sampleSize[4]/2)    ### Max Sample Size 

 

### Simulate data for treatment arm 

Trt.Full.Data<-cbind(IRC=rbinom(n1,size=1,p=pTrt[1]),LOC=rbinom(n1,size=1,p=pTrt[2]))+1 

IRC.Miss<-ifelse(rbinom(n1,size=1,p=.175),NA,Trt.Full.Data[,1]) 

Trt.Miss.Data<-cbind(IRC=IRC.Miss,LOC=Trt.Full.Data[,2]) 

### Simulate data for control arm 

Cont.Full.Data <- cbind(IRC=rbinom(n1,size=1,p=pCont[1]),LOC=rbinom(n1,size=1,p=pCont[2]))+1 

IRC.Miss <- ifelse(rbinom(n1,size=1,p=.175),NA,Cont.Full.Data[,1]) 

Cont.Miss.Data <- cbind(IRC=IRC.Miss,LOC=Cont.Full.Data[,2]) 

 

#### Obtain imputed IRC parameter estimates using multiple imputation 

Trt.Imp <- GetIRCmi(D=1000,Miss.Data=Trt.Miss.Data,seed=1) 

Cont.Imp <- GetIRCmi(D=1000,Miss.Data=Cont.Miss.Data,seed=1) 

 

Trt.Imp.Prb <- Trt.Imp$p.IRC.imp 

Cont.Imp.Prb <- Cont.Imp$p.IRC.imp 

nObs.Trt <- Trt.Imp$s$n-Trt.Imp$s$nmis[1] 

nObs.Cont <- Cont.Imp$s$n-Cont.Imp$s$nmis[1] 

 

### Compute statistical information using imputed estimates 

### Note: InfoA1 is very close to (nObs.Cont+nObs.Trt)/(2*MaxN) 

InfoA1 <- (1/((Trt.Imp.Prb)*(1-Trt.Imp.Prb)*nObs.Trt)+ 

1/((Cont.Imp.Prb)*(1-Cont.Imp.Prb)*nObs.Cont))^-1 

MaxInfo <- (1/((Trt.Imp.Prb)*(1-Trt.Imp.Prb)*MaxN)+1/((Cont.Imp.Prb)*(1-Cont.Imp.Prb)*MaxN))^-1 

 

 

### Use update() to update dsn and loop over the updated design until the sample size converges 

for( i in 1:3){ 

 dsn <- update( dsn,variance=c(solve(Trt.Imp.Prb*(1-Trt.Imp.Prb)), 

solve(Cont.Imp.Prb*(1-Cont.Imp.Prb))), 

     sample.size=c(InfoA1/MaxInfo,.5,.75,1),display.scale='Z' ) 

 sampleSize <-  dsn$par$sample.size 

 MaxN <- ceiling(sampleSize[4]/2) 

 MaxInfo <- (1/((Trt.Imp.Prb)*(1-Trt.Imp.Prb)*MaxN)+1/((Cont.Imp.Prb)*(1-Cont.Imp.Prb)*MaxN))^-1 

 print(sampleSize) 

} 

dsn 

 

### Log-odds summary statistics 

p.Est.Trt <- mean(Trt.Miss.Data[,1]-1,na.rm=TRUE) 

p.Est.Cont <- mean(Cont.Miss.Data[,1]-1,na.rm=TRUE) 

LogOdds <- log(Odds(p.Est.Trt)/Odds(p.Est.Cont)) 

varLogOdds <- (1/((p.Est.Trt)*(1-p.Est.Trt)*nObs.Trt)+1/((p.Est.Cont)*(1-p.Est.Cont)*nObs.Cont)) 
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zStat <- LogOdds/sqrt(varLogOdds) 

zStat 

 

### Since zStat=-1.8259 and it is greater than -3.4895 but  

### less than 1.8293, continue collecting data but constrain the decision  

### boundaries used in this first interim analysis. Note: Using the  

### decision boundaries on the test statistics scale is equivalent to  

### forming a z-stat using the SE from the imputation probabilities. 

 

 

### Additional function to obtain EM estimates that can be used in place of GetIRCmi() 

 

### Function to perform EM using library(cat) functions  

GetIRCem <- function(Miss.Data){  

 print('Note: The First Vector in Miss.Data is the IRC Data') 

 s <- prelim.cat(x=Miss.Data)         # preliminary manipulations 

 P <- em.cat(s)                              # EM Alg 

 row.names(P) <- c('IRC.No.Event','IRC.Event') 

 colnames(P) <- c('Loc.No.Event','IRC.Event') 

 p.IRC.em <- rowSums(P)[2] 

 return(list(p.IRC.em=p.IRC.em,s=s)) 

} 

 

### Example of computed EM estimated probabilities for the above example 

Trt.EM.Prb<-GetIRCem(Trt.Miss.Data) 

Cont.EM.Prb<-GetIRCem(Cont.Miss.Data) 

 
 
 


