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ABSTRACT 

When composite materials occur crack, their fibrous locations will produce bridging fibers. A symmetrical dynamic 
crack model of bridging fibers in unidirectional composite materials are not probed as deeply by virtue of the complex- 
ity, cockamamie and difficulty in mathematical operations. In the light of the theory of complex variable functions, the 
problems discussed can be facilely translated into Remann-Hilbert problems. Analytical solutions of the displacements, 
stresses and stress intensity factors under the action of variable loads Pt6/x6, Px6/t5 are attained, respectively. After those 
analytical solutions were used by superposition theorem, the solutions of arbitrary complex problems were acquired.  
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1. Introduction 

It is well known that the matrix cracking as well as 
fracture course of the bridging fibers is one of the 
significant mechanisms of crack extension in fiber-rein- 
forced composite materials, such as unidirectional fiber- 
reinforced brittle matrix composites [1,2], and three- 
dimensional fiber-reinforced composites with an ortho- 
gonal fibrous structure [3,4]. It is necessary to consider 
the mechanical analyses of matrix cracking with bridging 
fibers in order to assess the distribution of the axis 
traction force in each fiber. When composite materials 
appear a crack, they necessarily occur bridging fibers, 
and this is an inevitable phenomenon. Composites are 
universally referred to as orthotropic anisotropic bodies 
in macrostructure by virtue of their fibrous directions, 
moreover bridging fibers play a vital role in studies. 
Consequently, bridging fibers queries of composite 
materials are one of the most significant advanced tasks 
of mechanics of composite materials [5,6]. Because 
bridging fibers of composite materials are very com- 
plicated, which are nearly researched on their static 
problems by so far. Most researchers, such as Bowic, 
Woo, Lee, Ji and Tsai [7-11] etc., have studied the crack 
problem of bridging fibers by boundary collocation 
measure, but all of them almost researched static pro- 

blems of composite materials, moreover, gained only 
numerical solutions. Nevertheless, the fractures of com- 
posite materials often arise in dynamic conditions, so it is 
extremely significant to study their fracture dynamics 
problems. Recently, Piva and Viola [11,12] as well as De 
[13] et al. gained a closed solution of elastodynamic 
crack problems in an orthotropic medium. All the dy- 
namic crack problems mentioned above were not con- 
cerned with fracture course of the bridging fibers of com- 
posite materials. When a crack extends at high speed, 
bridging fiber phenomenon still exists. Because bridging 
fibers can conduce crack arresting, studying fracture 
dynamics problems is very important.    

The problem under consideration is that of a crack, 
running in one plane, postulated to initiate from an in- 
finitesimally small micro-crack with maximum velocity. 
This symmetrical crack, moving with constant velocity V 
in both the positive and negative directions of the x-axis, 
has been considered by Broberg [15] and Craggs [16]. 
Both considered motion in composite materials, which 
were presumed to be homogeneous and isotropic, both as 
regards stress-strain relations and fracturing characters. If 
the fiber failure is governed by maximum tensile stress, 
which appears at the crack plane, the fiber breaks and 
hence the crack expansion should occur in the format of 
self-similarity. The fiber breaks along a transverse line 
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and therefore present a notch [9,17]. When a crack runs 
in high speed, bridging fibers still exist in the dynamic 
situations of composite materials, which are more sig- 
nificant than those in the statics. Since bridging fibers 
can lead to stabilizing effect on crack moving problems 
along the original notch plane, the effect of dynamic 
fracture of bridging fibers will be expressed in detail, at 
the same time, stresses and displacements as well as 
stress intensity factors are deducted appropriately. 

In this paper, the symmetrical dynamic expansion 
problems of an internal central crack with bridging fibers 
of unidirectional composite materials are analyzed by 
means of Keldysh-Sedov mixed boundary value queries, 
and that analytic solutions of stresses and displacements 
as well as stress intensity factors for unidirectional rein- 
forced materials with fibers parallel to the free surface 
are shown. First, the solution of a unique dislocation in 
an elastically half-plane is derived by the use of complex 
variable analysis. The crack is then expressed in terms of 
a continuous distribution of dislocation. This solution in 
conjunction with a bridging fiber force gives rise to a 
system of self-similar functions with dislocation density 
as unknown units. Then self- similar functions are solved 
analytically by means of Keldysh-Sedov approaches. The 
work in this paper is how to conveniently acquire ana- 
lytical solutions using the self-similar functions under 
the action of variable loads Pt6/x6, Px6/t5, respec- 
tively.  

2. A Symmetrical Dynamic Crack Model of  
Bridging Fibers 

Postulating that a crack nucleates from zero, and spreads 
symmetrically in self-similar high speed along the posi- 
tive and negative directions of x-axis with constant ve- 
locity in the matrix, but bridging fibers don’t break in the 
vicinity of the crack tips, moreover the others break at 
the central region of the crack. When the crack runs, its 
fibers break uninterruptedly, fiber fracture velocity pre- 
sumed is α, as illustrated in Figure1. The fibers and the 
matrix are taken to be linearly elastic, and it is further 
assumed that the fibers have a much higher elastic 
modulus in the axial direction than the matrix, hence the 
fibers are taken as supporting all of the axial load in 
composite materials. In order to analyze expediently, the 
fiber fracture location is postulated to occur along a sole 
plane, in short, the fiber fracture could be the modality of 
self-similarity and therefore presents a notch. In Figure 1, 
the crack area in the matrix is in the realm of y = 0, |x| < 
Vt; while fibers break at the interval of |x| < αt. The 
bridging fiber segment lies in the domain of y = 0, αt < |x| 
< Vt, [3].   

Obviously, the dynamic crack model of bridging fibers 
in Figure 1 is shown by that in Figure 2. At y = 0, closed 
forces act in the section of αt < |x| < Vt, which represent 

y

x

t VttVt

 

Figure 1. A dynamic crack model of bridging fiber contour. 
 

y
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t
Vt

 

Figure 2. The dynamic crack model of bridging fibers. 
 
bridging fiber tensions; bridging fibers are usually collo- 
cated tightly, so bridging fiber tensions are supposed to 
distribute continuously. It is evident that traction forces 
are larger near the point of αt, and they are smaller close 
to the point of Vt [5-7,18,19]. As the crack moves at high 
speed, its dimension will correlate to variables x and t, 
then the edges of crack subjected to loads must also re- 
late to x and t. In short, traction forces of bridging fibers 
are homogenous in this segment, whose magnitude is P 
according to assumption. On the other hand, when the 
crack moves with high speed, its magnitude will increase 
with time t; the longer the crack runs, the more fibers 
break. The above analyses presume bridging fibers dis- 
tribute uniformly in the matrix, and each bridging fiber 
has the identical strength, while bridging fibers and ma- 
trix break simultaneously along a sole plane [5-7,18,19]. 

3. Universal Expressions of Elastodynamic  
Equations for Orthotropic Anisotropy 

In order to solve efficaciously fracture dynamics queries 
of bridging fibers of composite materials, solutions will 
be attained under the action of point forces for mode I 
motive crack. In terms of the theorem of generalized 
functions, the problems dealt with unlike boundary con- 
ditions will be facilely translated into Reimann-Hilbert 
mixed boundary value problem by means of self-similar 
functions, then correlative solutions will be obtained. 

Postulate at y = 0 that there are any number of loaded 
segments and displacement segments along the x-axis, 
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and the ends of these sections are running with different 
constant velocity. At the initial moment t = 0, the half- 
plane is at rest. In these ranges the loads and displace- 
ments are discretional linear compages of the following 
functions [15-23]: 

1 1
d ( ) d (

d d

k s
k s

k

)
s

f x f t

x t
 .            (1) 

where 

 
0 0

0
i i

f



 


 


            (2) 

here k, k1 and s, s1 are discretionary integer positive 
numbers [15-23]. 

A discretional successive function of two variables x 
and t may be shown as a linear superposition of Equation 
(1), therefore resolving loads or displacements with the 
form of Equation (2) will possess significance in princi- 
ple. Introduce the linear differential operator as well as 
inverse: 

m n

m n
L

x t



 

, 

inverse: 
m n

m n
L

x t

 


 



 

               (3) 

here + m + n, – m – n and 0 represent the (m + n)th order 
derivative, the (m + n)th order integral and function’s 
self. It is facile to prove that there exist constants m and n, 
when L is put into Equations (1), (2), homogeneous func-
tions of x and t of zeroth dimension (homogeneous) are 
gained. The coefficients m, n will be called the indices of 
self-similarity [15-23]. 

For the case when function Lv is homogeneous [5,6]: 
0 0, y yv Lv L                (4) 

For the case when function Lσy is homogeneous: 
0 0, y yv Lv t L      t         (5) 

The relative self-similar functions are as [15-23]: 

     0 0Re , 1 Reyv W t F          (6) 

where: v0 and 0
y  in Equations (4)~(6) are the notation 

in [15-17,20-23], and they are relevant variables τ and t 
which directly work out displacements and stresses by 
the course of respective calculations in Equation (7). 

       1W D D F                 (7) 

Where: τ = x/t, F(τ), W(τ) are self-similar functions. The 
values of D1(τ)/D(τ) can be ascertained from Appendix 1 
of literatures [15-17,20-23], indicated here are only: 
D1(τ)/D(τ) in the neighborhood of the subsonic speeds is 
purely imaginary for the considered values. Thus, elas- 

todynamics problems for an orthotropic anisotropic body 
studied can be changed into seeking the sole unknown 
function problems of F(τ) and W(τ) for which must meet 
the boundary-value conditions. In the universal case this 
is Riemann-Hilbert problem in the theory of complex 
variable functions while for the simplest situation, which 
is the Keldysh-Sedov or Dirchlet problem [24,25]. 

4. Radical Solution of Symmetrical Dynamic  
Running Problem on Mode I Crack 

At the initial moment t = 0, a micro-crack is supposed to 
appear in an orthotropic anisotropy. Let the Cartesian co- 
ordinate axes align with the axes of elastic symmetry of 
the body. The problem considered is restricted to motion 
in the x-y-plane. The crack is moving symmetrically with 
constant velocity V along the positive and negative direc- 
tions of x-axis respectively. The problems will be 
changed into the following boundary condition que- 
ries: 

   
 

1,0, , ,

,0, 0,

y x t f x t x V

v x t x Vt

 t 

 
       (8) 

Introducing the variable τ = x/t. By means of the above 
correlative expressions and    t x x t   in the the- 
ory of generalized functions [26-28], the boundary con- 
ditions can be transformed as: 

   
 

2Re , ,

Re 0,

F f V

W V
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 

   
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      (9) 

In terms of the relationship of F(τ) and W(τ) in Equa-
tion (7) and the previous conditions, the format of sole 
unbeknown function W′(τ) can be confirmed:  

  3 ,W f                    (10)  

The problems can reduce to Keldysh-Sedov problem: 

 
 

Re 0,

Im 0,

V

V
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  

 

 
           (11) 

Considering symmetry and the infinite point of the 
plane corresponding to the origin of coordinates of the 
physical plane as well as singularities of the stress at the 
crack tip [29,30], the solution in the above problems can 
be readily deducted by literatures [15,16,20] as: 

     ,T V V                (12) 

Using Equations (6) or (7), we will easily obtain the 
stress, the displacement and the stress intensity factor 
under the conditions of mode I crack extension problems.  

5. The Solutions of Real Problems 

In order to resolve effectively symmetrical dynamics 
queries with bridging fibers of composite materials, solu- 
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tions will be found under the actions of unlike loads for 
mode I motive crack. In terms of the theorem of general- 
ized functions, the unlike boundary condition problems 
will be changed into Keldysh-Sedov mixed boundary 
value problem by self-similar functions, and the solutions 
will be gained under the plane strain states.  

According to symmetry and the conditions of the infi- 
nite point of the plane corresponding to the origin of co- 
ordinates of the physical plane as well as singularities of 
the stress of the crack tips [27-29], the sole solution 
of the Keldysh-Sedov problem (17) must have the 
form:   

    1 22 2A V  


           (18) 5.1. Displacements are Homogeneous Functions 

where A is an unknown constant. Postulate at the initial moment t = 0 a crack occurs at the 
coordinate origin and begins to run at constant velocity 

 in both directions along the x-axis. The edges of the 
crack are subjected to normal point force Pt6/x6, moving 
at a constant velocity β along the positive direction of 
x-axis, where β < V; at t < 0 the half-plane was at rest. 
The boundary conditions of the problem will be as: 

V
Inserting Equation (18) into (16), (7), one can gain: 

     1 26 2 2W A V          
   (19) 
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 

1

6 2

A D D
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
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   
 

6 6,0, ,

,0, 0,

y x t P t x x t x V

v x t x Vt

      

 

t
  (13) 

Then putting Equation (20) into (14), at τ→β, constant 
A can be determined from that  

   
2 2

1Im

P V
A

D D


 

 

   

        (21) In which L = 1, utilizing τ = x/t and the theory of gen-
eralized functions [25-27] and Equations (4) and (6), the 
first of Equation (13) can be written as: 

 
 

6 6

6

Re ( )F Pt x t x t

P

  

    
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Substituting Equation (20) into (6) and (4), at the sur- 
face y = 0, the stress σy, the displacement v and the stress 
intensity factor K1(t) are acquired, respectively:   

 
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1
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 (22) In the light of Equation (7), boundary conditions (14) 

will be further rewritten: 
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V
 (15) V
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Replacing Equation (19) into (4), (6), after inte- 
grating with respective to τ one can obtain the dis- 
placement v (see Equation (24) below):  

Deducting from the mentioned-above formulae, the 
unique solution of W′(τ) must have the modality: 

Utilizing correlative integral formulas [30] to yield:      6W                   (16) 
2 2

2 2

1 1
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VV
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 



       (25) ξ(τ) has no singularity in the domain of |τ| < V, while 

D1(τ)/D(τ) is purely imaginary for the subsonic speeds, 
consequently ξ(τ) must be purely real in this segment. 
Thus, question (15) can conduce the following prob- 
lems:  
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In order to show expediently, constant C was omitted in Equations (25)-(31).  
The crack extends along the x-axis, therefore W(τ) can be worked out in the operation of the definite integral, we take 

constant C = 0. Then putting Equations (25)-(31) into (24), the displacement  is given as follows:  v
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    (32) 

By means of the solution of Equation (32), the bridging fiber fracture speed α can be facilely acquired: 
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    (33) 

 
Each fibre has equal strength [15-17,20-22] in the 

light of presumption, hence the bridging fiber fracture 
strength must be same. Where Δ can be ascertained by an 
axial tensile test of bridging fibers of composite materials 
with V and ß regarded as known constants, respectively. 
In terms of this measure, the bridging fiber fracture speed 
α can be only attained numerical solution, because it can 
not be represented in the modality of explicit function. 

5.2. Stresses are Homogeneous Functions 

With all conditions holding the same as those in the 
above sample, the applied loads become variational 
loads Px6/t5. The boundary conditions of the query 
will be as:   

   
 

6 5,0, ,

,0, 0,

y x t Px t x t x V

v x t x Vt
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 

t
   (34) 

In which L=1, utilizing τ=x/t and the theory of gener- 
alized functions [25-27] and Equations (4) and (6), the 
first of Equation (34) can be written as follows:  

     
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     (35) 

On account of the derivative of Dirac’s function 
equaling zero at x ≠ βt, the above representation will be 
easily deducted.  

In terms of Equation (7), boundary conditions (35) will 
be further rewritten: 

   
   

 

6

1

Re 5 ,

Re 0,

D
W P

D

W V


    



 

 
 V    

 
    

 (36) 

Known from the above, the sole solution of W′(τ) is: 

     6W                  (37) 

ξ(τ) has no singularity in the domain of |τ|<V, while 
D1(τ)/D(τ) is purely imaginary for the subsonic speeds, so 
ξ(τ) must be purely real in this area. Thus, question (37) 
will be the following boundary value problems:   
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 
 

Re 0, ;

Im 0,

V

V

  

  

 

 
         (38) 

In the light of the symmetrical conditions and singu- 
larities of the stress as well as the infinite point of the 
plane corresponding to the coordinate origin of the phy- 
sical plane, the sole solution of Keldysh-Sedov problem 
(38) takes the form as:   

    3 22 2A V  


         (39) 

where A is an unknown constant. 
Putting Equation (39) into (37), (7), one can attain: 

    3 26 2W A V       
2 


    (40) 

     
   

6
1

3 22 2

A D D
F

V

  


  

 


 
        (41) 

Then replacing Equation (41) into (35), at τ→β, con- 
stant A can be determined from that  

 
   

3 22 2

1

5

Im

P V
A

D D



 



   

         (42) 

In an orthotropic isotropic body, the disturbance range 
of elastic wave can be shown by the circular area of ra- 
dius c1t and c2t. Here c1 and c2 are the velocities of lon- 
gitudinal and transverse waves (c1 > c2) of elastic body,  
 

respectively. In an orthotropic anisotropic body, the dis- 
turbance range of elastic wave is not the circular area and 
can not exceed threshold value  

 1 2

11dC C   

of elastic body, where C11 is an elastic constant of mate- 
rials. At |x| > Cdt, with   

   1Im 0D D     , 

thus displacements and stresses are zero with the initiate 
cases; and this shows that disturbance of elastic wave can 
not exceed Cdt.   

Afterwards inserting Equation (41) into (6) and (4), at 
the surface y = 0, the stress σy and the intensity factor 
K1(t) are obtained, respectively:   

   
  
5

1

3 22 2

Im
Re d ,

x t

y

D D
A x Vt

V
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 
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      
 

  (43) 

   
 
 

7 2

1

Im
D VAV

K t t
V D

 
      V

        (44) 

The limit of Equation (44) belongs to the format 0·∞, 
which should be only changed into the type of ∞/∞, the 
result can be computed by means of L’Hospital theorem. 

In order to represent expediently, Equation (40) can 
rewrite as follows  

 
    

6 6
5 4 2 3 3 2 4 5

3 2 3 22 2 2 2

A A
W

V V
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    

 
            

           (45) 

Integrating Equation (45), one will attain W(τ). But it has seven items, separate denotation is more convenient, then 
integral formulas can be utilized in literature [30], now postulating: 
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 
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5 4

3 22 2 2 2 2
1 1 3 2 2 22 2

d d 2
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 

4 2
2 2

2 2 3 2 2 22 2
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d d a
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A V
W W A V

VVV
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rcsin
V        


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A
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VVV
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   


 


     (50)        

 
5 5

6 3 2 2 2 22 2
d

A A
W

V VV

   
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Denominator in Equation (46) contains this term  

  3 22 2V    , 

calculation will not be preformed in the light of integral 
formulae, hence integral format must be translated into 
integral which can be fulfilled.   

For the sake of conveniency, we assume: 2 2X V    
By variable replacement: 1    , this term X can be 

rewritten as follows: 

2 2 2 2
1 12X V V 2              (52) 

Known from it, the following relationship in literature 
[30] is:   

2 2
1a V   , 1 2b   , , 1c  

2 2
1 14 4D a c b V     

Integrating the seventh term of Equation (45) in terms 
of relevant formulae in [30], we will acquire W7(τ) as: 
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 

6
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7 3 2 3 2 3 2
11 1
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11 1 1 1

1 1 1
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aX X X X

X aD b b b bA
C

a D X D X a a

1 1d

X

     
   

 
 

 
     

   
  
     

  

   
           (53) 

 
Known from Equation (45):  

         
     

1 2 3 4

5 6 7

W W W W W

W W W

    

  

   

  
. 

The crack runs along x-axis, consequently W(τ) com- 
prising Equations (46)-(51) and (53) can be performed 
inthe definite integral operation, one takes constant C = 
0.   

Making use of relative integral formulas [30] to 
yield:  

2 2

1
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




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2 2 2 2
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2
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
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    (56) 
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

 

 
  

   


(57) 

Putting Equation (46) into (6), (5), the divisional dis-
placement v1 will be obtained as:  
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     (58) 

Now replacing Equations (56), (26), (57) into (58), there results the divisional displacement v1: 
2 2 2

2 2 2 2 2 2
1 2

8 3
arcsin ,

3 2 6

AV AV x x Ax
v V t x V t x x

Vt t
        Vt               (59) 

Inserting Equation (47) into (6), (5), the divisional displacement v2 will be attained as:  

2 2
2 2

2 2 2 2

2 2 2 2

22 2
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Re arcsin d
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   
  





 
      

 
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


                (60) 

Putting Equations (55), (26) into (60), there results the divisional displacement v2: 
2

2 2 2
2

3
arcsin ,

2 2

A x A V t x
v V t x x

t V

 
      Vt

t
                        (61) 

Inserting Equations (48) into (6), (5), by means of Equations (56), (26), the sub-displacement v3 will be as: 

2 2 2 2 2
3 2 arcsin

x
v A V t x A x x V

Vt
     , t                           (62) 
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Replacing Equation (49) into (6), (5), by application of Equation (25), there results sub-displacement v4: 

    3
4 4 420

Re d Re d arcsin ,
t x t x

v W t W A t x
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   
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x

Vt             (63) 

Putting Equation (50) into (6), (5), by means of Equation (26), there results the divisional displacement v5: 

   5 5 520
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V
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Then inserting Equation (51) into (6), (5), by means of Equation (25), there results the sub-displacement v6 as: 
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Substituting Equation (53) into (6), (5), there results the divisional displacement v7 as follows: 
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Integral of the second term of Equation (66) without comprising coefficient can be written as: 
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Using integral formulas in Literature [30], one gains: 
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where: 2 2
1a V   , 1 2b   , , . 1c   2 2

1 14 4D a c b V   
Putting Equations (68), (25) into (67), the following representation is given as: 
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Inserting Equations (69), (26) into (66), the divisional displacement v7 will be obtained as follows: 
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The displacement v is the sum of divisional displacement: 1 2 3 4 5 6 7v v v v v v v v      
v

. 
Afterwards the addition of Equations (59), (61)-(65) and (70), the displacement  is acquired as follows: 

 
2

2

2 2 22 2 2 6
12 2 2 2 1

2 3 2
1 1 1

3
arcsin

2

8
2 ln

3 26 2

V x
v A x t

Vt

V t x t a bV x x A x
,A V t x t x Vt

t a x tt a a

 

  
 

 
    

 

      
                   

   (71) 
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Table 2. Relative numerical values between K1(t) versus t. Using the similar ways as that for finding Equation 

(33), put |x| = αt into (71) while regarding V, β and t as 
known constants, respectively. Bridging fiber fracture 
speed α can be only gained numerical solution, because 
it can also not be shown in the form of explicit function.  

t/ms 4 8 12 16 20 

K1(t) 5.8167 8.2261 10.0753 11.6334 13.0072
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6. Rule of Dynamic Stress Intensity Factor 

According to real cases of concrete problems, variational 
rule of dynamic stress intensity factor should be shown 
better. The corresponding parameters are substituted into 
Equations (23), (44) to plot K1(t) as a function of time t, 
and their numerical solutions are facilely obtained. The 
following constants are as follows [8,17,21-23,33-36]:  

C11 = 19.24 GPa; C12 = 1.25 GPa; C11 = 17.83 GPa; P 
= 200 N; C66 = 1.00 GPa; V = 300 m/s; β = 200 m/s; ρ = 
4.9 × 1000 N/m3 

Known from Equation (23), dynamic stress intensity 
factor K1(t) reduces tardily and has instinct singularity by 
virtue of unique variable t in its denominator, and the rest 
units are referred to as real constants. Such a current is 
shown by the curve in Figure 1. This variable tendency is 
similar to the result of Literatures [8,17,21-23,33-38]. Figure 3. Stress intensity factor K1(t) versus time t. 

It is known from Equation (45) that dynamic stress in- 
tensity factor K1(t) escalates from zero and even reaches 
or surpasses fracture toughness of this material, because 
unique variable t locates in its numerator, while the rest 
quantities are also regarded as real constants. This result 
must lead to the structural destruction, as represented in 
Figure 2. This trend is similar to the aftermath in refer- 
ences [8,17,21-23,33-36,38-42], hence it is also right.  
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The relative numerical values between dynamic stress 
intensity factor K1(t) and time t are expressed in Tables 1 
and 2 in terms of curves in Figures 3 and 4, respectively. 

7. Conclusions 

By the ways of relevant expression:  

   , , ,nf x y t t f x t y t , 
Figure 4. Stress intensity factor K1(t) versus time t. 

where n is an integral number, and the problem consid- 
ered can be readily translated into homogeneous function 
of x and t of zeroth dimension, namely self-similar func- 
tions. All suffice the relationship of this function, thus 
the analytical solutions can be attained by Equations 
(4)-(7) with homogeneous function of variable τ. This 
approach can utilize not only in elastodynamics [15-20, 
22,23,34,35], but also in elastostatics [24,30,43,44] and 
even in other regions [30,44,45].  

 
expansion model for bridging fibers in unidirectional 
composite materials were found by way of the theoretical 
application of a complex variable function. The tech- 
nique developed in this paper based on the methods of 
the self-similar functions makes it probable to obtain the 
concrete solution of this model and bridging fiber frac- 
ture velocity α. The fundamental solution of symmetrical 
dynamic crack extension problems is derived based on 
the self-similar functions. In the light of the concrete 
boundary conditions, self-similar function W′(τ) can be 
facilely deducted by the approaches of corresponding to 
variable τ, consequently analytical solutions of stresses, 
displacements and dynamic stress intensity factors will 
be readily worked out. This is regarded as the analogous 

Analytic solutions of the symmetrical dynamic crack 
 

Table 1. Relative numerical values between K1(t) versus t. 

t/ms 4 8 12 16 20 

K1(t) 9.8507 6.9655 5.6873 4.9253 4.4054 
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class of dynamic problem of the elasticity theory. How- 
ever, the present solution occurs to be the simplest and 
intuitive of all alternative methods appeared by so far. 
Indeed, we have succeeded in a mixed Keldysh-Sedov 
boundary value problem on a half-plane. The problem is 
of adequate real interest, since all of the members of 
structures in which fractures may propagate are of finite 
dimensions and are frequently in the modality of long 
strips. The approach of solution is based exclusively on 
techniques of analytical-function theory and is straight- 
forward and compendious. By making some observations 
regarding the solution of the mixed boundary value 
problem we have rather decreased the amount of the 
computative work needed to resolve such a crack exte 
sion query. The techniques of self-similar functions are 
still applicable in studies of mode I semi-infinite crack 
[21-23,46], mode  crack Ⅲ [47,48] and mode  interface Ⅲ
crack [49] as well as axially crack [18,19,50].   
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