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ABSTRACT 

By combining a pair of linear springs we devise a nonlinear vibrator. For a one dimensional scenario the nonlinear force 
is composed of a polynomial of odd powers of position-dependent variable greater than or equal three. For a chosen 
initial condition without compromising the generality of the problem we analyze the problem considering only the 
leading cubic term. We solve the equation of motion analytically leading to The Jacobi Elliptic Function. To avoid the 
complexity of the latter, we propose a practical, intuitive-based and easy to use alternative semi-analytic method pro-
ducing the same result. We demonstrate that our method is intuitive and practical vs. the plug-in Jacobi function. Ac-
cording to the proposed procedure, higher order terms such as quintic and beyond easily may be included in the analysis. 
We also extend the application of our method considering a system of a three-linear spring. Mathematica [1] is being 
used throughout the investigation and proven to be an indispensable computational tool. 
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1. Motivation and Objectives 

Literature articles and text books are flooded with sec- 
tions describing the characteristics of linear oscillators 
[2]. One quick review of these resources reveals these are 
confined limited to mechanical systems. In the area of 
electro and magneto-dynamics, the author thoroughly has 
investigated scenarios of nonlinear oscillators [3,4]. La- 
boratory setups conducive to these scenarios have been 
proposed, and for the magneto-dynamic case the validity 
of the theoretical model is qualified with actual data [5]. 
For the sake of completeness, therefore, it is essential to 
fill in the gap considering a practical scenario conducive 
to a nonlinear mechanical oscillator. Although the latter 
is the main motivation of tackling the issue, however, in 
the course of analyzing the problem we stumbled on a 
mathematical observation constituting our secondary 
objective.  

To address the first issue we consider combining two 
linear springs; the device is shown in Figure 1. The 
springs are identical in shape and have the same stiffness. 
They are fastened to two separate supports at one end 
and jointly hold a marble at the other end. In the absence 
of gravity, the springs exert a nonlinear force on the 
marble along the horizontal direction when it is pulled  

away symmetrically from equilibrium. The non-linear 
force could be a combination of cubic and quintic coor- 
dinate-dependent terms; details are discussed in the next 
section. 

Releasing the marble somewhere off from equilibrium 
results in oscillations along the horizontal direction. The 
corresponding equation of motion is a nonlinear differen- 
tial equation. The issues concerning the solution of the 
equation will be discussed later. Nonetheless, it is worth- 
while mentioning not only we solve the equation utiliz- 
 

 

Figure 1. Two-spring arrangement leading to cubic and 
quintic oscillations. 
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ing traditional methods, we propose a fresh semi-analytic 
method resulting in the same output. With these objec- 
tives we craft this four-section article. In addition to Mo- 
tivation and Objectives, in Section 2, along with the phy- 
sics of the problem we formulate the problem. In Section 
3 we present the Analysis along with the associated de- 
scriptive graphs. We close the article with conclusions 
and closing remarks. 

2. Physics of the Problem and Its  
Formulation 

As shown in Figure 1, the marble is pulled from its ini- 
tial equilibrium position to a point such as G, stretching 
the linear springs with stiffness k beyond their relaxed 
length L. The differential length elongation of each 
spring is 2 2L x L    , yielding the net force  
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For displacement x < L the quantity in the parentheses 
in Equation (1) may be replaced with  
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One realizes this simple mechanical device is capable 
of exerting nonlinear forces; the forces are a combination 
of cubic and quintic coordinate-dependent terms. For the 
sake of “completeness”, in order to include a linear coor- 
dinate-dependent force we modify the previous design by 
adding a third identical spring, shown in Figure 2.  

For this three-spring system the net force is, 
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The criteria x < L suggests that the impact of the third 
term and terms with powers higher than the fifth are to be 
insignificant; this is qualified later on. Nonetheless, the 
equation of motion of the marble under the influence of 
the force given by Equation (3) along the x-axis yields,  
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with this equation in hand we analyze the impact of the 
force terms on the kinematic characteristics of the mobile 
marble. First, by turning off the linear term, a scenario 
subject to Figure 1, we focus on the impact of the cubic 
and quintic terms. Then, we consider a case including the 
combination of the linear and the cubic terms.  

3. Analysis 

3.1. Case 1 

According to the scenario shown in Figure 1 and its ac-  

 

Figure 2. Three-spring arrangement leading to a combina-
tion of linear, cubic and quintic oscillations. 
 
companied force, Equation (2), the equation of motion is, 
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First we consider a case assuming x < L, i.e. the initial 
displacement of the marble from equilibrium is less than 
the length of the spring; this drops the last term. Sustain- 
ing the cubic term only, the equation of motion is an 
analytically solvable DE with closed form solutions 
given by Jacobi Elliptic Functions [6]. Alternatively, the 
same equation can be solved numerically. Assigning pa- 
rameters to the spring length and stiffness and the marble 
we solve the equation numerically; output graphs of 
these two approaches are indistinguishable. To establish 
the basis for the semi-analytic method we focus on the 
numeric schematic. The values lists a typical set of pa- 
rameters in MKS units, 

 2 33.0, 6.0 10 , 10.0 10k m      values  . 

The 4 × 2 graphic-matrix shown in Figure 3 displays 
the position of the marble vs. time. The differences be-
tween the graphs are due only to various initial dis-
placements of the marble. From the top left to the bottom 
right these correspond to  
 0 0.1 1 for 1,2,3, ,8x      respectively. The com- 

mon global feature of these plots indicate irrespective of 
the initial condition the marble under the influence of the 
cubic force does oscillate. The period of oscillation is not 
constant; it depends on the initial value of the displace- 
ment. This is one the distinct characteristics of a non- 
linear force. An inspection of these plots reveals the ab- 
sence of retarding forces such as friction enforces the 
constant amplitude; noting the shorter the amplitude the 
longer the period. Figure 4 puts the observation in per- 
spective. This graph vividly shows a reciprocal relation- 
ship between the amplitude and the corresponding pe- 
riod.  

It is instructive to compare the oscillations emanating 
by a cubic force vs. the linear one. This can be done ei-  
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Figure 3. Output of numeric solution of equation of motion. 
From the top left to the bottom right the graphs correspond 
to the initial values x[0] = 0.1 α l for α = 1, 2, 3, ..., 8, respec-
tively. 
 
ther by a direct comparison of the amplitudes or more 
elegantly by comparing their respective phase diagrams 
shown in Figure 5.  

For the sake of clarity the horizontal scale of Figure 5 
is magnified by a factor of 10. Figure 5 shows the dis- 
tinct differences between the oscillation characteristics of 
a linear vs. a cubic spring. As one may easily prove the 
phase diagram of a linear spring is a perfect ellipse. The 
phase diagram of a cubic spring is a depressed “ellipse” 
along the velocity axis. Depression severity of the latter 
is a function of the initial condition. A family of such 
curves is shown in Figure 6. 

Figure 6 displays a series of phase diagrams each of 
which is a result of applying various initial conditions. 
For instance the inner depressed ellipse comes about 
from setting the initial displacement to  0 0.x  1 
whereas the outer one is associated with the initial dis-
placement  0 0.x  1. The curves between the inner and 
the outer ellipses correspond to initial displacements 
 0 0.x  1 α for α = 2, 3, 4, ..., 9, respectively. 

3.2. Semi-Analytic Method of Solving DE Motion 

As we discussed in Section 3.1 the solution of equation 
of motion of a cubic force is an oscillating function.  

 

Figure 4. Collective display of the oscillations shown in 
Figure 3. 
 

 

Figure 5. Phase diagrams: (a) the ellipse corresponds to a 
linear spring, and (b) the depressed ellipse corresponds to a 
cubic spring. 

 
Accordingly, the value of the initial condition impacts 

the period. With these two observations we propose a 
compatible alternative solution. This solution is neither 
purely numeric nor purely symbolic; it is somewhere in 
between, it is semi-analytic. From an analytic point of 
view, first we consider a solution such as,   ampx t   

 cos t , with ω = ω(amp). Because    2 amT p   , 
from a numeric point of view utilizing either Figure 4 or 
5 we hunt for T(amp). For instance, for the latter utilizing 
Figure 5 for the chosen initial amplitude we evaluate the 
maximum ordinate of the corresponding oscillation. A 
set of one such coordinates are shown with dots in Fig- 
ure 7. Then we fit the data with an appropriate con- 
tinuous function. The fitted curve is shown on the same 
graph as well. Utilizing this function, e.g. T(amp) we 
compare the semi-analytic solution  
     ampcos 2 ampx t T  t    vs. the numeric solu- 

tion. A 4 × 2 graphic-matrix shown in Figure 8, qualifies 
the accuracy of our proposed method. 

These two solutions are indistinguishable. Therefore,  
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Figure 6. A family of phase diagrams of the cubic spring. 
The inner curve corresponds to x[0] = 0.1 while the outer 
one is due x[0] = 1. 

 

 

Figure 7. The dots are the periods and the corresponding 
amplitudes are deduced from Figure 5. The solid line is the 
fitted curve T(amp) = 0.0256907 amp−1. 
 
as an option, rather than utilizing the numeric solution 
that in general lacks the physics insight, alternatively, 
one may objectively apply the semi-analytic method to 
obtaining the same result. 

3.3. Case 2 

In this section we present the results pertaining scenario 
shown in Figure 2. The equation of motion is,  

3
2

0
k k

x x x
m mL

               (6) 

Equation (6) has an analytic closed solution; these are 
Jacobi Elliptic Functions [6,7]. These functions compar- 

 

Figure 8. Comparison of the numeric solutions (black 
curves) vs. semi-analytic solution (gray curves) shown in 
Figure 2. 
 

 

Figure 9. The dots are the periods and their corresponding 
amplitudes are deduced from oscillations subject to Equa- 
tion (6). The solid line is the fitted curve T(amp) = 0.3649 − 
6.8834 amp1.5327. 

 
ing to their counterparts of Case 1 have more complex argu- 
ments. This may be the trust of adapting the semi-analytic 
method for solving this equation. Following the proce- 
dure outlined in Section 3.1, Figure 9 displays the evalu- 
ated data, i.e. periods vs. amplitudes and the fitted curve. 
Utilizing the fitted function, e.g. T(amp) we compare the 
semi-analytic solution      ampcos 2 ampx t T   t  
vs. the numeric solution. The 4 × 2 graphi matrix shown 
in Figure 10 again qualifies the equivalency of the pro- 
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Figure 10. Comparison of the numeric solutions (black 
curves) vs. semi-analytic solution (gray curves). 
 
posed method. 

As in Case 1, solutions are indistinguishable.  

4. Conclusions and Remarks 

The objective of this study is to design a mechanical sys- 
tem capable of oscillating under the influence of nonlin- 
ear forces. Utilizing a set of two and three linear springs 
we design two such devices; many more may be devised. 
These are complementary to our previous studies com- 
pleting the scope of nonlinear oscillations in three dif- 
ferent areas of physics: mechanics, electrodynamics and 

magnetodynamics. Beyond discussing the physics of the 
problem, we introduce a semi-analytic method to objec- 
tively obtain analytic solutions for the equations of mo- 
tion. From mathematics point of view the proposed 
method for solving DE relies on numeric solution of DE. 
The output of the semi-analytic method is an analytic 
function embodying the desired objective properties. To 
distinguish the differences between the linear vs. nonlin- 
ear oscillations their phase diagrams are compared. How- 
ever, for a visual understanding (not included here), the 
author utilizing Mathematica has simulated the motion. 
Watching the movement of the marble under the influ- 
ence of nonlinear forces gives a valuable experience. 
Alternatively, one may simulate (as the author has done) 
the motion utilizing Cinderella. The latter is less objec- 
tive and bypasses the need for numeric input. 
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