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ABSTRACT 

The vaccination of one person may prevent another from becoming infected, either because the vaccine may prevent the 
first person from acquiring the infection and thereby reduce the probability of transmission to the second, or because, if 
the first person is infected, the vaccine may impair the ability of the infectious agent to initiate new infections. The for- 
mer mechanism is referred as a contagion effect and the latter is referred as an infectiousness effect. By applying a prin- 
cipal stratification approach, the conditional infectiousness effect has been defined, but the contagion effect is not de- 
fined using this approach. Recently, new definitions of unconditional infectiousness and contagion effects were pro- 
vided by applying a mediation analysis approach. In addition, a simple relationship between conditional and uncondi- 
tional infectiousness effects was found under a number of assumptions. These two infectiousness effects can be as- 
sessed by very simple estimation and sensitivity analysis methods under the assumptions. Nevertheless, such simple 
methods to assess the contagion effect have not been discussed. In this paper, we review the methods of assessing infec- 
tiousness effects, and apply them to the inference of the contagion effect. The methods provided here are illustrated 
with hypothetical vaccine trial data.  
 
Keywords: Indirect Effect; Interference; Mediation Analysis; Potential Outcome; Principal Stratification 

1. Introduction 

Evaluating the effect of vaccination on reducing infec- 
tiousness has important public health consequences [1]. 
Even if a vaccine does not provide strong protection 
against an infection, it could substantially reduce the total 
number of cases if transmission from an infected vacci- 
nated person is reduced compared to that from a non- 
vaccinated person. This is because the vaccine status of 
one person may affect whether another person becomes 
infected. This phenomenon is referred as “interference” 
in the statistical literature [2], or the “indirect effect” in 
the infectious disease context [3]. In the presence of such 
interference or indirect effects, a further distinction is 
drawn, as mentioned below. 

Considering households consisting of two persons, one 
(person 1) is randomized to receive a vaccine or a control, 
and the other (person 2) receives nothing. The vaccina- 
tion of person 1 may prevent person 2 from becoming 
infected via the following two mechanisms: 1) the vac- 
cine may prevent person 1 from acquiring the infection 
and thereby reduce the probability of transmission to 
person 2, or 2) if person 1 is infected irrespective of the  

vaccine, the vaccine may impair the ability of the infec- 
tious agent to initiate new infections; i.e., make the agent 
less infectious. The first of these mechanisms is referred 
as the “contagion effect” [4] and the second is referred as 
the “infectiousness effect” [5]. 

To give a formal definition of these two effects, the 
principal stratification and mediation analysis approaches 
have been adapted. Recently, by applying the principal 
stratification approach, the conditional infectiousness 
effect was defined [3,6], but unfortunately the contagion 
effect was not. No one may be able to define it using this 
approach. More recently, unconditional infectiousness 
and contagion effects were defined by applying the me- 
diation analysis approach [4]. Furthermore, a simple re- 
lationship between conditional and unconditional infec- 
tiousness effects was found under a number of assump- 
tions [7]. These two infectiousness effects can be as- 
sessed using very simple statistical methods under the 
assumptions. Nevertheless, such methods to assess the 
contagion effect have not been discussed. In this paper, 
we review the methods used to assess infectiousness ef- 
fects, and apply them to the inference of the contagion 
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effect. 
This paper is organized as follows. Section 2 presents 

the concepts and definitions used throughout this paper. 
Section 3 reviews the relationship between the condi- 
tional and unconditional infectiousness effects, and ex- 
presses the contagion effect in terms of principal stratifi- 
cation. In Section 4, we describe a simple method of es- 
timating these effects upon their identification, and pro- 
vide a simple sensitivity analysis method of assessing 
how inferences would change under violations of the 
identification assumption in Section 5. The methods pre- 
sented in Sections 4 and 5 are illustrated using hypo- 
thetical randomized vaccine trial data in Section 6. Sec- 
tion 7 concludes with a discussion. 

2. Concepts and Definitions 

The notation and fundamental assumptions used through- 
out this paper are presented in Section 2.1. Section 2.2 
presents the crude estimator of the infectiousness effect, 
and indicates the problem with this estimator. Section 2.3 
formalizes the conditional infectiousness effect by ap- 
plying the principal stratification approach, and in Sec- 
tion 2.4 the unconditional infectiousness and contagion 
effects are formalized by applying the mediation analysis 
approach.  

2.1. Notation and Assumptions 

We consider a setting in which there are N households 
indexed by  in which each household con- 
sists of two persons indexed by j = 1, 2. Let Aij denote the 
vaccine status of person j in household i, where Aij = 1 if 
the person received the vaccination and Aij = 0 if the 
person did not. Let Yij denote the infection status of per- 
son j in household i, where Yij = 1 if the person was in- 
fected and Yij = 0 if the person was not. Finally, let 

i i i im  denote a set of baseline covari- 
ates for household i. Because person 1 is randomized and 
person 2 receives nothing, Xi affects Yi1 and Yi2 but does 
not affect Ai1 and Ai2. The relationship among these vari- 
ables is represented by a directed acyclic graph (DAG) 
[8,9] (Figure 1), in which A2 is not displayed because the 
vaccine status of person 2 (A2) is identical among all 
households (i.e., person 2 is never vaccinated) (A2 = 0). 

1, , ,i  

 1 2, , ,X X

N







X X

We assume that the vaccine status of the persons in 
one household does not affect the outcomes of those in 
other households; this is sometimes referred to as an as- 
sumption of partial interference [3,10]. We let 

 denote the potential outcome for person j in 
household i if the two persons in household i had, possi- 
bly contrary to fact, a vaccine status of . This 
assumption of partial interference might be plausible if 
the various households are sufficiently geographically 
separated or do not interact. We further require the con- 

sistency assumption, which means that the value of Yij 
that would have been observed if Aij had been set to what 
in fact it was is equal to the value of Yij that was ob- 
served; i.e., 

 1 2,ij i iY a a

 1 2,i ia a

 1 2,ij ij i iY Y A A  [11]. In addition, by ran- 
dom assignment to person 1, it is assumed that 

 1 2,ij i iY a a  is independent of Ai1. This independency 
can also be assumed conditional on Xi. Because person 2 
is always unvaccinated, we simplify the notation as 

   1 1: ,0aij i ijY a Y i

Using this notation, on the vaccine efficacy scale, the 
indirect effect is formalized by  

. 

     2 21 Pr 1 1 Pr 0 1Y Yi i    
(i.e., the effect on person 2 of person 1 being vaccinat- 
ed) [3]. In contrast, the effect on person 1 of person 1 
being vaccinated is called the direct effect, and is for-
malized by  

     1 11 Pr 1 1 Pr 0 1i iY Y   . 
In the current setting, due to random assignment to per-
son 1 and the consistency assumption, these direct and 
indirect effects are identified by the sample proportions  

   1 1 1 11 Pr 1 0i i i iY A Y A1 Pr 1     , 

   2 1 2 11 1 Pr 1 0i i i iY A Y A1 Pr     , 

respectively. The indirect effect is classified into infec- 
tiousness and contagion effects due to the existence of 
two infection mechanisms, as noted in Section 1. 

2.2. Crude Estimator of the Infectiousness Effect 

The crude estimator of the infectiousness effect might be 
taken as [12]: 

 
 

2 1 1

2 1 1

1 1, 1

1 0, 1
i i i

i i i

Y A Y

Y A Y

Pr
1

Pr

  


  
.        (2.1) 

This is a comparison of the infection proportions for 
person 2 in the subgroup in which person 1 was vacci- 
nated and infected versus that in which person 1 was 
unvaccinated and infected. This is an appealing intuitive 
method of capturing the extent to which the vaccine may 
render those infected less contagious, which may in turn 
prevent the second person from being infected (i.e., in- 
fectiousness effect). 

However, the measure is subject to selection bias. Al- 
though the vaccine status of person 1, Ai1, is randomized, 
conditioning on a variable that occurs after treatment (i.e., 
the infection status of person 1) breaks the randomization. 
This can be indicated using the DAG shown in Figure 1. 
Even if an arrow from X to A1 does not exist due to ran- 
domization, conditioning for Y1 would induce non-iden- 
tifiability due to the induced structural relationship of a 
possible double arrow between A1 and X, as shown in 
Figure 2 [13]. 

As a result, the subgroup with person 1, who was vac-  
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A1 Y1 Y2

X

 

Figure 1. A directed acyclic graph representing the rela- 
tionship among A1, Y1, Y2, and X in the current context. 
 

Y1A1 Y2

X

 

Figure 2. A graph after conditioning on Y1. 
 
cinated and infected, may be quite different from that in 
which person 1 is unvaccinated and infected. For exam- 
ple, those in the vaccinated group who become infected 
may be a less healthy subpopulation than those in the 
unvaccinated group who become infected. If the persons 
who are infected are less healthy even though they have 
been vaccinated, they may also more likely to be conta- 
gious and to pass on the disease. We are then computing 
infection proportions for person 2 for subpopulations that 
are quite different with respect to person 1.  

2.3. Conditional Infectiousness Effect 

By applying the principal stratification approach, con- 
sider the following contrast [14]: 

     
 


    

2 1 1

2 1 1

Pr 1 1 1 0 1
: 1

Pr 0 1 1 0 1
i i i

C
i i i

Y Y Y
I

Y Y Y

  
 

  
.     (2.2) 

This compares the infection status of person 2 if per- 
son 1 was vaccinated, , versus that if person 1 was 
unvaccinated, 2 , but only in the subgroup of 
households in which person 1 would have been infected 
irrespective of whether person 1 was vaccinated; i.e., 

i i . Such a subgroup is sometimes re- 
ferred to as a principal stratum [15]. Because we are con- 
sidering only the subgroup of households for whom per- 
son 1 would have been infected irrespective of whether 
person 1 was vaccinated, person 2 is exposed to the in- 
fection of person 1, and thus any effect of the vaccine 
ought to occur through a change in the infectiousness. 
Therefore, the conditional infectiousness effect is defined 
by Equation (2.2), because it is conditioned on 

i i . Moreover, unlike with the crude 
comparison in Equation (2.1), we are now comparing the 
infection proportions of person 2 for the same subpopu- 
lation in Equation (2.2). We are no longer considering a 
healthier or unhealthier subgroup for person 1. 

 2 1iY
0iY

0 1

0 1

   1 11Y Y

   1 11Y Y

Unfortunately, we do not know which households fall 

into the subpopulation in which person 1 would have 
been infected irrespective of whether he or she was vac- 
cinated. This is because we can observe only the out- 
come of person 1, either with or without the vaccine but 
not under both scenarios. Because we do not know which 
households fall into this subpopulation, we cannot com- 
pute the conditional infectiousness effect in a straight- 
forward manner. However, in Section 4, we will show 
that the effect can be estimated simply under a number of 
assumptions. 

2.4. Unconditional Infectiousness and Contagion 
Effect 

Suppose that, in addition to potentially intervening to 
vaccinate person 1, we could, at least hypothetically, in- 
tervene to infect or not infect person 1. Then,  

 2 1 2 1, ,i i i iY a a y  would denote the infection status of per- 
son 2 if we would set the vaccine status of person 1 and 
person 2 to ai1 and ai2 and the infection status of person 1 
to yi1. The assumption that person 2 is always unvacci- 
nated allows a simplified notation:  

   ,0,Y a y2 1 1, :i i iY a y  2 1 1i i i . This potential outcome is 
used to define unconditional infectiousness and conta- 
gion effects [4]. 

Consider the following contrast: 

   
   

2 1

2 1

Pr 1, 1 1
: 1

Pr 0, 1 1

i i

U

i i

Y Y
I

Y Y


 


.        (2.3) 

This compares the potential infection status of person 
2 if person 1 had been vaccinated versus unvaccinated 
and person 1 had the infection status that would occur if 
vaccinated. If Equation (2.3) is non-zero, this will be 
because even when person 1 is vaccinated and infected, 
the vaccine itself affects whether person 2 is infected by 
person 1. In some ways, it is analogous to what is called 
an infectiousness effect. However, this measure defined 
by Equation (2.3) differs from the conditional infec- 
tiousness effect defined by Equation (2.2) in that it is not 
conditional on person 1 actually being infected.  

Consider now the other contrast: 

   
   

2 1

2 1

Pr 0, 1 1
: 1

Pr 0, 0 1

i i

i i

Y Y
C

Y Y


 


.       (2.4) 

The term   2 10, 1i iY Y  considers what the potential 
infection status of person 2 is if person 1 is unvaccinated, 
but we set the infection status of person 1 to the level it 
would have been if person 1 was vaccinated. Equation 
(2.4) compares this potential outcome to   2 10, 0i iY Y , 
which is the potential infection status of person 2 if per- 
son 1 is not vaccinated, and we set the infection status of 
person 1 to the level it would be if person 1 was unvac- 
cinated. For Equation (2.4) to be nonzero,  1 1iY  and 
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 1 0iY  have to differ; i.e., vaccination of person 1 would 
have to affect the infection status of person 1, and that 
change in infection for person 1 would have to change 
the infection status for person 2, even if person 1 had 
remained unvaccinated. Essentially, Equation (2.4) is 
non-zero if the vaccine prevents infection in person 1, 

and that in turn prevents person 2 from being infected. 
Thus, the contagion effect is defined by Equation (2.4).  

These definitions of the unconditional infectiousness 
and contagion effects have the feature that we can decom- 
pose an indirect effect into unconditional infectiousness 
and contagion effects; i.e., from Equations (2.3) and (2.4), 

 

  
  

   
   

   
   

   
   

   

2 1 2 1 2 12

2 2 1 2 1 2 1

Pr 1, 1 1 Pr 1, 1 1 Pr 0, 1 1Pr 1 1
1 1 1

Pr 0 1 Pr 0, 0 1 Pr 0, 1 1 Pr 0, 0 1

1 1 1 .

i i i i i ii

i i i i i i i

U U U

Y Y Y Y Y YY

Y Y Y Y Y Y Y

I C I C I C

  
    

   

      

        (2.5) 

 
come infected from outside the household. This decomposition is analogous to what are referred 

to as “natural direct and indirect effects” [16,17] in the 
mediation analysis.  

Assumption 2.   1 11i iY Y 0  for all i. 
Assumption 1 implies that person 2 cannot be infected 

unless person 1 is infected. Assumption 2 implies  
    1 1Pr 1 1, 0 0 0i iY Y   ; i.e., there is no household 

in which person 1 would be infected if vaccinated, but 
uninfected if unvaccinated.  

3. Relationship between Conditional and 
Unconditional Infectiousness Effects 

Under these two assumptions,    2 1 1Pr , 1 1i i iY a Y   
can be expressed as follows [7]: 

Here, we require the following two assumptions: 
Assumption 1. Only person 1, not person 2, can be-  

 

                 
            

           
       

1 1
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i i i i i i i i i i
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      2 1 1 1 1 1

1 1

Pr 1 1 0 1 Pr 1 1 ,i i i i i iY a Y Y Y A



      

 

 
where the third equality is because  

      2 1 1 1 ,0 1 1 0, 0 0Y a Y Y t   
 

Pr i i  by Assump-
tion 1 and  by Assumption 
2, the fourth is by Assumption 2, and the last is by ran-
dom assignment to person 1 and the consistency assump-

tion. 

i i

    1 1Pr 1 1, 0 0 0i iY Y 
Using this equation and Equations (2.2) and (2.3), it is 

readily confirmed that IU = IC under Assumptions 1 and 2. 
Furthermore, substituting this equation into Equation 
(2.4) derives the following form for the contagion effect: 

 

         
 

2 1 1 1 1

2 1

Pr 0 1 1 0 1 Pr 1 1
1 ,

Pr 1 0

i i i i i

i i

Y Y Y Y A
C

Y A

     
 

 
 

 
4. Estimation where the denominator is by  

   
    

2 1

2 2

Pr 0, 0 1

Pr 0 1 Pr 1 .0

i i

i i

Y Y

Y Y A



   
Section 4.1 presents the inverse-probability-weighting 
(IPW) estimators for the infectiousness and contagion 
effects. Section 4.2 shows that the analysis for the IPW 
can be implemented easily. 

1i 
 

Therefore, to assess the unconditional infectiousness and 
contagion effects, we can apply the statistical methods 
developed for the conditional infectiousness effect. Such 
methods are described in Sections 4 and 5. We note that 
this form for the contagion effect is not its definition un- 
der the principal stratification approach. 

4.1. Estimators 

Under Assumption 2,       2 1 1 1Pr 1 1 0 1i i i iY a Y Y    
an be expressed as follows: c    
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2 1 1 1 2 1 1 2 1 1 1

2 1 1 1

Pr 1 1 0 1 Pr 1 1 1 Pr 1 1 1, 1

Pr 1 1, 1 .
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Specifically,  

  
 
2 1 1

2 1 1

Pr 1 1 1, 1

Pr 1 1, 1

i i i

i i i

Y A Y

Y A Y

  

   
 

by the consistency assumption. Thus, under Assumptions  

1 and 2, the respective infectiousness and contagion ef- 
fects can be expressed as: 

 
  
2 1 1

2 1 1

Pr 1 1, 1
1

Pr 0 1 1, 1
i i i

C U
i i i

Y A Y
I I

Y A Y

  
  

  
,   (4.1) 

 

     
 

2 1 1 1 1

2 1

Pr 0 1 1, 1 Pr 1 1
1 

Pr 1 0

i i i i i

i i

Y A Y Y A
C

Y A

     
 

 
.                        (4.2) 

 
To derive estimators of   2 1 1Pr 0 1 1, 1i i iY A Y   , 

we require the following assumption: 
Assumption 3.  is independent of Ai1, condi-

tional on Yi1 and Xi. 
 2 1i iY a

This assumption states that all baseline covariates that 

affect the vaccine status of both persons 1 and 2 are 
measured, and implies that, in Figure 2, all paths from A1 
to Y2 are blocked except for the direct path A1 → Y2. 

Under Assumption 3,   2 1 1Pr 0 1  1, 1i i iY A Y    
can be expressed as follows [18]: 
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x
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x
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where  1 11 1,ix i i ip Pr A Y X x     . Following the 
theory of Hirano et al. [19], once pix has been modeled 
and calculated, the last equation can be estimated by: 

 1 1
111

1
0, 1

1

N
ix

i i
i ix

p
2iI A Y Y

N 

 


p

,

,      (4.3) 

where N11 is the number of households with  
 and    1 1, 1,  1i iA Y   .I  denotes the indicator func- 

tion with  for households with 
 and 

 0, 1
1  0,




1 1 1i iY 
I A

I A
   1 1, 0,  i iA Y  1 1 1 0i iY    for the oth- 
ers. The value of pix is often predicted from a model for 
the regression of Ai1 on Xi (e.g., logistic regression mod-
el) in the subgroup of households with Yi1 = 1. 

We note that we can derive the other types of estima- 
tors; i.e., the model-based standardization estimator [20], 
which uses a model for the regression of Yi2 on Xi rather 
than the regression of Ai1 on Xi, and the doubly robust 
estimator [21], which uses both regression models. See 
Chiba and Taguri [18] for details.  

4.2. Implementation 

Equation (4.3) implies that we can implement the analy- 
sis by limiting the analysis set to households with Yi1 = 1. 

(4.3) has the same form as those for the average causal 
effect of an exposure on the outcome with the exposed 
group as the target population in the setting of observa- 
tional studies [20,22], where the exposure and outcome 
correspond to Ai1 and Yi2, respectively. Therefore, we can 
easily calculate the IPW estimate and the confidence 
interval (CI) using a marginal structural model (MSM) 
[23,24]. The regression parameters in this model are es- 
timated by a weighted regression model with the form 

Furthermore, except conditioning on Yi1 = 1, Equation 

 2 0 1 1expi iY A   , where the weights are wi = 1 for 
 = 1 and  households with Ai1 1i ix ixw p p   for 

households with Ai1 = 0, where the ated 
by the robust variance, which provides a conservative CI 
that is guaranteed to cover the true at least 95% of the 
time in large samples [24]. The SAS code is given else- 
where [7,18]. 

In this MSM

 variance is estim

, 1̂  corresponds to an estimator of  

  
  

2 1 1

2 1 1

r

log Pr 0 1 1, ,1

i i i

i i i

Y

Y A Y

log P 0 1 1, 1A Y  

   
 

and 0̂  corresponds to an estimator of  

  12 1 1log Pr 0 1 1,i i iY A Y   .  

Therefore, an estimator of the infectiousness effect is: 
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1̂ˆ ˆ 1 eC UI I    ,         (4.4)     

and that of the contagion effect is: 

 
 

0
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P̂r 1ˆ
0

i

i

Y

A
 1 1iA
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1 e
P̂r 1i

C
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The CI of 

.       (4.5) 

ˆ ˆ
C UI I  is evaluated by  11 exp CI of ̂ , 

by and similarl  is evaluated y the CI of Ĉ  

 
 

1

1 1

1 1p CI o i

i i

A

Y


 

In other words, the variances of these estim tes are 
used to obtain the CIs, where the delta method is used to 
yield the varia

Here, we provide a simple sensitivity analysis method to 
 change under violation of 

We set the sensitivity parameter as [18,25]: 


0 1

ˆ ˆlog Pr

ˆlog Pr 1 0

1 ex f

.

iY

A

  

 





a

nces of estimates on a log-scale.  

5. Sensitivity Analysis 

assess how inference would
Assumption 3. The sensitivity analysis formula is pro- 
vided in Section 5.1, and a plausible range of the sensi- 
tivity parameter is provided in Section 5.2. 

5.1. Sensitivity Analysis Formulas 

  
  

2 1 1Pr 0 1 1,i i iY A Y  

2 1 1Pr 0 1 0, 1i i iY A Y
 

  

1
.      (5.1) 

The sensitivity parameter α is the ratio
outcome that would have been observed if 
unvaccinate

 between the 
person 1 was 

d in comparing two different populations: the 
population in the numerator is that in which person 1 was 
vaccinated (Ai1 = 1), and the population in the denomi- 
nator is that in which person 1 was unvaccinated (Ai1 = 0), 
where the infection status is equal in these two popula- 
tions (Yi1 = 1). The interpretation of α is then simply the 
ratio of the expected outcomes under non-vaccination for 
these two populations. 

Using Equation (5.1), Equations (4.1) and (4.2) can be 
expressed as follows:  

 
 

2 1 1Pr 1 1, 11
1 i i i

C U

Y A Y
I I

 2 1 1Pr 1 0, 1i i iY A Y

  
  

  
,   (5.2) 
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1 1

Pr 1 1
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Y A
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,         (5.3) 

respectively, where Equation (5.3) can be derived be- 
cause, by Assumption 1, 

 

   

   

2 1

1

2 1 1 1 1
0
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Pr 1 0, 1 Pr 1 0 .

i i

i i i i i
y

i i i i i

Y A

Y A Y y Y y A

Y A Y Y A



 

     

     

  

Using Equations (5.2) and (5.3), a sensitivity analysis 
can be conducted as follows. The sensitivity parameter α 
is set by the investigator according to what is considered 
plausible. The parameter can be varied over a range of 
plausible values to examine how conclusions vary ac- 
cording to differences in parameter values. The results of 
the sensitivity analysis can be displayed graphically, 
where the horizontal axis represents the sensitivity pa- 
rameter and the vertical axis represents the true infec- 
tiousness and contagion effects.  

Generally, to obtain the CIs, the variances are calcu- 
lated from Equations (5.2) and (5.3) with a fixed value of 
α. However, this calculation yields narrower CIs than 
those calculated from Equations (4.4) and (4.5). To avoid 
this problem, we use the variances calculated from Equa- 
tions (4.4) and (4.5) to obtain the CIs of the infectious- 
ness and contagion effects estimated from Equations 
(5.2) and (5.3).  

5.2. Range of the Sensitivity Parameter 

In some situations, it may be troublesome for investiga- 
tors to determine a range of values of α to examine. 
Therefore, we present a range of values that α can take; 
i.e., bounds for α. 

Initially, we apply the large sample bounds [26-28] for  

   
      

2 1 1

2 1 1

Pr 0 1 1, 1

Pr 0 1 1 0 .1

i i i

i i i

Y A Y

Y Y Y

  

   
 

under Assumption 2. The large sample bounds are calcu- 
lated from the expected number if households with 
      1 , 0 1,  1Y Y 1 1i i  were assigned to the unvacci- 
nated group (Ai1 = 0), as follows. 

   , 0,1A Y 1 1i i  are those with either Households with 
      1 , 0 1,1Y Y     1 1i i  or    1 , 0 0,1Y Y 1 1i i . There- 
fore, under Assumption 2, of households with  
   , 0,1A Y 1 1i i , the expected number of households 
with       1 , 0 1,1Y Y 

 

1 1i i  assigned to the unvaccinated 
group (Ai1 = 0), N*, is calculated as:  

      
         

      
  

     
     1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1

Pr 0, 1 P Pr 1 0 Pr 0 Pr 1 1
*

Pr 1 0 1 Pr 1 0, 0 1 Pr 0 1

Pr 1 0 Pr 0 Pr 1 1
Pr 0 Pr 1 1 .

Pr 1 0

i i i i i i i i

i i i i i

i i i i i
i i i

i i

N A Y N Y A A Y
N

Y Y Y Y Y

N Y A A Y A
N A Y A

Y A

      
 

     

    
    

 

 

r 1 0 1Y Y 
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Using this number, the lower bound of  

  
      

2 1 1

2 1 1

Pr 0 1 1, 1

Pr 0 1 1 0 1

i i i

i i i

Y A Y

Y Y Y

  

  
 



is 

 010 0100 ** 0 N N NN    1
max ,

* *N N

 
 
  

, 

and the upper bound is 

 011 011* 0* 1
min ,

* *

N N NN

N N

    



, 
1



where  is the num- * 1 1 2Pr , , *ayy i i iN N A a Y y Y y   
  1 1 2, , ,i i iber of households with  , *A Y Y a y
ing bounds for α: 

y . Some 
algebra yields the follow

1 1 1 1
max 0, 1 1 1 min , ,

P Q P Q


               
      

 

where    1 1Pr 1 1 Pi iP Y A   d 1 1r 1 0|i iY A   an
 2 1 1Pr 1 0, 1i i iQ Y A Y    . We note that th r 

bound is the same as or smaller than that deri
e uppe
ved by 

Chiba and Taguri [7], which is 1/P under Assumptions 1 
and 2. 

Next, we consider the bounds for α under Assumption 
e following assumption [25,29]: 

Assumption 4.  
2 and th

  
  Pr 0 1 0, .1Y A Y   

le insofar as the 
po person 1 was vaccinated is likely to 
be less healthy (or the infection is more virulent) than 
that in which person 1 was unvaccinated. T popu- 
lation in which person 1 was infected desp receiving 
the vaccination would be less healthy than the second 
po

 ran- 
ve pneumococcal conjugate vaccine 
umococcus serotype. The colonization 

status with respect to the given serotype of the 1-year-old 
child and the mother is also monitored. Because pneu- 
mococcus is highly prevalent in young childre who at- 
tend day care, the mother is more likely to acquire the 
pneumococcus from the child than through other trans- 

 

2 1 1Pr 0 1 1, 1i i iY A Y  
 

2 1 1i i i

This assumption is arguably reasonab
pulation in which 

he first 
ite 

pulation in which person 1 was unvaccinated and in- 
fected. Thus, under the scenario in which both persons 
are unvaccinated, person 2 is more likely to be infected 
in the first than in the second population.  

Under Assumptions 2 and 4, it is obvious that α ≥ 1. 
While the large sample bounds generally yield a wide 
range, if Assumption 4 is plausible, it will yield a nar- 
rower width than the large sample bounds only. 

6. Illustration 

To illustrate the methods presented in Sections 4 and 5, 
we employ data from a hypothetical vaccine trial used 
elsewhere [4]. Consider now a vaccine trial setting in 
which 1-year-old children at a day-care center are
domized to recei
against a given pne

n 

mission routes. Here, we assume that the second person 
(the mother) can be infected only from the first (the 
1-year-old child). The hypothetical data are given in Ta- 
ble 1. 

Under Assumptions 1-3, using a MSM, Equations 
(4.4) and (4.5) yielded an IPW estimate of the infec- 
tiousness effect of 0.44 (95% CI: 0.33, 0.53) and an IPW 
estimate of the contagion effect of 0.54 (95% CI: 0.46, 
0.61). The overall indirect effect was 1 − (79/1000)/ 
(305/1000) = 0.74 (95% CI: 0.67, 0.79), which equals the 
decomposition of Equation (2.5): 0.44 + 0.54 − 0.44 × 
0.54 = 0.74. 

To assess how inference would change under violation 
of Assumption 3, we implemented the sensitivity analy- 
sis presented in Section 5. Before the implementation, we 
determined the bounds for α to determine the range to be 
examined. The large sample bounds yielded bounds for α 
of 0.04 ≤ α ≤ 1.80. By adding Assumption 4, this range 
was narrowed to 1.00 ≤ α ≤ 1.80. For this range of α, we 
implemented the sensitivity analysis using Equations 
(5.2) and (5.3). The results are shown in Figure 3 for the 
infectiousness effect and Figure 4 for the contagion ef-
fect. 

For this range of α, the respective lower and upper 
limits of the infectiousness effect were 0.43 (95% CI: 
0.31, 0.53) and 0.68 (95% CI: 0.62, 0.74), and those of 
the contagion effect were 0.18 (95% CI: 0.04, 0.30) and 
0.55 (95% CI: 0.47, 0.61). The IPW estimates under As- 
sumption 3 correspond to the estimates for α = 1.01 in 
Figures 3 and 4. 
 
Table 1. Numbers infected (Yi1, Yi2) from a hypothetical 
randomized trial of pneumococcal conjugate vaccine with 
2000 householdsa. 

Yi1 = 0 
Yi2 = 0 

Yi1 = 1 
Yi2 = 0 

Yi1 = 1 
Yi2 = 1 

Total 

Low SES     

Ai1 = 0, Ai2 = 0 200 120 180 500 

Ai1 = 1, Ai2 = 0 350 96 54 500 

High SES     

i1 i2 400 75 25 500 

Ai1 = 0, Ai2 = 0 250 125 125 500 

A  = 1, A  = 0 

aPerson 1 (the 1-year-ol as ed 1:1 to vaccine rol, 
and person 2 (the mothe t va vac tatus [Ai1, Ai2]), 
and half the households have either low or high socioeconomic status (SES). 

d c ild) w
r) was no

h ran omiz
ccinated (

d or cont
cination s
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Figure 4. Sensitivity analysis of the contagion effect; the 
solid line indicates the contagion effect and broken lines 
indicate 95% confidence intervals.  

7. Discussion 

In this paper, by applying a simple relationship between 
conditional and unconditional infectiousness effects, 
have presented simple statistical methods to assess t
infectiousness and contagion effects. Although the meth-
ods for the infectiousness effects are a review of the past 
literature, we have summarized them in the present 
We have further applied them to infer the cont ion ef-

n be partially veri
 data by examining whether  

we 
he 

 

paper. 
 ag

fect. 
The methods presented here are limited by the as- 

sumptions. While Assumption 1 ca fied 
from the observed

 2 1Pr 1 0i iY Y  0 , Assumption 2 cannot be verified 

he principal stratific

from the observed data. Although we believe that As- 
sumption 2 will be plausible in many settings, whether 
the assumption holds will depend on the nature of the 
vaccine under study. Therefore, the assumption will not 
be applicable to all vaccines [18]. In such situations, un- 
fortunately, the methods presented here cannot be ap- 
plied. Nevertheless, for unconditional infectiousness and 
contagion effects, we can still apply the methods devel- 
oped in the context of the mediation analysis approach 
[30-33], and for the conditional infectiousness effect, we 
can also apply the methods developed in the context of 
t ation approach [25-28]. However, 
these methods have a weakness in that they are more 
complex than those in this paper. 

The framework used also made an assumption of par- 

tial interference. This might be plausible if the various 
households are sufficiently geographically separated or 
do not interact. In certain settings, this assumption might 
be plausible. Nevertheless, future work will attempt to 
generalize the methods given here to allow for violations 
of this assumption. 
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