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ABSTRACT 

Longitudinal studies are those in which the same variable is repeatedly measured at different times. These studies are 
more likely than others to suffer from missing values. Since the presence of missing values may have an important im-
pact on statistical analyses, it is important that they should be dealt with properly. In this paper, we present “Copy 
Mean”, a new method to impute intermittent missing values. We compared its efficiency in eleven imputation methods 
dedicated to the treatment of missing values in longitudinal data. All these methods were tested on three markedly dif-
ferent real datasets (stationary, increasing, and sinusoidal pattern) with complete data. For each of them, we generated 
nine types of incomplete datasets that include 10%, 30%, or 50% of missing data using either a Missing Completely at 
Random, a Missing at Random, or a Missing Not at Random missingness mechanism. Our results show that Copy Mean 
has a great effectiveness, exceeding or equaling the performance of other methods in almost all configurations. The ef- 
fectiveness of linear interpolation is highly data-dependent. The Last Occurrence Carried Forward method is strongly 
discouraged. 
 
Keywords: Imputation; Longitudinal Data; Intermittent Missing Values 

1. Introduction 

Longitudinal studies are those in which the same variable 
is repeatedly measured at different times. They are more 
likely than others to suffer from missing values [1-3]. 
Indeed, it is frequent that subjects miss a clinical visit or 
fill out incompletely a questionnaire. The missing data 
have been classified into three main categories [1]: 
Missing Completely at Random (MCAR) when the mis-
singness probability is independent on the variables, 
Missing at Random (MAR) when the missingness prob-
ability depends only on the observed variables, and Miss-
ing Not at Random (MNAR) when the missingness 
probability may depend on unobserved variables. 

When the main analysis involves statistical modeling 
of the change over time of the longitudinal variable using, 
for instance, mixed models, the model parameters are 
generally estimated by the maximum likelihood and it is 

well-known that the maximum likelihood estimation is 
robust to MAR data [2,4,5]. However, selection models 
and pattern-mixture models have been proposed when 
the data are MNAR or when a sensitivity analysis to this 
assumption is performed [2,4-7]. 

This paper focuses on situations where the main anal-
ysis does not involve modeling and on likelihood- based 
methods such as descriptive studies, exploratory analyses, 
non-parametric clustering, etc. These kinds of analyses 
are very sensitive to missing data, even when the miss-
ingness mechanism is MAR; then imputation methods 
are very useful. 

Twisk [8] and Engels [3] compared several imputation 
methods for longitudinal studies. Twisk proposed a clas-
sification of imputation methods into two categories: 
“Cross-sectional” methods that impute missing values at 
time t using information available at time t and “longitu-
dinal” methods that impute the missing values of an in-
dividual i using all the non-missing values of i. Engels *Corresponding author. 
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suggested four categories: 1) “No personal data” methods 
do not use information available on individual subjects; 2) 
“baseline data” methods use the information present at 
baseline but no time-dependent information; 3) “before 
data only” methods consider all the information available 
before the occurrence of the missing value; and 4) “be- 
fore and after” methods impute the missing values using 
all available information. 

Regarding the evaluation of performance, Engels pro- 
posed different indices to compare the performance of 
imputation methods. These indices are mainly based on 
the difference between the imputed values and the actual 
values [3]. 

The present article aims at comparing different impu- 
tation methods for missing values in longitudinal studies. 
Section 2 provides the general framework and the meth- 
odology: a formal definition of the concept of missing- 
ness, a presentation of the imputation methods, and the 
criteria used to measure performance. This section re- 
views the classical methods and presents an original me-
thod called Copy Mean. Section 3 presents the design of 
the simulation study and Section 4 presents the results. A 
discussion is provided in Section 5. 

2. Methods 

2.1. Notations 

Let us consider a set S of n subjects. For each subject, an 
outcome variable Y is measured at t different times. The 
value of Y for subject i at a specific time l is noted il . 
For subject i, the sequence 

y

it . 1 2, , ,i i iy y y y   is 
called a trajectory. For a specific time l, vector 

. 1 2, , ,l l l n ly y y y 
y

 is called a cross-sectional meas-
urement. When il  is missing, the value obtained by 
using a given imputation method IM is noted IM

ily . 

2.2. Classification of Missingness 

In their founding documents, Rubin and Little distin-
guished three kinds of missingness [9,10]. They consid-
ered trajectories without missingness TRUE  (unavailable 
data) and trajectories with missing values OBSY  (avail-
able measured longitudinal data). Then R denotes the 
Boolean matrix of the location of a missing value and 

Y

MISSY  the missing part of TRUEY . Thus, TRUE OBSY Y   

MISS . The classification of Little and Rubin is then based 
on a potential link between R and TRUEY S

Y
, OBY , and 

MISSY : 
 MCAR: A value is Missing Completely at Random if 

the probability that ily  be missing  ilP y  is inde-
pendent of Y : . TRUE il

 MAR: A value is Missing at Random if the probabil-
ity that ily  be missing is independent of 

  Constap  ntP y

MISSY , but 
may depend on the observed values OBSY . For exam-
ple, if patients who performed badly at time 1l   

decide to miss time l, the missing data will be MAR: 
   il OBSP y F Y . 

 MNAR: A value is Missing Not at Random if the 
probability that ily  be missing depends on MISSY . 
Typically, the probability for an observation ily  to 
be missing at time l depends on the current value of Y 
at time l. For example, if patients who suppose they 
would perform badly at time l refuse to be tested at 
time l, the data will be MNAR:    il MISS

The impact of the mechanism of missingness on the 
imputation of the missing values was examined by Mo-
lenberghs [11]. In the particular case of longitudinal data, 
the missingness mechanisms were classified according to 
the position of the missing values within the trajectory: 

P y F Y .  

 Intermittent missing data are missing within a trajec-
tory. Formally, ily  is an intermittent missing value 
if there exists a and b, a l b  , such that iay  and 
y  are not missing. ib

 Monotone missing data are missing either at the be-
ginning or at the end of a trajectory. This includes the 
case of left-or right-censored follow-ups. If a value is 
missing, then all the following (respectively, preced-
ing) values are also missing. Formally, ily  is a (right) 
monotone missing value if, for all d l , idy  is 
missing.  

Some imputation techniques, such as the Linear Inter-
polation or the Copy Mean (see Sections 2.3.3 and 2.3.4), 
are not compatible with these two missingness mecha-
nisms. In this article, we will focus on intermittent miss-
ing data, either MCAR, MAR, or MNAR. 

2.3. Imputation Methods 

Herein, 12 imputation methods are compared. They were 
grouped according to the information necessary for their 
implementation and are summarized in Table 1. 

2.3.1. No Information 
Only the complete-case method does not require infor-
mation. 

1) Complete case method: This method removes any 
trajectory with one or several missing values [10]. Par-
ticularly radical, it is the easiest way to implement. Nev-
ertheless, it has serious drawbacks [12] including major 
loss of information and biases as soon as data are not 
MCAR.  

2.3.2. Cross-Sectional Imputation 
These methods use only data collected at a given time 
(time at which the value is missing). The imputation of a 
missing value at time l is made according to the values 
from the other individuals observed at time l, i.e. the 
cross-sectional measurement  . 1 2, , ,l l l nly y y y 

y
. 

2) The Cross Mean method replaces  by the mean  il
Table 1. Imputation methods and their characteristics. 
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Imputation method Cross-sectional Longitudinal 
External 

information

1) Complete case    

2) Cross Mean √   

3) Cross Median √   

4) Cross Hot Deck √   

5) Traj Mean  √  

6) Traj Median  √  

7) Traj Hot Deck  √  

8) LOCF  √  

9) Linear Interpolation  √  

10) Spline Interpolation  √  

11) Copy Mean √ √  

12) Linear Regression, 
Internal 

√ √  

13) Linear Regression, 
External 

√ √ √ 

 
of the values observed at time l.  

3) The Cross Median method replaces  by the 
median of the values observed at time l.  

ily

4) The Cross Hot Deck method replaces il  by a 
value randomly chosen among all values observed at 
time l.  

y

2.3.3. Longitudinal Imputation 
These methods use only the non-missing data of the same 
subject. The imputation is made independently of the 
data from other individuals, only the trajectory  

 . 1 2, , ,i i i ity y y y   is used. 
5) The Traj Mean replaces  by the average of the 

values of trajectory . 
ily

.i

6) The Traj Median replaces  by the median of 
the values of trajectory . 

y

ily

y
.i

7) The Traj Hot Deck replaces il  by a value chosen 
randomly among the values of trajectory . 

y

.i

8) The Last Occurrence Carried Forward (LOCF) 
replaces  by the previous non-missing value. 

y

il

9) The Linear Interpolation replaces il  by drawing 
a line between the two non-missing values that immedi-
ately precede and follow the missing one. Let ia  and 

 be the closest preceding and following non-missing  

y
y

y

iby

values of ; then ily    
LI ib ia
il ia

y  y
y y l a

b a
  


. 

10) The Spline Interpolation replaces il  by draw-
ing a cubic spline between the two non-missing values 
that immediately precede and follow the missing one. For 

mathematical details, see Fritsch and Carlson [13].  

y

2.3.4. Cross-Sectional and Longitudinal Imputation 
(Cross & Long) 

These methods use both longitudinal information  
and cross-sectional information . 

.iy

l

11) Copy Mean is an original method. It is included in 
the R package kml [14-16]. Howerver, its efficiency has 
not been compared to other method until today. It com- 
bines linear interpolation and imputation using the popu- 
lation’s mean trajectory. Formally, let il  be the miss- 
ing value and  and  be the closest preceding and  

y.

y

iay iby

following non-missing values1. Let  .1 ., , ty y y   de-  

note the mean trajectory of a population S. LI
ily  is the 

value obtained by imputing  using linear interpola-  ily

tion. Let .
LI
ly  be the value obtained by applying a linear 

interpolation between a and b on the mean trajectory: 

   .
LI ib ia
l ia

y y
y y l a

b a


  


. Then the average variation 

lAV  at time l is the difference between .ly  and .
LI
ly , 

i.e. . .
LI

l l lAV y y  . 

From there, the Copy Mean imputes il  by adding 
the average variation 

y

lAV
LI

 to the result of the linear 
interpolation: il il l

CMy y  AV . Figure 1 shows an ex- 
ample of a trajectory imputed using the Copy Mean. 

12) Linear Regression, Internal: the principle is, for 
each l, to construct a model that predicts the values of 

.l  using the other variables il  with y y  l l . Since 
variables .ly   may also contain missing values, the 
process is iterative by gradual approximation:  
 Initially, all the missing values are imputed (by one of 

the methods described above). A model regressing 

.1y  as a function of .2 .3 ., , , t  is built. Missing 
values in .1y  are replaced by the values predicted by 
the model. 

y y y

 A model regressing .2y  as a function of .1 .3 ., , , t 
is built. Missing values in .2y  are replaced by the 
values predicted by the model. 

y y y

 In the same way, all the .ly  are imputed using a pre- 
dictive model.  

Then the process is iterated: a new model is con- 
structed for .1  whose values are again calculated, then 
for .2  and so on. Each iteration allows a little more 
precision in estimating the missing values. 

y
y

After a predetermined number of iterations, the proc- 
ess stops. In this article, the initialization process was 
done using Cross Mean and the process was iterated 10 
times.  

1All these notations are illustrated Figure 1. 
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located in Aix-en-Provence, Dijon, and Lyon (France),  

 

Milano and Verona (Italy), DÃ
1

4
sseldorf (Germany),  

LiÃ¨ge (Belgium) and Madrid (Spain). Urine preg-
nanediol-3a-glucuronide was measured before ovulation. 
This variable is a continuous in the range [0.05; 26.6] 
mg/L (Overall mean: 11.5 mg/L; overall standard devia-
tion: 18.3). The trajectories of this variable have the 
characteristic of being non-stationary and increasing. Of 
the 102 trajectories, two (1.96% of total) had missing 
values. These trajectories were removed from the present 
study. Because some imputation methods require the use 
of covariates, we chose five covariates more or less cor-
related with the longitudinal variable under study: weight, 
size, age at menarche, number of children, and current 
age. 

Figure 1. Copy Mean imputation. The individual trajectory 

.ly  is in black, the mean trajectory .y  is in red. The dot-

ted lines are the values imputed by linear interpolation. The 
dashed lines are values imputed by Copy Mean. 

2.4. Cross-Sectional and Longitudinal  
Imputation using Covariables (External) 

Fish: The second dataset (Figure 2(b)) comes from a 
study on an automatic pattern recognition system applied 
to the monitoring of fish migration [18]. It included 350 
individuals. The main variable is continuous in the range 
[−1.83; 1.95] (overall mean: 0.16; overall standard devia-
tion: 0.89). The trajectories present some large variations 
and are close to sinusoidal functions. The dataset has no 
missing values but the covariates were not accessible; 
thus, methods that use covariates were not tested on this 
dataset. 

Finally, it is possible to use all the information, including 
some covariates measured at baseline: 

13) Linear Regression, External: the principle is the 
same as the internal linear regression (iterative process 
on all cross-sectional variables) but the predictive model 
for .l  is a function of both other trajectories y .ly   and 
some covariates.  

3. Simulation 
Alcohol: The third dataset (Figure 2(c)) comes from 

the Quebec Longitudinal Study of Child Development 
led by the GRIP [19]. In this study, 1831 participants 
were interviewed retrospectively; thus, the data show a 
very low rate of missingness. The monthly alcohol con-
sumption was rated on a four-point scale (0 to 4, overall 
mean: 1.18; overall standard deviation: 1.09). The main 
feature of this study is the stability of the values over 
time. Three trajectories had missing values (0.16% of 
total); they were removed from the study. The covariates 
selected were: sex, happiness scores, income, tobacco 
consumption, and expenditure on tobacco. 

3.1. Data Generation 

The present simulation study was performed using three 
existing datasets with complete data. Several incomplete 
datasets were obtained by generating missing values ac-
cording to different schemes. To be as general as possi-
ble, we worked on three datasets with very different cha-
racteristics. 

3.1.1. The Three Datasets 
Pregnanediol: The first dataset (Figure 2(a)) comes 
from a study on human menstrual cycles [17]. The initial 
aim of the study was a search for biomarkers for accurate 
prediction of ovulation. One hundred and two women 
were recruited from eight natural family planning clinics  

3.1.2. Generation of Missing Values 
Several methods may be used to generate missing values 

 

 

Figure 2. Graphical representations of the three dataset. Individual trajectories are in black. The overall mean trajectories 
re in red. (a) Pregnanediol; (b) Fish; (c) Alcohol. a  
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[20]. In the present article, for each of 3 complete data-
sets, we generated 9 (3 × 3) types of incomplete datasets 
that included 10%, 30%, or 50% missing data using ei-
ther a MCAR, a MAR, or a MNAR missingness mecha-
nism. This process was repeated 500 times. Thus, 13,500 
datasets (3 × 9 × 500) were simulated. The incomplete 
datasets on pregnanediol and alcohol were analyzed with 
the 12 imputation methods. The incomplete datasets on 
fish were analyzed with only the 11 methods that do not 
require external data. 

To generate intermittent missing values in a complete 
dataset, we defined a probability function  1ilP R   
that il  be missing for l in y  2, 1t   (the first and last 
values were always observed ones). In the MCAR case, 
this probability is independent of Y:  

   01MCAR illogi R b 
y 

y

t P . In the MAR case, the prob-
ability depends on il  where  is the last observed 
value preceding il : 

ily 

   0 11MAR ilP R illogit b b y  

 

  . 
Finally, in the MNAR case, the probability depends on 
the current value : ily   0 11MNAR ilP R ilb b y logit   . 

3.2. Imputation Quality Comparison Criteria 

To assess the quality of the different imputation methods, 
we considered the deviation which is the difference be-
tween the true and the imputed value [3] The deviation 
then leads to three criteria: 1) the Bias is the mean of the 
deviation; 2) the Mean Absolute Deviation (MAD) is 
the average of the absolute deviations; and, 3) the Root 
Mean Square Deviation (RMSD) is the square root of 
the mean of the square of the deviation. When il  is the 
real value that method IM imputed as 

y
IM
ily , the Bias is  

IM
il ily y

m

 , the MAD is 
IM

il ily y

m


 and the RMSD 

is 
 2IM

il ily y

m


, m being the total number of miss- 

ing values. 

3.3. Methods and Softwares 

All the analyses were performed with R software [21]. 
Classical and new imputation methods have been pro-
grammed and published in package Longitudinal Data on 
CRAN [22]. The spline imputation method was pro-
grammed using stats package [13,23]. Imputations need-
ing linear regression used function mice (mice package) 
with method “predictive mean matching” [24]. 

4. Results 

During data construction, three mechanisms of missing-
ness (MCAR, MAR, and MNAR), three percentages of 
missing data (10%, 30%, and 50%) and three types of 
data (Pregnanediol, Fish, and Alcohol) were considered. 

The analysis of the results showed that the missingness 
mechanism and the type of dataset had impacts on the 
performance of the methods but not the percentage of 
missing data. Thus, for brevity, only the tables relative to 
30% missing data will be presented in the main text. The 
full results are given in the Appendix. 

4.1. Mean Absolute Deviation Results 

The Mean Absolute Deviation (MAD) is the average of 
the absolute deviations between the real values and the 
imputed values. Table 2 presents the mean result for 
each method according to the missingness mechanism 
and the type of dataset. For better readability, the results 
were standardized: in each case (each column) the per- 
formance of the best method (the lowest MAD) was set 
to 1 so that all other results are multiples of this reference 
value. In Table 2, the performances of the “good meth- 
ods” are highlighted in bold. The “good methods” are 
those whose values are between 1 and 1.2. The threshold 
of 1.2 was chosen arbitrarily. 

With Pregnanediol data, Copy Mean, Linear Interpola- 
tion, LOCF, Traj Median and Traj Mean, were the best. 
With Fish data, the most effective methods were Copy 
Mean, Linear Regression Internal, Cross Median, and 
Cross Mean. All methods that use only longitudinal in- 
formation performed poorly with this data set character- 
ized by a strong non-linear trend with low inter-subject 
variability (see Figure 2(b)). With Alcohol data, Linear 
Interpolation and Copy Mean gave the best results. 

There were no marked differences between MCAR, 
MAR, and MNAR. Only the Spline Interpolation method 
performed poorly with MAR on Alcohol dataset. This 
was probably due to the fact that, with MAR, long series 
of contiguous missing values are more likely; in such a 
case, the Spline Interpolation method imputes by poly- 
nomials with values far from the original curve. 

4.2. Root Mean Square Deviation Results 

Table 3 presents the root mean square deviation results. 
Here too, the results were standardized. The performance 
of the best method (the lowests RMSD) was set to 1 so 
that all other results are multiples of this reference value. 
In Table 3, the hight performance values (1.4 or lower) 
are highlighted in bold. The threshold of 1.4 was chosen 
arbitrarily. The results with the Root Mean Square De-
viation were close to those obtained with the MAD crite-
rion. They are detailed in the Appendix. 

4.3. Bias Results 

Table 4 presents the results for bias. The “good methods” 
(between −0.03 and 0.03) are highlighted in bold. The 
hresholds of −0.03 and +0.03 were arbitrarily chosen. t  
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Table 2. MAD (Mean Absolute Deviations) according to the imputation method in each dataset. 

Pregnanediol Fish Alcohol 
Imputation method 

MCAR MAR MNAR MCAR MAR MNAR MCAR MAR MNAR 

1) Cross Mean 1.38 1.31 1.46 1.26 1.19 1.17 6.30 5.05 4.63 

2) Cross Median 1.28 1.21 1.47 1.25 1.17 1.15 5.95 5.17 4.82 

3) Cross Hot Deck 1.84 1.74 1.88 1.79 1.69 1.65 8.06 6.51 5.94 

4) Traj Mean 1.31 1.16 1.25 4.94 5.09 5.33 4.39 3.74 3.55 

5) Traj Median 1.26 1.15 1.35 5.09 5.19 5.52 3.81 3.67 3.57 

6) Traj Hot Deck 1.73 1.51 1.64 6.58 6.51 6.59 4.83 4.05 3.77 

7) LOCF 1.11 1.12 1.20 3.97 4.03 3.71 1.07 1.33 1.31 

8) Linear Interpolation 1 1.01 1 1.66 1.83 2.03 1 1 1 

9) Spline Interpolation 1.59 1.74 1.43 1.54 1.80 1.78 1.59 6.40 1.87 

10) Copy Mean 1 1 1.06 1 1 1 1.11 1.12 1.10 

11) Linear Regression, Internal 1.39 1.31 1.46 1.26 1.19 1.18 6.28 5.06 4.64 

12) Linear Regression, External 1.48 1.43 1.50 NA NA NA 1.59 1.61 1.51 

 
Table 3. RMSD (Root Mean Scare Deviations) according to the imputation method in each dataset. 

Pregnanediol Fish Alcohol 
Imputation method 

MCAR MAR MNAR MCAR MAR MNAR MCAR MAR MNAR 

1) Cross Mean 1.51 1.38 1.81 1.55 1.32 1.31 7.34 5.75 5.09 

2) Cross Median 1.68 1.54 2.18 1.58 1.33 1.31 8.69 7.5 6.74 

3) Cross Hot Deck 2.96 2.75 3.08 3.1 2.64 2.6 14.6 10.8 9.33 

4) Traj Mean 1.38 1.17 1.41 17.9 17.4 19.52 4.67 4.05 3.83 

5) Traj Median 1.6 1.4 1.85 18.9 18.2 20.84 6.51 6.03 5.56 

6) Traj Hot Deck 2.85 2.3 2.57 34.4 32.1 33.76 9.16 7.03 6.19 

7) LOCF 1.36 1.33 1.52 12.3 13.5 11.09 1.83 2.14 1.99 

8) Linear Interpolation 1 1.04 1 2.78 3.36 3.95 1 1 1 

9) Spline Interpolation 3.19 4.03 2.44 2.53 4.34 4.26 1.81 185.5 8.92 

10) Copy Mean 1 1 1.08 1 1 1 1 1.03 1 

11) Linear Regression, Internal 1.55 1.37 1.79 1.55 1.33 1.33 7.31 5.75 5.1 

12) Linear Regression, External 1.94 1.88 2 NA NA NA 2.01 1.94 1.77 

 
Most methods had little or no bias: 60.2% had a bias 

ranging between −0.03 and +0.03 and 69.9% a bias be- 
tween −0.05 and +0.05. There were important differences 
in bias between MCAR, MAR, and MNAR mechanisms. 
The bias was slightly larger with the MAR than with the 
MCAR and even larger with MNAR (see Table 4). This 
is due to the fact that in MAR and in MNAR mechanisms, 
the low values are those that are the most likely missing. 

4.4. Summary 

Table 5 summarizes the results obtained with all the 
methods and criteria. Each column shows how many 

times a method has been particularly performant accord- 
ing to the above-defined criteria (Tables 2-4). 

5. Discussion 

In this article, we compare different methods for imput- 
ing trajectories. Missing data were generated according 
three different mechanisms (MCAR, MAR, and MNAR) 
in three dataset exhibiting strong structural differences. 
Eleven conventional methods and one original technique 
were compared according to three performance criteria: 
the Mean Absolute Deviation, the Root Square Mean 
Deviation, and Bias. 

Copyright © 2013 SciRes.                                                                                  OJS 
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Table 4. Biases according to the imputation method in each dataset. 

Pregnanediol Fish Alcohol 
Imputation method 

MCAR MAR MNAR MCAR MAR MNAR MCAR MAR MNAR 

1) Cross Mean 0 0.01 −0.06 0 −0.01 −0.02 0 −0.06 −0.09 

2) Cross Median −0.08 −0.08 −0.14 0 0 −0.01 −0.05 −0.16 −0.19 

3) Cross Hot Deck 0 0.01 −0.06 0 −0.01 −0.02 0 −0.06 −0.08 

4) Traj Mean 0.03 0.01 −0.06 −0.05 −0.17 −0.23 0 −0.12 −0.14 

5) Traj Median −0.03 −0.06 −0.13 −0.03 −0.16 −0.24 −0.01 −0.15 −0.17 

6) Traj Hot Deck 0.03 0.01 −0.06 −0.05 −0.17 −0.23 0 −0.12 −0.14 

7) LOCF −0.07 0.01 −0.12 −0.01 0.09 −0.01 −0.02 0.04 −0.04 

8) Linear Interpolation 0.01 0.05 −0.03 −0.02 −0.04 −0.08 0 0.02 −0.04 

9) Spline Interpolation 0 0.12 −0.04 0 0.03 0 0 0.25 0 

10) Copy Mean 0 0.03 −0.06 0 0 −0.01 0 0.02 −0.03 

11) Linear Regression, Internal −0.01 0.01 −0.06 0 −0.01 −0.02 0 −0.06 −0.08 

12) Linear Regression, Exteranl 0 0.03 −0.06 NA NA NA 0 0.01 −0.03 

 
Table 5. Number of times a method has been particularly performant. 

Imputation method MAD RMSD Bias Total 

1) Cross Mean 2 3 6 11 

2) Cross Median 2 2 3 7 

3) Cross Hot Deck   6 6 

4) Traj Mean 1 2 3 6 

5) Traj Median 1 1 3 5 

6) Traj Hot Deck   3 3 

7) LOCF 4 2 4 10 

8) Linear Interpolation 6 6 5 17 

9) Spline Interpolation   6 6 

10) Copy Mean 9 9 8 26 

11) Linear Regression, Internal 2 3 6 11 

12) Linear Regression, External   5 5 (out of 18) 

 
Because evaluation criteria are numerous, it is difficult 

to conclude such a study with an assertion that a given 
method is superior to all others. Still, in many cases, this 
study showed the particular efficiency of the Copy Mean. 
This method was the only one that gave correct results in 
all configurations. Linear Interpolation exhibited also 
good results but showed some weakness on some types 
of data. In agreement with previous studies [25,26], the 
well-known LOCF should be avoided as often as possi-
ble because it achieved a correct performance only when 
the data were fairly constant over time. In all other cases, 
it showed poor performance. Finally, some other tech-

niques gave also rather poor results and should be 
avoided: the linear regressions and the conventional 
techniques (Spline Interpolation, Traj Median, Traj Hot 
Deck, Cross Mean, Cross Hot Deck, Traj Mean, Cross 
Median, LOCF). Figure 3 gives an intuitive idea of the 
relative performance of some representative methods. 
The cross-sectional method (Cross Mean in the example) 
was not effective when the individual trajectories were 
far from the average trajectory of the population. Con-
versely, linear interpolation gave good results except 
with the Fish dataset (Figure 3(b)). This is mainly be-
cause it ignores the global variations of the population.    
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Figure 3. Illustration of strength and weakness of four representatives method. Real trajectories are in black. Real values that 
have been removed from the trajectory and that should be imputed are in dotted black. Values imputed by the four methods 
are in color: green = Linear Interpolation; red = Copy Mean; dark blue = LOCF; light blue = Traj Mean. 
 
LOCF has low performance in all situations. Finally, 
Copy Mean performed as well as the best techniques in 
all settings (close to linear interpolation in cases 3a and 
3c, as good as Cross Mean 3b). 

6. Limitations 

In the present study, we used three datasets with marked 
differences in terms of shape, number of individuals, 
number of repeated measurements, and type of the out-
come variable. Nevertheless, because these datasets were 
only examples, a generalization of our results to other 
datasets should be examined with caution. 

Besides, the present results were valid only with in-
termittent missingness. As mentioned above, the Copy 
Mean and the Linear Interpolation techniques are not 
applicable to monotone missingness patterns. It is, of 
course, possible to extend them in different ways (the 
Longitudinal Data library proposes four solutions to ex-
tend these methods to monotone missingness), but their 
effectiveness in this setting has not been studied yet. It 
would be interesting to check whether the present results 
(high efficiency of the Copy Mean and partial efficiency 
of Linear Interpolation) can be confirmed in case of mo-
notone missingness.  
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Appendix: Full Results 

A1. MAD 

A1.1. Set Pregnandiol 
 

 MCAR MAR MNAR 

 MCAR MAR MNAR MCAR MAR MNAR MCAR MAR MNAR 

1) crossMean 1.43 1.38 1.3 1.36 1.31 1.27 1.47 1.46 1.34 

2) crossMedian 1.33 1.28 1.21 1.25 1.21 1.17 1.55 1.47 1.3 

3) crossHotDeck 1.93 1.84 1.72 1.81 1.74 1.68 1.89 1.88 1.75 

4) trajMean 1.33 1.31 1.28 1.14 1.16 1.19 1.3 1.25 1.23 

5) trajMedian 1.27 1.26 1.25 1.12 1.15 1.16 1.44 1.35 1.25 

6) trajHotDeck 1.76 1.73 1.7 1.49 1.51 1.56 1.58 1.64 1.65 

7) LOCF  1.11 1.11 1.09 1.29 1.12 1.04 1.21 1.2 1.14 

8) linearInterpol 1 1 1 1.06 1.01 1 1 1 1 

9) spline  1.47 1.59 1.56 1.85 1.74 1.54 1.33 1.43 1.41 

10) copyMean 1.01 1.01 1.01 1.05 1 1 1.04 1.06 1.06 

11) regressionInt 1.44 1.39 1.3 1.35 1.31 1.26 1.48 1.46 1.34 

12) regressionExt 1.48 1.48 1.46 1.39 1.43 1.46 1.39 1.5 1.5 

13) crossMeanClust 1.14 1.18 1.21 1.02 1.09 1.13 1.18 1.22 1.24 

14) crossMedianClust 1.11 1.15 1.16 1 1.06 1.11 1.22 1.25 1.25 

15) crossHotDeckClust 1.49 1.49 1.47 1.32 1.35 1.36 1.41 1.48 1.46 

16) copyMeanClust 1.06 1.08 1.11 1.07 1.07 1.08 1.07 1.11 1.16 

17) regressionIntClust 1.14 1.15 NA 1.03 1.08 NA 1.18 1.2 NA 

18) regressionExtClust 1.5 1.52 NA 1.38 1.39 NA 1.38 1.47 NA 

A1.2. Set Fish 
 

 MCAR MAR MNAR 

 MCAR MAR MNAR MCAR MAR MNAR MCAR MAR MNAR 

1) crossMean 1.59 1.47 1.35 1.52 1.38 1.31 1.42 1.34 1.31 

2) crossMedian 1.58 1.46 1.34 1.5 1.36 1.29 1.39 1.32 1.29 

3) crossHotDeck 2.27 2.09 1.92 2.18 1.97 1.85 2 1.89 1.85 

4) trajMean 6.18 5.77 5.43 6.42 5.91 5.62 6.49 6.12 5.91 

5) trajMedian 6.23 5.94 5.74 6.18 6.04 5.97 6.18 6.34 6.44 

6) trajHotDeck 8.28 7.68 7.12 8.32 7.57 7.1 7.98 7.57 7.33 

7) LOCF  4.13 4.63 5.34 4 4.69 5.33 3.56 4.26 5.16 

8) linearInterpol 1.57 1.94 2.77 1.59 2.13 3.2 1.79 2.33 3.28 

9) spline  1.6 1.8 2.4 1.51 2.09 3.3 1.5 2.04 3.17 

10) copyMean 1.17 1.17 1.19 1.13 1.16 1.24 1.13 1.15 1.23 

11) regressionInt 1.58 1.47 1.35 1.52 1.38 1.31 1.43 1.36 1.31 

13) crossMeanClust 1.17 1.09 1.02 1.16 1.04 1 1.1 1.03 1 

14) crossMedianClust 1.17 1.08 1.02 1.16 1.04 1 1.09 1.02 1 

15) crossHotDeckClust 1.61 1.5 1.38 1.6 1.43 1.35 1.51 1.41 1.35 

16) copyMeanClust 1 1 1 1 1 1.03 1 1 1.03 

17) regressionIntClust 1.17 1.09 1.02 1.16 1.04 1.01 1.09 1.03 1 
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A1.3. Set Alcohol 
 

 MCAR MAR MNAR 

 MCAR MAR MNAR MCAR MAR MNAR MCAR MAR MNAR 

1) crossMean 7.09 6.3 5.25 4.51 5.05 5.01 4.6 4.63 4.14 

2) crossMedian 6.7 5.95 4.97 4.54 5.17 5.05 4.74 4.82 4.24 

3) crossHotDeck 9.07 8.06 6.72 5.81 6.51 6.43 5.9 5.94 5.29 

4) trajMean 4.92 4.39 3.7 3.24 3.74 3.75 3.58 3.55 3.18 

5) trajMedian 4.24 3.81 3.24 3.07 3.67 3.72 3.51 3.57 3.21 

6) trajHotDeck 5.41 4.83 4.06 3.5 4.05 4.08 3.77 3.77 3.4 

7) LOCF  1.02 1.07 1.15 1.44 1.33 1.26 1.23 1.31 1.36 

8) linearInterpol 1 1 1 1 1 1 1 1 1 

9) spline  1.57 1.59 1.66 5.99 6.4 6.48 1.53 1.87 2.37 

10) copyMean 1.08 1.11 1.14 1.07 1.12 1.17 1.07 1.1 1.13 

11) regressionInt 7.08 6.28 5.25 4.5 5.06 5.01 4.6 4.64 4.13 

12) regressionExt 1.49 1.59 1.67 1.36 1.61 1.95 1.42 1.51 1.59 

13) crossMeanClust 4.29 3.82 3.22 2.85 3.24 3.32 3.11 3.04 2.73 

14) crossMedianClust 3.76 3.34 2.83 2.58 2.92 3 2.9 2.84 2.57 

15) crossHotDeckClust 5.21 4.61 3.89 3.45 3.88 3.91 3.66 3.61 3.19 

16) copyMeanClust 1.14 1.16 1.19 1.1 1.16 1.26 1.1 1.16 1.19 

17) regressionIntClust 4.27 3.83 3.19 2.86 3.24 3.23 3.11 3.04 NA 

18) regressionExtClust 1.61 1.71 1.82 1.38 1.77 2.21 1.45 1.58 NA 

A2. RMSD 

A2.1. Set Pregnandiol 
 

 MCAR MAR MNAR 

 MCAR MAR MNAR MCAR MAR MNAR MCAR MAR MNAR 

1) crossMean 1.59 1.51 1.42 1.53 1.38 1.35 1.82 1.81 1.56 

2) crossMedian 1.77 1.68 1.57 1.7 1.54 1.46 2.28 2.18 1.8 

3) crossHotDeck 3.16 2.96 2.75 3.05 2.75 2.67 3.01 3.08 2.8 

4) trajMean 1.4 1.38 1.35 1.18 1.17 1.22 1.49 1.41 1.32 

5) trajMedian 1.6 1.6 1.58 1.43 1.4 1.42 1.95 1.85 1.64 

6) trajHotDeck 2.92 2.85 2.88 2.32 2.3 2.53 2.29 2.57 2.72 

7) LOCF  1.33 1.36 1.4 1.72 1.33 1.24 1.46 1.52 1.48 

8) linearInterpol 1 1 1 1.13 1.04 1.02 1 1 1 

9) spline  2.38 3.19 3.22 4.58 4.03 3.11 1.97 2.44 2.51 

10) copyMean 1.01 1.01 1 1.1 1 1 1.07 1.08 1.06 

11) regressionInt 1.61 1.55 1.41 1.53 1.37 1.33 1.84 1.79 1.55 

12) regressionExt 1.92 1.94 1.95 1.86 1.88 1.97 1.67 2 2.07 

13) crossMeanClust 1.09 1.24 1.39 1 1.1 1.28 1.23 1.39 1.49 

14) crossMedianClust 1.13 1.29 1.4 1.05 1.15 1.32 1.35 1.53 1.61 

15) crossHotDeckClust 1.85 1.93 1.99 1.64 1.7 1.78 1.69 1.94 1.98 

16) copyMeanClust 1.09 1.19 1.26 1.2 1.18 1.24 1.12 1.25 1.4 

17) regressionIntClust 1.09 1.18 NA 1.01 1.06 NA 1.23 1.33 NA 

18) regressionExtClust 1.93 2.04 NA 1.81 1.76 NA 1.66 1.89 NA 

Copyright © 2013 SciRes.                                                                                  OJS 



C. GENOLINI  ET  AL. 37

A2.2. Set Fish 
 

 MCAR MAR MNAR 

 MCAR MAR MNAR MCAR MAR MNAR MCAR MAR MNAR 

1) crossMean 2.43 2.07 1.89 2.16 1.89 1.81 1.96 1.85 1.82 

2) crossMedian 2.47 2.1 1.92 2.17 1.9 1.83 1.96 1.85 1.82 

3) crossHotDeck 4.83 4.12 3.74 4.34 3.77 3.58 3.83 3.66 3.6 

4) trajMean 27.33 23.79 22.68 27.33 24.94 24.26 28.47 27.47 26.89 

5) trajMedian 27.88 25.25 25.44 25.31 25.97 27.46 25.88 29.34 31.78 

6) trajHotDeck 53.2 45.78 42.33 52.83 45.82 42.73 51.07 47.52 45.27 

7) LOCF  12 16.46 24.22 11.88 19.28 26.09 9.36 15.61 23.6 

8) linearInterpol 2.28 3.69 8.52 2.23 4.79 11.55 2.81 5.56 11.57 

9) spline  2.36 3.37 9.55 2.25 6.19 22.35 2.29 6 20.04 

10) copyMean 1.33 1.33 1.54 1.25 1.43 1.75 1.24 1.41 1.71 

11) regressionInt 2.38 2.06 1.89 2.17 1.89 1.81 1.96 1.87 1.83 

13) crossMeanClust 1.2 1.05 1 1.16 1 1 1.07 1 1.01 

14) crossMedianClust 1.22 1.06 1.01 1.18 1.02 1.01 1.08 1.01 1.02 

15) crossHotDeckClust 2.28 1.99 1.84 2.21 1.88 1.81 2.06 1.9 1.83 

16) copyMeanClust 1 1 1.08 1 1.06 1.18 1 1.06 1.18 

17) regressionIntClust 1.2 1.05 1 1.16 1 1.01 1.07 1 1 

A2.3. Set Alcohol 
 

 MCAR MAR MNAR 

 MCAR MAR MNAR MCAR MAR MNAR MCAR MAR MNAR 

1) crossMean 8.38 7.39 6.03 5.13 5.75 5.73 4.86 5.09 4.49 

2) crossMedian 9.92 8.75 7.16 6.35 7.5 7.41 6.2 6.74 5.87 

3) crossHotDeck 16.75 14.77 12.04 9.69 10.84 10.8 8.88 9.33 8.22 

4) trajMean 5.28 4.7 3.91 3.43 4.05 4.17 3.73 3.83 3.44 

5) trajMedian 7.35 6.55 5.41 4.98 6.03 6.19 5.2 5.56 5 

6) trajHotDeck 10.39 9.22 7.59 6.09 7.03 7.16 5.94 6.19 5.53 

7) LOCF  1.75 1.84 1.96 2.38 2.14 2.02 1.78 1.99 2.06 

8) linearInterpol 1 1.01 1 1 1 1 1 1 1 

9) spline  1.54 1.82 2.67 179.22 185.59 174.71 4.26 8.92 15.19 

10) copyMean 1 1.01 1 1.03 1.03 1.04 1 1 1.01 

11) regressionInt 8.37 7.36 6.02 5.12 5.75 5.73 4.86 5.1 4.48 

12) regressionExt 1.95 2.03 2.08 1.73 1.94 2.28 1.63 1.77 1.84 

13) crossMeanClust 3.85 3.41 2.86 2.52 2.86 2.89 2.75 2.73 2.4 

14) crossMedianClust 4.59 4.07 3.39 2.96 3.37 3.49 3.2 3.24 2.94 

15) crossHotDeckClust 7.43 6.53 5.38 4.46 5.03 5.07 4.39 4.48 3.93 

16) copyMeanClust 1.01 1 1.01 1.04 1.04 1.08 1.01 1.02 1.04 

17) regressionIntClust 3.84 3.41 2.85 2.52 2.87 2.88 2.74 2.74 NA 

18) regressionExtClust 2.03 2.13 2.32 1.65 2.09 2.65 1.61 1.83 NA 
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A3. Biais 

A3.1. Set Pregnandiol 
 

 MCAR MAR MNAR 

 MCAR MAR MNAR MCAR MAR MNAR MCAR MAR MNAR 

1) crossMean 0 0 0 0 0.01 0.02 −0.03 −0.06 −0.05 

2) crossMedian −0.03 −0.08 −0.13 −0.03 −0.08 −0.11 −0.07 −0.14 −0.17 

3) crossHotDeck 0 0 0 0 0.01 0.02 −0.04 −0.06 −0.05 

4) trajMean 0.01 0.03 0.07 0 0.01 0.05 −0.05 −0.06 0 

5) trajMedian −0.01 −0.03 −0.02 −0.03 −0.06 −0.05 −0.07 −0.13 −0.11 

6) trajHotDeck 0.01 0.03 0.07 0 0.01 0.05 −0.05 −0.06 0 

7) LOCF  −0.02 −0.07 −0.15 0.02 0.01 −0.07 −0.05 −0.12 −0.18 

8) linearInterpol 0 0.01 0.05 0.02 0.05 0.08 −0.03 −0.03 0.01 

9) spline  0 0 0.01 0.05 0.12 0.11 −0.03 −0.04 −0.01 

10) copyMean 0 0 0 0.02 0.03 0.03 −0.03 −0.06 −0.05 

11) regressionInt 0 −0.01 0.01 0 0.01 0.02 −0.04 −0.06 −0.05 

12) regressionExt 0 0 0.03 0.01 0.03 0.05 −0.04 −0.06 −0.03 

13) crossMeanClust 0 0 0.03 0 0.01 0.03 −0.04 −0.06 −0.04 

14) crossMedianClust −0.01 −0.03 −0.03 −0.01 −0.02 −0.03 −0.05 −0.09 −0.08 

15) crossHotDeckClust 0 0 0.02 0 0.01 0.02 −0.04 −0.06 −0.03 

16) copyMeanClust 0 0 0.02 0.02 0.04 0.05 −0.03 −0.05 −0.03 

17) regressionIntClust 0 0 NA 0 0.01 NA −0.04 −0.06 NA 

18) regressionExtClust 0 0.02 NA 0.02 0.04 NA −0.03 −0.05 NA 

A3.2. Set Fish 
 

 MCAR MAR MNAR 

 MCAR MAR MNAR MCAR MAR MNAR MCAR MAR MNAR 

1) crossMean 0 0 0 0 −0.01 −0.01 −0.01 −0.02 −0.02 

2) crossMedian 0 0 0 0 0 0 −0.01 −0.01 −0.01 

3) crossHotDeck 0 0 0 0 −0.01 −0.01 −0.01 −0.02 −0.02 

4) trajMean −0.01 −0.05 −0.12 −0.07 −0.17 −0.23 −0.08 −0.23 −0.33 

5) trajMedian 0 −0.03 −0.11 −0.06 −0.16 −0.23 −0.08 −0.24 −0.37 

6) trajHotDeck −0.01 −0.05 −0.12 −0.07 −0.17 −0.23 −0.08 −0.23 −0.33 

7) LOCF  0 −0.01 −0.04 0.02 0.09 0.17 −0.01 −0.01 0.01 

8) linearInterpol 0 −0.02 −0.07 −0.01 −0.04 −0.05 −0.02 −0.08 −0.13 

9) spline  0 0 0.01 0 0.03 0.12 0 0 0.06 

10) copyMean 0 0 0 0 0 0.01 0 −0.01 −0.01 

11) regressionInt 0 0 0 0 −0.01 −0.01 −0.01 −0.02 −0.02 

13) crossMeanClust 0 0 0 0 0 0 0 −0.01 −0.01 

14) crossMedianClust 0 0 0 0 0 0 0 −0.01 −0.01 

15) crossHotDeckClust 0 0 0 0 0 0 0 −0.01 −0.01 

16) copyMeanClust 0 0 0 0 0 0.01 0 −0.01 −0.01 

17) regressionIntClust 0 0 0 0 0 0 0 −0.01 −0.01 

Copyright © 2013 SciRes.                                                                                  OJS 



C. GENOLINI  ET  AL. 39

A3.3. Set Alcohol 
 

 MCAR MAR MNAR 

 MCAR MAR MNAR MCAR MAR MNAR MCAR MAR MNAR 

1) crossMean 0 0 0 −0.02 −0.06 −0.1 −0.03 −0.09 −0.13 

2) crossMedian −0.02 −0.05 −0.09 −0.03 −0.16 −0.26 −0.05 −0.19 −0.29 

3) crossHotDeck 0 0 0 −0.02 −0.06 −0.1 −0.03 −0.08 −0.13 

4) trajMean 0 0 −0.01 −0.04 −0.12 −0.18 −0.05 −0.14 −0.22 

5) trajMedian 0 −0.01 −0.01 −0.04 −0.15 −0.24 −0.06 −0.17 −0.27 

6) trajHotDeck 0 0 −0.01 −0.04 −0.12 −0.18 −0.05 −0.14 −0.22 

7) LOCF  0 −0.02 −0.04 0.02 0.04 0.04 −0.02 −0.04 −0.07 

8) linearInterpol 0 0 0 0.01 0.02 0.02 −0.01 −0.03 −0.04 

9) spline  0 0 0 0.09 0.25 0.36 −0.01 0 0.03 

10) copyMean 0 0 0 0.01 0.02 0.02 −0.01 −0.03 −0.04 

11) regressionInt 0 0 0 −0.02 −0.06 −0.1 −0.03 −0.08 −0.13 

12) regressionExt 0 0 0 0.01 0.01 0.01 −0.01 −0.03 −0.04 

13) crossMeanClust 0 0 0 −0.02 −0.05 −0.06 −0.03 −0.08 −0.11 

14) crossMedianClust −0.01 −0.02 −0.03 −0.02 −0.08 −0.13 −0.04 −0.11 −0.18 

15) crossHotDeckClust 0 0 0 −0.02 −0.05 −0.06 −0.03 −0.08 −0.11 

16) copyMeanClust 0 0 0 0.01 0.02 0.02 −0.01 −0.03 −0.04 

17) regressionIntClust 0 0 0 −0.02 −0.05 −0.07 −0.03 −0.08 NA 

18) regressionExtClust 0 0 0 0.01 0.01 0.01 −0.01 −0.03 NA 

A4. CCR 

A4.1. Set Pregnandiol 
 

 MCAR MAR MNAR 

 MCAR MAR MNAR MCAR MAR MNAR MCAR MAR MNAR 

1) crossMean 0.98 0.95 0.95 0.98 0.96 0.95 0.95 0.93 0.92 

2) crossMedian 0.97 0.94 0.95 0.97 0.94 0.97 0.93 0.92 0.94 

3) crossHotDeck 0.95 0.86 0.81 0.94 0.84 0.81 0.91 0.83 0.81 

4) trajMean 0.99 0.98 0.98 1 0.98 0.98 0.97 0.97 0.97 

5) trajMedian 0.98 0.97 0.98 0.99 0.98 0.99 0.95 0.96 0.98 

6) trajHotDeck 0.96 0.95 0.94 0.97 0.95 0.95 0.95 0.94 0.94 

7) LOCF  0.99 0.97 0.97 0.98 0.97 0.98 0.98 0.97 0.98 

8) linearInterpol 1 1 1 0.99 1 1 1 1 1 

9) spline  0.98 0.91 0.87 0.94 0.86 0.88 0.97 0.94 0.91 

10) copyMean 1 1 1 1 1 1 0.99 1 1 

11) regressionInt 0.99 0.95 0.94 0.98 0.96 0.95 0.95 0.93 0.92 

12) regressionExt 0.98 0.96 0.89 0.99 0.93 0.87 0.97 0.92 0.87 

13) crossMeanClust 0.99 0.96 0.91 1 0.98 0.96 0.98 0.95 0.93 

14) crossMedianClust 0.99 0.96 0.91 1 0.98 0.96 0.97 0.94 0.93 

15) crossHotDeckClust 0.99 0.97 0.92 1 0.98 0.96 0.99 0.95 0.93 

16) copyMeanClust 0.99 0.98 0.92 1 0.98 0.97 0.99 0.98 0.95 

17) regressionIntClust 1 0.96 0.92 0.99 0.97 0.96 0.98 0.95 0.93 

18) regressionExtClust 0.99 0.97 0.93 0.99 0.98 0.95 0.98 0.95 0.94 
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A4.2. Set Fish 
 

 MCAR MAR MNAR 

 MCAR MAR MNAR MCAR MAR MNAR MCAR MAR MNAR 

1) crossMean 0.98 0.97 0.95 0.98 0.98 0.95 0.99 0.97 0.95 

2) crossMedian 0.98 0.97 0.95 0.98 0.97 0.95 0.99 0.97 0.94 

3) crossHotDeck 0.95 0.88 0.69 0.96 0.91 0.75 0.97 0.92 0.79 

4) trajMean 0.86 0.46 0.4 0.7 0.48 0.42 0.6 0.46 0.43 

5) trajMedian 0.83 0.45 0.42 0.84 0.45 0.41 0.66 0.43 0.42 

6) trajHotDeck 0.67 0.45 0.41 0.53 0.42 0.41 0.54 0.42 0.4 

7) LOCF  0.91 0.72 0.5 0.91 0.53 0.49 0.93 0.59 0.5 

8) linearInterpol 0.98 0.92 0.59 0.98 0.73 0.54 0.99 0.78 0.53 

9) spline  0.98 0.92 0.62 0.98 0.65 0.56 0.99 0.7 0.57 

10) copyMean 0.99 0.97 0.94 0.99 0.98 0.93 1 0.98 0.93 

11) regressionInt 0.98 0.97 0.95 0.98 0.97 0.95 0.99 0.97 0.94 

13) crossMeanClust 1 1 1 1 1 1 1 1 1 

14) crossMedianClust 1 1 1 1 1 1 1 1 1 

15) crossHotDeckClust 1 1 1 1 1 1 1 1 1 

16) copyMeanClust 1 1 1 1 1 1 1 1 1 

17) regressionIntClust 1 1 1 1 1 1 1 1 1 

A4.3. Set Alcohol 
 

 MCAR MAR MNAR 

 MCAR MAR MNAR MCAR MAR MNAR MCAR MAR MNAR 

1) crossMean 0.98 0.94 0.86 1 0.86 0.39 0.98 0.86 0.62 

2) crossMedian 0.97 0.92 0.66 0.99 0.34 0.41 0.98 0.24 0.45 

3) crossHotDeck 0.96 0.76 0.64 0.97 0.71 0.63 0.96 0.67 0.7 

4) trajMean 0.93 0.24 0.25 0.96 0.79 0.69 0.91 0.82 0.72 

5) trajMedian 0.75 0.2 0.69 0.62 0.64 0.16 0.67 0.65 0.17 

6) trajHotDeck 0.92 0.25 0.3 0.96 0.77 0.67 0.9 0.8 0.69 

7) LOCF  0.97 0.96 0.93 0.98 0.84 0.75 0.96 0.95 0.89 

8) linearInterpol 0.99 0.99 0.97 0.98 0.99 0.97 0.97 1 1 

9) spline  0.98 0.97 0.92 0.53 0.33 0.34 0.93 0.72 0.61 

10) copyMean 0.99 0.99 0.99 0.99 1 0.98 0.99 0.99 0.99 

11) regressionInt 0.96 0.93 0.81 1 0.86 0.43 0.99 0.87 0.67 

12) regressionExt 0.98 0.97 0.97 0.99 1 0.93 1 1 0.95 

13) crossMeanClust 0.95 0.93 0.92 0.96 0.9 0.81 0.95 0.97 0.91 

14) crossMedianClust 0.93 0.95 0.93 0.96 0.94 0.83 0.97 0.96 0.93 

15) crossHotDeckClust 0.94 0.96 0.92 0.93 0.92 0.81 0.93 0.93 0.9 

16) copyMeanClust 0.99 1 1 0.99 1 1 0.99 1 1 

17) regressionIntClust 0.96 0.93 0.92 0.92 0.93 0.8 0.95 0.96 0.93 

18) regressionExtClust 1 0.97 0.94 0.98 0.97 0.93 1 0.98 0.93 
 


