
Wireless Sensor Network, 2010, 2, 891-904
doi:10.4236/wsn.2010.212107 Published Online December 2010 (http://www.scirp.org/journal/wsn)

Copyright © 2010 SciRes. WSN

Message Cab (MCab): Partition Restoration in
MANETs Using Flexible Helping Hosts

Ting Wang, Chor Ping Low
School of Electrical and Electronic Engineering,Nanyang Technological University, Singapore

Email: wang0235@e.ntu.edu.sg, icplow@e.ntu.edu.sg
Received September 18, 2010; revised September 26, 2010; accepted October 12, 2010

Abstract

Helping hosts are intensively used in various schemes to restore partitioned Mobile Ad Hoc Networks
(MANETs). Most of the existing schemes offers only deterministic deployment and fixed routes for the
helping hosts, and are thus not able to deal with fluctuating network traffic, which is a practical condition in
many MANET applications. In this paper, we argue that flexible helping hosts (referred to as Message Cabs
(MCabs)), with deployment and routes that response to the changes in the traffic demand of the network,
may overcome this drawback and reduce the message delay in the networks. To demonstrate the effective-
ness of this observation, we propose a new helping host scheme namely the Message Cab (MCab) scheme
for partition restoration in MANETs, and validate the performance through simulations.

Keywords: Mobile Ad Hoc Networks (MANETs), Helping Host, Message Cab, Adaptive Route Design,

Dynamic Deployment

1. Introduction

A Mobile Ad Hoc Network (MANET), as described in
[1], is a kind of mobile wireless networks which is com-
prised of a collection of mobile hosts connected through
wireless channels. The direct connections between the
hosts are referred to as links. A host in a MANET ex-
changes messages with other nodes as a terminal and
forwards the messages as an intermediate router at the
same time. The routing paths of a message in a MANET
are formed by a series of mobile hosts. Messages are
forwarded hop-by-hop.

While the mobility of hosts enables the network to
span over a large area, it also causes a highly dynamic
topology, which is a major challenge to the applications
of MANETs. When a host moves out of another’s com-
munication range, the link between them breaks, and the
entire message routing path may be destroyed by this
broken link. This possibility of link breakage may split
hosts into different parts between which there is no
possible path. This in turn may result in packets not be-
ing able to reach their destinations. We refer to this phe-
nomenon as network partitioning. Each isolated part of a
network is referred to as a partition of the network. The
partitioning problem makes a critical strike on ad hoc
routing because most protocols typically assume that the

network is always connected. To enhance the reliability
and conserve energy, partitioning should be restored in
MANETs.

Various approaches have been proposed for MANETs
survivability and restoration. In particular, helping hosts
are deployed to reconnect the network partitions, and we
refer to such action as partition restoration. The helping
hosts are able to reconnect the network connectivity by
moving from one partition to another in a MANET de-
spite the fact that the normal hosts (i.e. nonhelping hosts)
may be partitioned. This idea is also extensively dis-
cussed in Delay Tolerant Networks (DTN) and Wireless
Sensor Networks (WSN) in order to collect data from
disconnected parts of the networks.

The helping hosts are addressed by different names in
various schemes. In [2-7], they are referred to as ferries,
while in [8-10], they are called helping nodes or for-
warding nodes. Data MULEs in [11-13] are also known
as a kind of helping hosts, and in the DakNet project [14]
buses are used as helping nodes to connect broadband
network to rural villages.

One of the most important and commonly discussed
objectives of these schemes is to enhance the connectiv-
ity and minimize the communication delay in the net-
work. On contrary, helping hosts’ movement consumes
considerable amount of energy and time, and may cause

T. WANG ET AL.

Copyright © 2010 SciRes. WSN

892

long message delay in the network. To efficiently utilize
them, the deployment and route design of helping hosts
are crucial.

In this paper, we propose a new helping host scheme
for partition restoration in MANETs, namely the Mes-
sage Cab (MCab) scheme. The helping hosts are like
cabs, in the sense that they are more flexible and adap-
tive to traffic than buses or ferries. The MCab scheme
consists of two essential parts, namely the Dynamic Cab
Deployment (DCD) algorithm and the Adaptive Cab
Route (ACR) algorithm for the purposes of selecting
message cabs and improving the message cab route, re-
spectively. Both algorithms are able to deal with fluc-
tuating traffic in the network, which is a practical scena-
rio in real life, but is not usually discussed in the existing
works. Therefore we say that the message cabs are flexi-
ble helping hosts. We will demonstrate that the MCab
scheme overcomes the drawbacks of existing schemes by
incurring lower average message delay and the results
are validated through simulations.

In the following parts of this paper, we introduce the
backgrounds of our work in Section 2, and the model
together with our objectives in Section 3. The two parts
of the Message Cab (MCab) scheme, namely the Dy-
namic Cab Deployment (DCD) algorithm and the Adap-
tive Cab Route (ACR) algorithm are presented in Section
4 and 5, respectively. Simulation and results are dis-
cussed in Section 6, while Section 7 concludes this pa-
per.

2. Background

Before we present our proposed Message Cab (MCab)
scheme, we need to explain two important concepts,
namely the deployment and route design of the helping
hosts (or cabs in our scheme), together with some exist-
ing solutions. In addition, our assumptions and notations
are discussed in this section.

2.1. Deployment

Deployment is a procedure for selecting helping hosts. In
most of the existing works, such as [2,10,13,14], the
helping hosts are a group of specially designed hosts that
have larger storage, more energy and/or higher moving
speed. They are different from the normal hosts and are
assigned as helping hosts prior to the commencement of
network operations. The deployment is thus static, or de-
terministic. Such deployment mechanisms allows help-
ing hosts to have higher capability in delivering messag-
es across partitions but is less flexible. Since the number
of helping hosts is fixed, it may turns out that there is too
many, or too few helping hosts to meet the traffic de-

mand in the network. Thus static deployment may not be
adaptive to network traffic demand. To overcome this
drawback, dynamic deployment is used in [8], where
normal hosts with suitable moving direction and speed
are chosen as helping hosts (a.k.a helping nodes). How-
ever, it is a centralized scheme and thus not scalable with
network size. More importantly, under the assumption
that the network is partitioned, it is infeasible to make all
the hosts’ movement information available to a central
server to perform the selection. Similar problem can also
be observed in [9]. Therefore, we propose a localized
algorithm, namely the Dynamic Cab Deployment (DCD)
algorithm to deploy helping hosts (i.e. message cabs) in
the MCab scheme. The DCD algorithm allows the num-
ber of helping hosts to change dynamically with the traf-
fic volume, and thereby reduces the weighted average
delay of messages in the network, and enhances the sca-
lability of the deployment process.

2.2. Route Design

The route of a helping host is the path it follows, which
usually connects different partitions or hosts in the net-
work. In [8,12,14], the route is not planned by any algo-
rithm. The hosts’ random movement is utilized to deliver
messages. However, it has been shown in many other
works that the message delay can be significantly re-
duced if we consider the problem of route design as an
optimization problem. For example, in [2], Zhao et al.
have formulated the Massage Ferry Route (MFR) prob-
lem to find the optimal route for helping hosts (i.e. mes-
sage ferries). In [4-7], solutions from the well studied
Traveling Salesman Problem (TSP) and its variants are
adopted as routes for helpinghosts. In these schemes, the
route does not change after being constructed, and is thus
a fixed route. It is only suitable when the network traffic
among the partitions is constant, which is an idealized
assumption. In most of the practical cases, the traffic
between any two partitions will be a temporal variable,
and the route should be able to adapt to the changes.
Hence fixed routes are unlikely to be optimal in general.
Therefore, an adaptive route is more desirable. Ou et al.
proposed a centralized scheme in [10] to let the helping
hosts (a.k.a helping nodes) move adaptively to the pack-
ets’ destinations. However, as we have discussed in the
previous section, centralized schemes may perform
poorly when the network is partitioned. In this paper we
propose a distributed algorithm, namely the Adaptive
Cab Route (ACR) algorithm, to construct cab routes by
adopting the Shortest Process Time First (SPTF) rule
from the Job Sequencing Problem (JSP). Simulation
proves that our proposed scheme is able to effectively
reduce the message delay in the network.

T. WANG ET AL.

Copyright © 2010 SciRes. WSN

893

2.3. Assumptions and Notations

While many existing schemes (e.g. [2,7,11]) focus on
stationary hosts with known locations and predictable
network traffic, we try to deal with a more practical sce-
nario, where:
 the hosts are mobile;
 the traffic in the network is randomly variant and is

thus not predictable.
As discussed in [15], movements of hosts in MANETs

can be considered as Levy Flights, in which the hosts
tend to stay in a certain area for a long time and occasio-
nally make long distance flights to places far away. We
could thus assume that a host stays in the same cluster
for a certain period of time and will also sometimes de-
cides to move to another cluster. Practically, this could
be due to the assignment of tasks to the host, such as in a
wireless sensor network, a sensor may need to reallocate
itself to new positions to collect new data.

Let’s assume that the MANET of our interest has nh
mobile hosts. We assume the network is partitioned to nc
components, each of which forms a cluster with a chosen
cluster head. The hosts in the same cluster are always
connected. In order to simplify the problem, we restrict
the movement of a cluster head to be inside a circular
area, which is referred to as the head zone. The radius of
head zone is equal to the communication range of the
cluster head, denoted as r, as shown in Figure 1. The
center of head zone of cluster s is denoted as point
1 s n  c . We use sd to denote the time taken by a
host to travel from Cs to Cd ,1 s , cd n . We note
that sd is a positive real number. We say cluster d is a
neighbor of cluster s if a host is able to move directly
to cluster d from cluster s in one hop.

Using proper clustering schemes, such as [16], the
cluster head will always be aware of the changes in its
cluster members, such as the movements, arrivals of new
members and departures of existing members. It also
knows the locations of other clusters, so when a host
decides to move to a new place, the cluster head knows
which is the next cluster the host is going to join. In addi-

Figure 1. Network topology.

tion, the cluster head works as a proxy between other
normal hosts in the cluster and the helping host as well.
If a helping host stops at sC , it is able to communicate
with the head of cluster s and deliver the messages to
other hosts in cluster s via the cluster head. The route
of a helping host, denoted as R, will be a sequence of
head zone centers ('ssC). Each of these head zone cen-
ters is like a waypoint (as illustrated in Figure 1), which
is a temporary destination for the helping host. Upon
arriving a waypoint, the helping host stays for a period of
time to deliver and receive the messages to/from the
cluster head, before moving on towards the next way-
point. The route segment between two consecutive way-
points is referred to as a leg (shown in Figure 1).

3. System Model and Objectives

To demonstrate our methodology of the MCab scheme,
we describe an analogy between the MANET and a sim-
ple transportation system which serves several small
towns. It will also explain the reason why we name our
helping hosts as cabs and how they are different from
ferries.

The towns represent the clusters, each of which is dis-
tant away from the others. The cars are like the hosts—
they usually move within a town, and when it is neces-
sary, they are also able to move from one town to anoth-
er. The passengers are akin to messages, which by them-
selves cannot move from town to town.

Buses are provided as an existing solution to the in-
ter-town transportation problem. They are similar to the
other statically deployed helping hosts (such as message
ferries) that we have discussed in the previous section. The
static deployment and fixed route design of buses perform
poorly with varying volume of passengers. Hence, it
would be preferable if we have a flexible solution.

Besides taking buses, the passengers could consider
hiring a cab to travel to another town. The route of a cab
will depend on the passengers’ demands, and is thus
more flexible than the bus routes. Practically, it is also
more convenient in terms of saving time to hire a cab.
The number of cabs is determined by how many passen-
gers there are. When there are more passengers, more
cabs can be recruited from the private cars (normal hosts)
available; when the number of passengers drops, some
cabs could retire and become private cars again.

Moreover, since it is possible that some cars will move
to another town by their drivers’ own decisions, a pas-
senger may also take a ride from a private car which is
also moving to the his/her destination town. This will
utilize the mobility of private cars in the transportation
system to serve the passengers’ needs and save their
traveling time. A car offering ride to passengers is like a

T. WANG ET AL.

Copyright © 2010 SciRes. WSN

894

one-time temporary cab that only works for a single trip
to a particular town. We refer to such cars as temp-cabs.
To distinguish from them, we refer to those cabs that
works for multiple trips in a longer period of time as
professional cabs, or pro-cabs.

We imitate the method of hiring pro-cabs and taking
rides from temp-cabs in the MANETs and propose the
Message Cab (MCab) scheme. As shown in Figure 2,
the state of a private car (normal host), which is not a cab
nor a cluster head, can transform to a pro-cab or a temp-
cab under the control of the Dynamic Cab Deployment
(DCD) algorithm:
Pro-Cab

Its movement is passively determined by the Adaptive
Cab Route (ACR) algorithm, in which the route is
adaptively designed based on the network traffic. It is
recruited from a normal host, and continues moving
among the clusters for a certain predetermined period
of time before retiring to be a normal host.

Temp-Cab
Its movement is pro-actively determined by the host
itself. It is a one-time helping host that only leaves its
original cluster to its destination cluster. It becomes a
normal host again after it arrives and has delivered the
inter-cluster messages to the destination cluster.
The key difference between message cabs and the

other types of helping hosts in the existing works (such
as ferries, helping nodes etc.) is that they are not selected
before the network starts. Therefore the number of cabs
and cab routes can dynamically change with the traffic.
Although this kind of deployment does not allow the
helping hosts to have higher capability in moving speed
or storage space (since message cabs are just selected
normal hosts), we found that it can still effectively re-
duce the message delay in the network.

Since hosts in the same cluster are connected, we can
use existing MANET routing protocols such as AODV or
DSR for the communication between a cluster head and
its members. We note that the delay incurred by the mes-
sage transmission within a cluster (intra-cluster commu-
nication) is much smaller than the delivery between dif-
ferent clusters (inter-cluster communication), and is less
relevant to the cab deployment and route design. As a

Figure 2. States of a host

consequence, intra-cluster communication will be omi-
tted in our following discussion.

We should note that before a message is collected by a
cab, it needs to wait at some cluster head for a certain
time duration. We refer to this amount of time spent on
waiting as the waiting delay   of the message. After
it is collected by a cab, the cab will travel from its source
cluster to its destination cluster, and thus incurs a travel-
ing delay   for the message. Therefore, the overall
delay  of a message is     .

Assume within time duration (0, t], there are mn
messages that have been transmitted by the message cabs.
The size of message   1 mi i n  is i . The waiting,
traveling and overall delay of message i are denoted as
and i , iT and i .respectively. Similar to the objectives
in [2-4], we are interested in reducing the weighted av-
erage overall delay   of the messages:

 
1 1

1 1

m m

m m

n n

i i i i i
i i

Tn n

i i
i i

T



   

 

 

 


      

 

 
 (1)

where the weighted average waiting delay () is given

by

1

1

,

m

m

n

i i
i

n

i
i



 







 



 (2)

and the weighted average traveling delay (T) of all the
messages can be taken as

1

1

,

m

m

n

i i
i

T n

i
i

T







 



 (3)

We can see that if there are more cabs in the network,
each cluster could be visited more frequently, and the
waiting delay of messages reduces. It shows that the
waiting delay   is closely related to the cab deploy-
ment plan. On the other hand, optimization of cab routes
results in a shorter traveling delay T .

In the MCab scheme, we bound  from above by
using the Dynamic Cab Deployment (DCD) algorithm to
control the number of cabs, and T is reduced by adopt-
ing optimization techniques in the Adaptive Cab Route
(ACR) algorithm, which designs the routes of the cabs.

4. Deployment of Message Cabs

In the ideal scenario, once a inter-cluster message is re-
ceived by the cluster head, there is always a cab ready to

T. WANG ET AL.

Copyright © 2010 SciRes. WSN

895

carry it towards its destination, and  will be 0. How-
ever, in practice, with unpredictable and fluctuating traf-
fic, it is impossible to have a cab ready for message de-
livery as soon as a message arrives at the cluster head. It
would also be inefficient if a cab carries only one mes-
sage and does not fully utilize its storage space. To solve
this problem, we try to make use of the normal hosts
mobility as a temp-cab to give a ride to the messages as
well as to recruit pro-cabs from normal hosts in the DCD
algorithm. We show that by doing so, we are able to
bound the weighted waiting delay of messages from
above by a predetermined value, denoted as  seconds.

Since the change of cluster membership is handled by
the cluster head, a host (say host a) needs to report to
the head of its current cluster, say cluster s (as source)
before it leaves for a new location. The cluster head of
clusters then knows the new cluster (say cluster d , as
destination) host a is going to join. It becomes possible
that the head of cluster s lets host a to carry some
messages which have cluster d as their destinations.
Host a a will then deliver these messages to the cluster
head d when it arrives there and registers itself as a
new cluster member. Therefore, when a host is leaving a
cluster, its state changes from normal host to temp-cab,
and it is used to deliver as many messages as possible
across the partitioned clusters. Upon its arrival, it deliv-
ers the messages to the head of the new cluster and its
state changes back to that of a normal host. This proce-
dure of deploying a temp-cab is depicted in Figure 3(a).

On the other hand, a timer is used to control the time
when a pro-cab should be selected. Assuming there are

'mn inter-cluster messages stored in cluster head s, of
each the size is i . The current waiting delay of a mes-
sage is the length of the time duration since the message
is received by the cluster head, and is denoted as 'i .
The timer is set to

'

1
'

1

'
,

m

m

n

i i
i

n

i
i

t
 







 




so that if a pro-cab is recruited right before the timer ex-
pires, the average weighted delay of the messages stored
in cluster head s will be less than  , which is the re-
quired upper bound. We note that the value of t needs
to be updated every time there is a change in the number
of inter-cluster messages which are stored in cluster head
s , such as when a new inter-cluster message is received
and stored, or when some messages have been uploaded
to a cab (either temp or pro) by cluster head s .

We let the time duration between the recruitment and
retirement of a cab be denoted as  . After having ser-
ved for  seconds as a pro-cab, it retires. Upon its re

tirement, a pro-cab does not stop immediately. It contin-
ues moving among the clusters to deliver the remaining
messages it has already collected, but without collecting
new messages. When all the messages are delivered, it
moves back to the cluster where it has been recruited,
and register with the head as a normal host again.

Figure 3 depicts the flowcharts for the DCD algorithm.
To avoid going into too much details, we make some
simplifications to the algorithm:
 The pro-cabs are randomly selected from the nor-

mal hosts in the cluster;
 If a cab does not have enough space to store all the

messages for inter-cluster delivery, it delivers those
messages with larger weighted waiting delay
 'i i  first;

 When the memory of a cluster head overflows,
those messages with larger weighted waiting delay
 'i i  will also be dropped first (i.e. the hot-po-
tato rule1);

 The value of  (i.e. the length of time duration
between the recruitment and retirement of the cabs)
is a constant.

With these simplifications, the DCD algorithm is a fully
distributed scheme which does not require any global
information.

Lemma 1. The worst case complexity of the DCD al-
gorithm is  O mn , where nm is the number of messages
that have been generated during the period of network
operation.
 Proof: Based on the algorithm depicted in Figure 3,
we can observe the fact that the complexity of the pro-
cedures is independent of the number of clusters and the
number of hosts. To update the timer (refer to step 5 in
Figure 3(a) and step 3 in Figure 3(b)), the cluster head
needs to go through the messages that have been stored
in its memory space ('mn messages). In the worst case,
all the nm messages are stored, and it thus requires
 O mn time. On the other hand, to upload the messages

to the cab (step 4 in Figure 3(a) and step 2 in Figure
3(b)), and to deliver the messages to another cluster head
(step 7 in in Figure 3(a), step 5 and step 8 in Figure
3(b)), it requires  O mn time as well. We note that the
planning of routes (step 6 in in Figure 3(a), step 4 and
step 7 in Figure 3(b)) will be handled by the ACR algo-
rithm, and is not part of cab deployment process handled
by the DCD algorithm; thus its complexity will not be
counted here. In addition, step 1 in Figure 3(a) is han-
dled by the clustering scheme, and the pro-cab selection
(step 1 in Figure 3(b)) is random according to our as-
sumptions. Therefore they do not incur additional com-

1We deal with the elements that have heaviest impact to the system
by either processing them or dropping them first. By dropping those
messages with heavier weighted delay, the average weighted delay of
the success-fully delivered messages can be reduced.

T. WANG ET AL.

Copyright © 2010 SciRes. WSN

896

(a)Temp-Cab

(b) Pro-Cab

Figure 3. Flowcharts of the dynamic cab deployment (DCD)
algorithm.

plexity to the DCD algorithm. In addition, the “if” claus-
es (steps 2, 3 in Figure 3(a) and step 6, 9 in Figure 3(b)
does not incur additional complexity to the algorithm. As
a result, the overall complexity of the DCD algorithm is
 O mn

5. Message CAB Route Design

To improve the route of cabs, we define the Message

Cab Route (MCR) problem as a generalization of the
existing Massage Ferry Route (MFR) problem, and pro-
pose the Adaptive Cab Route (ACR) algorithm as a solu-
tion. Since only the pro-cabs’ route will be designed by
our algorithm, we refer to them as cabs for the sake of
convenience in this section.

5.1. The Message Cab Route (MCR) Problem

In [2], Zhao et al. have formulated the Massage Ferry
Route (MFR) problem to find the optimal route for help-
ing hosts (i.e. message ferries), and its objective is to
minimize the average delay of the traffic:

1 ,R

1 ,

b
=

b
c

c

R
s d n sd sd

s d n sd

 

 





 (4)

where bsd is the average traffic per unit time from s to

d and R
sd is the time spent by the ferry to travel from

s to d on the static route R . But in our case, bsd
could not be determined beforehand because we have
assumed that the traffic is unpredictable. Moreover,
when R is not fixed (i.e. being adaptive instead), the
traveling delay from one cluster to another is not a con-
stant. Therefore the solutions for the MFR problem may
not perform well for the problem that we are addressing.
Hence we define a generalized version of the MFR
problem which is able to adapt to both static and dynam-
ic traffic demand and routes. We refer to this problem as
the Message Cab Route (MCR) problem:

Definition 1. (The Message Cab Route (MCR) prob-
lem) For a given group of clusters, find the optimal vi-
siting sequence for a cab, so that the weighted average
traveling delay T to deliver mn messages, which is
expressed by

1

1

m

m

n

i i
i

T n

i
i

T







 



 (5)

where iT is the traveling delay of message i , can be
minimized.

We could make the following observations from the
MCR problem:
 The MCR problem is a generalization of the

MFR problem. In the MFR problem, there are two
additional assumptions made as compared to the
MCR problem, namely the traffic rate  bsd be-
tween two clusters is constant, and the distance
from cluster s to d on the given route  R

sdR 
is also a fixed value. That is, for any message i
sent from cluster s to cluster d , its traveling de-
lay will be R

i sdT  . Let’s say the network operates

T. WANG ET AL.

Copyright © 2010 SciRes. WSN

897

from time 0 to t. The total size of all the messages
that have been generated during this period can be
expressed as 1 , cs d n sdtb  . On the other hand, us-
ing our notation, since the number of these mes-
sages is mn , and the size of each message is de-

 noted by i , the total size is thus
1

mn

i
i



 . Therefore

1 ,

1

m

s d nc

n

sd i
i

t b 
 



 

and thus

1 ,s d nc 


1

mn
R

sd sd i i
i

tb T 


 

Equation (5) becomes equivalent to Equation 4 un-
der the assumptions of the MFR problem. Hence it
is easy to see that the MCR problem is a genera-
lized version of the MFR problem.

 The MCR problem is MAX-SNP-hard, and thus
polynomial time approximation schemes are un-
likely to exists to this problem. We consider a
simpler special case of the MCR problem. Consider
a particular instance where a cab collects 1cn 
messages, each for a distinct destination cluster,
from cluster s. Before it finishes delivering these
messages, other clusters do not upload any new
message to the cab. The objective function, Equa-
tion (5) therefore becomes

1

1
1

1

c

c

n

i i
i

T n

i
i

T










 



.

This is exactly the objective function of the Wei-
ghted Minimum Latency Problem (WMLP) [17],
where iT is referred to as the latency of the tour
starting from s to the destination cluster of message
i , and i is the weight. In the WMLP, we try to
find the tour that visits all the vertices in a graph
that minimizes the weighted latency, represented by
the above equation. Unfortunately, the WMLP is
known to be a MAX-SNP-hard problem [18]. Gen-
erally, there is no polynomial time approximation
scheme for MAX-SNP-hard problems [19]. Even
for a more simplified scenario, where i is con-
stant and the traffic is uniform among the clusters,

to minimize
1

1

cn

i
i

T



 , we still need to solve the Trav-

eling Salesman Problem (TSP), which is also
known to be NP-hard. Therefore, it is infeasible to
completely generate an optimized cab route.

 A static route cannot be an optimal solution. This

is because in the network, traffic cannot be constant
and uniform all the time. If some cluster i rece-
ives messages more frequently than others, it will
be a waste of time to visit all the other clusters be-
fore returning to i , which is what that will take
place with a static route. Moreover, due to the na-
ture of some of the MANET tasks, such as area ex-
ploration or surveillance, the frequency and sizes of
messages may vary over time. A static route could
not adapt itself to such changes.

 The key to finding a suitable cab route is to de-
termine the next leg. The cab stops to deliver and
collect messages to/from a cluster head after each
leg. Therefore, we do not need to plan the route be-
yond the next leg, as the future legs should be adap-
tively determined according to the messages the
ferry collects in the future and have not been un-
veiled to the ferry yet. Therefore, if a scheme can
produce each leg optimally, it offers a good solu-
tion to the MCR problem.

Based on the above observations, we use a weighting
scheme to choose the “best”2 cluster head among all the
neighbors as the next waypoint for a cab to move to and
this in turn will eventually forms an adaptive route. The
Shortest Process Time First (SPTF) rule from the Job
Scheduling Problem (JSP) is adopted to compute the
weight of the clusters, and we refer to our proposed ap-
proach as the Adaptive Cab Route (ACR) algorithm.

5.2. The Shortest Process Time First (SPTF) Rule

In the Job Sequencing Problem (JSP) [20] of a single
machine, we need to find the optimal sequence of a se-
ries of jobs k with weight3 kl and processing time

kp to minimize the average delay of these jobs which is
given by:

k k k
jsp

k k

l

l


 



Smith proved in [21] that the optimal solution to JSP
can be produced by applying the Shortest Process Time
First (SPTF) rule to sequence the jobs:
 SPTF Rule: Sequencing the jobs in order of non-

decreasing ratio k kp l produces an optimal sche-
dule to minimize jsp .

Comparing Equation (6) with Equation (3), we can ob-
serve that the objective functions of JSP and MCR are
similar (details will be discussed in the next Section).
Hence SPTF would be a useful tool to construct adaptive
ferry routes. In this paper, to ensure that the equations
that we derive in the next Section are well defined, we
2As the most suitable waypoint in a cab route to minimize 
3Larger kl represents higher importance and vice versa.

T. WANG ET AL.

Copyright © 2010 SciRes. WSN

898

define an inverse SPTF (iSPTF) rule:
 iSPTF Rule: To optimally sequence the jobs in JSP,

the job with highest k kl p value should be chosen
first. It is easy to see that iSPTF is logically equiv-
alent to SPTF. They are both able to solve JSP op-
timally.

5.3. The Adaptive Cab Route (ACR) Algorithm

We may interpret the event that the cab goes to a desti-
nation cluster d as job d. Assuming the cab is currently at
cluster s, we could say that the required processing time
of job d is the traveling time from cluster s to cluster

, . . sdd i e  , which is similar to kp in JSP.
In order to apply the iSPTF rule, we need to determine

the weight kl of these jobs. We note in JSP, the weight
of a job indicates the how much each job contributes to
the objective function jsp . Similarly, job d contributes
to T in the MCR problem by delivering the messages
with destinations in cluster d. Using  dest i to denote
the index of the destination cluster of message i (i.e.
message i is meant to be delivered to  dest iC), the total
size of messages delivered by the cab in job d can be
expressed as

 :
d i

i dest i

   .

We use this value as the weight of job d (like lk in
JSP). Then we can choose the cluster with maximal ratio
of sdMd  as the next waypoint of the adaptive cab
route according to the iSPTF rule.

We also note that MCR and JSP are still two different
problems. Because in MCR, sd varies when the cab’s
location (cluster s) changes, while in JSP kp is constant.
Therefore iSPTF may not provide the exact optimal solu-
tion to MCR. However, we believe it still provides a
good indication of which cluster head should be chosen
to be the next waypoint.

According to iSPTF, we could define a weighting
function dW as

d
dW




sdε
 (7)

A cluster with the maximal weight will be chosen as the
next waypoint in the adaptive route. To break a tie, we
define d as the time of the most recent arrival of the
cab at cluster d. Given any two clusters 1C and 2C , if

1 < 2 , it means that the time since the last cab’s arrival
to cluster 1C is longer than that to cluster 2C . If the
two clustersboth have the maximum weight W among all
the clusters, 1C will be chosen as the next waypoint.
The algorithm shown in Table 1 illustrates how the ACR
algorithm determines the cab’s next waypoint when it
arrives cluster s at time  .

Lemma 2. The complexity of the ACR algorithm is

Table 1. ACR algorithm.

ACR(cluster s, time ){

initialize 0dW  and 0dM  for all d

for each un-delivered message i do %Loop 1%

  idest i
  

for each cluster d do %Loop 2%

d
d

sd

W





for all the clusters do %Loop 3%

find maxd of which
maxdW is the maximum

if there are multiple that 'd ’s ' maxd dW W then

for all the 'd ’s do %Loop 4%

find max'd of which max'd is the minimum

the next waypoint is 'maxdC

else the next waypoint is
maxdC

set s  

}

 c mO n n .
Proof: In Loop 1 of ACR, the algorithm goes through

the cab’s storage to calculate the accumulated size of
messages that will be delivered to cluster  dest i . Since
the total number of messages is nm, Loop 1 takes
 mO n time in the worst case. To calculate the weight

Wd for each cluster in Loop 2, the algorithm goes through
all the nc clusters and therefore  cO n time is required.
Similarly, in order to find the cluster with maximum
weight, another  cO n time is required in Loop 3. To
break the tie, Loop 4 will be executed for  cO n times
in the worst case. The overall complexity for algorithm
ACR is thus  c mO n n .

We note the complexity of the ACR algorithm (Lem-
ma 2) as well as the DCD algorithm (Lemma 1) is much
lower than most of the existing schemes with helping
hosts. Moreover, being a fully localized scheme, MCab
is extremely suitable for the MANETs where the re-
sources are limited.

6. Simulation Results

To validate the effectiveness of the MCab scheme, ex-
tensive simulations are carried out. We randomly gener-
ate the network topology and traffic in C++ programs
and compare the results with existing schemes.

We model a MANET constructed in a 500 m by 500 m
area. The number of hosts in each cluster is set to 20 at
the beginning of the simulations. The communication
range of the hosts is 5 m, and the storage size is 10Mb.
The hosts move at a speed of 10 m/s.

The traffic in the MANET can be specified by the
number of messages per unit time, but as the size of
messages also varies, it is more convenient to describe it
as the size of data transmitted per unit time, i.e. kilobits

T. WANG ET AL.

Copyright © 2010 SciRes. WSN

899

per second (kb/s). We refer it as the volume of the traffic.
The number of pro-cabs may vary in the simulation.

We define the effective number of pro-cabs as the aver-
age number of pro-cabs over time to describe how many
pro-cabs are deployed in the MANET.

6.1. Performance of the DCD Algorithm

We start with our study on the performance of the DCD
algorithm. The main objective of the DCD algorithm is
to dynamically recruit cabs in the MANET to deliver
inter-cluster messages.

The algorithm is controlled by two parameters, namely
 (the upper bound of the weighted waiting delay) and
 (the time duration that a host serves as a pro-cab). To
deploy temp-cabs, the performance of the DCD algo-
rithm is also closely related to the frequency in which the
hosts move from one cluster to another. A variable 
is defined as the average length of period (in seconds)
that a host stays in a cluster before it moves to another
one.

Figure 4 displays how the number of recruited cabs
changes with the volume of inter-cluster traffic. The left
vertical axis corresponds to the traffic volume while the
number of pro-cabs are indicated on the right axis. To
study the impact of  ,  and  on the performance
of the DCD algorithm, we choose two (high and low)
values for each of these variables. Each of the figures
corresponds to a particular combination of the values of
 and  , and plots the two groups of results which
correspond to the two values of  . As shown in Table
2, the values of  are 500 s and 100 s; the values of
 are 2000 s and 200s; the values of  are 5000 s
and 200s. The effective number of pro-cabs are also
shown in Table 2.

1) The value of  : The value of  significantly
changes the effective number of pro-cabs.

With a high value of  ( = 5000 s), the hosts
tend to stay in the same cluster for a long time, and thus
there are less chances that messages could be delivered
by a temp-cab. Therefore, more pro-cabs have to be re-
cruited to keep the waiting delay below  .

If the value of  is low ( = 200 s), it implies that the
hosts frequently move among the clusters. Therefore a lot
of inter-cluster messages could be delivered by temp-cabs,
and there are fewer messages that are left on the cluster
head. Therefore, fewer pro-cabs need to be recruited.

Table 2. Effective Number of Pro-Cabs.

 5000s  200s 

 200s  2000s  200s  2000s 

100s 2.81 3.78 1.13 1.35

500s 0.98 1.49 0.15 0.44

We can observe this phenomenon in Figure 4(a) and
Figure 4(c) by comparing line 1 (200 s  , 100 s  ,

5000 s ) with line 5 (200 s  , 100 s  ,  =
200 s). For the same values of  and  , more pro-
cabs will be recruited when 2000 s  , as depicted by
line 1. When  decreases to 200 s, more temp-cabs
could be used, and thus fewer pro-cabs are needed to
deliver the messages, as shown by line 5. Similar fact
can be observed by comparing line 2 with line 6, line 3
with line 7, and line 4 with line 8 in Figure 4. In Table 2,
we can also see the effective number of pro-cabs is much
smaller when  is low (200 s ).

2) The value of  :  controls the duration for
which a host serves as a pro-cab. It controls the frequen-
cy for triggering the pro-cab recruiting procedure, and
thus affects how fast the system could respond to the
change in traffic volume.

When the value of  is high (2000 s ), the pro-
cabs have a long service time and a slow retirement.
Comparing line 1 with line 2 in Figure 4(a) on the time
interval [7000, 8000], we can see that the number of cabs
stays as high as 6 when 2000 s  (as depicted by line
2) even though the traffic volume has already dropped to
a lower level, where only about 3 pro-cabs will be dep-
loyed if 200 s  (as depicted by line 1), meaning that
several cabs may be unnecessary for the purpose of
keeping the weighted waiting delay low. Similar pheno-
mena can also be observed in the time interval [4000,
5000] in Figure 4(a), [9000, 10000] in Figure 4(b), and
[8500, 10000] in Figure 4(c), resulting in the effective
numbers of cabs being much larger when  = 2000 s
(as shown in Table 2).

A low value of  (200 s ) causes the pro-cabs
to only serve for a short period of time, and change back
to the state of normal host sooner. However, messages
are still being generated and stored in the cluster heads,
causing new pro-cabs to be recruited. The change in the
cab number is thus more rapid and frequent than when

2000 s  . Since cabs are frequently recruited and re-
tired and lines 1, 3, 5 and 7 appear to be more “spiky”
than lines 2, 4, 6 and 8 respectively in Figure 4.

We should also note that frequent change in the num-
ber of cabs may also cause unwanted interruption to the
other tasks of the hosts. For example, in order to collect
reliable data, a sensor may need to stay stationary at the
same position for some minimum duration. Hence low
values of  may affect the efficiency of the network
task, although it is able to help to reduce the number of
pro-cabs.
 3) The value of  : Comparing Figure 4(a) with
Figure 4(b), or Figure 4(c) with Figure 4(d), we can
also observe the fact that the value of  influences the
number of cabs more directly.

T. WANG ET AL.

Copyright © 2010 SciRes. WSN

900

(a)  = 100 s,  = 5000 s

(b)  = 500 s,  = 5000 s

(c)  = 100 s,  = 200 s

(d)  = 500 s,  = 200 s

Figure 4. Performance of the DCD algorithm.

When the value of is high (500 s ), the cluster
heads are able to tolerate larger weighted waiting delay
before recruiting new pro-cabs, and less pro-cabs will be
hired in the MANETs. This is the reason why in Table 2,
the effective numbers of pro-cabs are much smaller when

500 s  .
On the other hand, if the value  is low (100 s ),

the cluster heads have to frequently hire new pro-cabs to
keep the waiting delay of the messages low. Comparing
Figure 4(a) with Figure 4(b), or Figure 4(c) with Fig-
ure 4(d), it is easy to observe that the number of pro-
cabs significantly increases when the value of  is
low.

In general, our simulation results show that the DCD
algorithm can effectively adapts the number of cabs to
the traffic volume of the network. We will also show
how it bounds the weighted waiting delay below  in
Section VI-C. Before that, the performance of the ACR
algorithm will be discussed.

6.2. Performance of the ACR Algorithm

To evaluate the performance of the ACR algorithm, we
assume that cabs are selected beforehand and are ran-
domly deployed without the use of the DCD algorithm in
this section. We compare the delay incurred by the adap-
tive route constructed by the ACR algorithm with the
most commonly adopted solution, i.e. the TSP route. It is
well-known that TSP is a NP-hard problem, where op-
timal solution cannot be found within polynomial time.
We use brute force to find the optimal TSP route in the
simulation. However it would only be feasible to use
To address this issue, we also use the Improving Search
Algorithm [22] to find an approximate solution to TSP as
a feasible route. Both optimal and approximate TSP
routes are static and are used as benchmarks to compare
with the routes obtained by the ACR algorithm.

10 clusters of hosts are considered for this simulation.
The cabs are randomly allocated in different clusters
initially, and move according to the routes generated by
the ACR algorithm, optimal TSP algorithm, or approx-
imate TSP algorithm. The results are shown in Figure 5.

We can see that increasing the number of cabs reduces
the average delay of the ACR routes, but no significant
change can be observed for TSP and approximate TSP
routes. This is because when the same static route is used,
the delay of a message only depends on the distance be-
tween its source and destination on the route, and is not
affected by the number of cabs. Therefore once the route
is constructed, the delay of messages will not be affected
by the change in the number of cabs.

On the other hand, when the ACR algorithm is used,
each cab defines its own route based on the messages it

T. WANG ET AL.

Copyright © 2010 SciRes. WSN

901

Figure 5 . Performance of the ACR algorithm (traveling
delay).

is carrying. The delay of a message can be further short-
ened if there are fewer messages to be carried by a single
cab. For example, if a cab only carries one message, it
will directly move to the destination cluster of the mes-
sage. A fair amount of time can be thus saved. As the
number of cabs increases, fewer messages will be carried
by each of them, and the average delay is thus further
decreased. Moreover, since the ACR algorithm is fully
distributed, no collaboration is needed among the cabs.
Each of them can decide its route locally. The increase in
cab number does not affect the complexity of the scheme
at all.

6.3. Overall Performance of the MCab Scheme

In the MCab scheme, when both the DCD and ACR al-
gorithms are applied for the cab deployment and route
design, the average weighted delay is further reduced.
We demonstrate this result in Figure 6 to Figure 8 by
showing how the MCab scheme perform when there are
different number of clusters  cn . The three figures dis-
plays the weighted average delay of the messages, the
effective number of pro-cabs and the percentage (in size)
of messages delivered by procabs, respectively. In each
figure, two values of  (5000 s and 200 s) are used in
the simulation. Two different implementations of the
DCD algorithm (100 s  , 2000 s  and 500 s  ,

200 s ) are demonstrated. The results for the other
two cases (500 s  , 2000 s  and 100 s  ,

200 s ) exhibit similar results, and are thus omitted
in this section

In Figure 6 the simulation results are shown as a
group of columns. The upper part (above 0) of each
column shows the duration of average waiting delay  ,
and the lower part (below 0) shows the duration of aver-
age traveling delay T . As a result, the entire bar length
shows the overall average delay  of the correspond-

ing scheme. We compare the results with the case where
a single helping host is deployed in theMF scheme, and
moves on a TSP route or an approximate TSP route.
Moreover, we also plot the values of the average wei-
ghted delay when the ACR algorithm is applied to a sin-
gle cab without the DCD algorithm in the figure as a
reference.

It can be seen from Figure 6 that the total delay is
much lower with the MCab scheme. Let’s consider the
case when there are 5 clusters. We can observe that for
this case the MF scheme with approximate TSP incurs
the longest message delay. It is followed by the MF
scheme with optimal TSP, because the optimal route of
TSP will be shorter than an approximate route. As we
have shown in Section VI-B, the ACR algorithm will re-
duce the traveling delay by using adaptive cab routes in-
stead of fixed ones. However, as the ACR algorithm cal-
culates the weights of the clusters based on the messages
that have been stored in the cab, it does not guarantee a
lower waiting delay for those messages that have not yet
been uploaded to the cabs. Therefore, the waiting delay is
not significantly reduced by the ACR algorithm alone
(without the DCD algorithm). Moreover, it can be ob-
served in some particular incidences that it may incur a
slightly higher waiting delay than the MF schemes (e.g.

5000 s  with 15 clusters). When the DCD algorithm is
also applied (i.e. the MCab scheme), the waiting delay is
further reduced, because some of the messages can be car-
ried by the temp-cabs and do not need to wait for the
pro-cabs. The message delay reduces to the minimum
when the MCR scheme with 100 s  and 2000 s  is
adopted. This is because when 100 s  , more pro-
cabs are deployed than the case when 500 s  as we
discussed in Section VI-A. The same fact can also be
observed from Figure 7, where on average 4.5 pro-cabs
are deployed to serve 5 clusters when 5000 s  ,

100 s  as compare to 1.3 pro-cabs when 500 s  .
We note the other cluster sizes in Figure 6 also exhibit
the same performance trend described above.

It should also be pointed out that when there are 5
clusters and 5000 s  , the difference between the
results for MCab (500 s  , 2000 s ) and ACR
(without DCD) is not as significant as when there are
more clusters, or when the value of  is lower
(200 s  , in Figure 6(b)). This is because the waiting
delay in this case is lower than 500 s even when there is
only one cab. As a result, we note that the average num-
ber of cabs is also about 1 when the DCD algorithm is
used, which means it is not necessary to deploy more
cabs to further reduce the average weighted waiting de-
lay in the MCab scheme. Moreover, since the number of
temp-cabs deployed in this scenario is also very few as
 is large, the performance is very similar to the ACR
(without DCD) case.

T. WANG ET AL.

Copyright © 2010 SciRes. WSN

902

(a) =  5000 s (b) =  200 s

Figure 6. Delay of messages.

(a)  = 5000 s (b)  = 200 s

Figure 7. Effective number of pro-cabs.

(a)  = 5000 s (b)  = 200 s

Figure 8. Percentage of messages delivered by pro-cabs.

When the number of clusters increases, the weighted
average waiting delay with the ACR algorithm (without
DCD) increases as well. This is due to the fact that the
pro-cab needs to visit more clusters before delivering the
message to its destination. As a result, when the DCD

algorithm is applied (i.e. the MCab scheme), more pro-
cabs will be recruited to lower the waiting delay so that it
does not exceeds the predetermined upper bound  .
Moreover, we can observe that under the control of the
DCD algorithm, the weighted average waiting delay of

T. WANG ET AL.

Copyright © 2010 SciRes. WSN

903

the messages are bounded by the values of  , which
are indicated by the respective reference lines (500 s and
100 s) in Figure 6.

The effectiveness of deploying temp-cabs can also be
demonstrated by comparing the height of the columns
representing MCab scheme (500 s  , 200 s ) in
Figure 6(a) and Figure 6(b), where the values of
weighted average waiting delay decrease with the value
of  . As  decreases from 5000 s to 200 s, more
temp-cabs can be used for inter-cluster message delivery,
thus less pro- cabs are recruited (as depicted in Figure 7),
and a lower percentage of messages will be delivered by
the pro-cabs (as depicted in Figure 8). It thus reduces the
waiting delay of the messages, since some of them are
taken to their respective destination clusters by
temp-cabs before the timer expires. This phenomenon
cannot be observed when 100 s  , 2000 s  , and
when there are 20 clusters for 500 s  , 200 s  ,
because in these cases additional pro-cabs are recruited
in order to bound the waiting delay below  .

Interestingly, the traveling delay is also slightly re-
duced by using more temp-cabs. This is because the
messages carried by a temp-cab are selected based on
their destinations. The temp-cab takes them from the
source cluster head and moves directly to their destina-
tion cluster, while a pro-cab is shared by messages with
different destinations, and may have to visit several other
clusters (as destinations of other messages stored in the
pro-cab) before eventually deliver these messages. How-
ever, as we can see from Figure 8, the majority of mes-
sages are delivered by the procabs in most of the scena-
rios, and the weighted average traveling delay is still
dominated by the routes of pro-cabs, i.e. the ACR algo-
rithm.

In conclusion, simulation validates that both the DCD
and ACR algorithms works as we expected, and the
MCab scheme effectively reduces the average weighted
waiting delay.

7. Conclusions

In this paper, we propose a scheme with flexible helping
hosts, namely Message Cab (MCab) for message deli-
very in partitioned MANETs. It consists of two algo-
rithms, referred to as the Dynamic Cab Deployment
(DCD) algorithm and the Adaptive Cab Route (ACR)
algorithm. The DCD algorithm dynamically selects hosts
to become the helping hosts (cabs) and move among the
clusters to deliver inter-cluster messages, and the ACR
algorithm designs the route of the cabs so that the delay
of the messages can be reduced. Comparing with the
existing schemes with helping hosts, we have shown that
the MCab scheme effectively shorten the delay of the

messages with the simulations and is adaptive to the va-
rying traffic in the network, which has not been dis-
cussed in the existing works.

8. References

[1] S. Corson and J. Macker, “Mobile Ad Hoc Networking

(MANET): Routing Protocol Performance Issues and
Evaluation Considerations,” United States, 1999.

[2] W. Zhao and M. Ammar, “Message Ferrying: Proactive
Routing in Highly-Partitioned Wireless Ad Hoc Net-
works,” Proceedings of the 9th IEEE Workshop on Fu-
ture Trends of Distributed Computing Systems
(FTDCS’03), Washington, DC, 2003, pp. 308-314.

[3] W. Zhao, M. Ammar and E. Zegura, “A Message Ferry-
ing Approach for Data Delivery in Sparse Mobile Ad hoc
Networks,” Proceedings of the 5th ACM International
Symposium on Mobile Ad Hoc Networking and Compu-
ting (MobiHoc’04), New York, 2004, pp. 187-198.

[4] W. Zhao, M. Ammar and E. Zegura, “Controlling the
Mobility of Multiple Data Transport Ferries in a De-
lay-Tolerant Network,” Proceedings of the 24th Annual
Joint Conference of the IEEE Computer and Communi-
cations Societies (INFOCOM’05), Miami, Vol. 2, 2005,
pp. 1407-1418.

[5] M. M. B. Tariq, M. Ammar and E. Zegura, “Message
Ferry Route Design for Sparse Ad Hoc Networks with
Mobile Nodes,” Proceedings of the 7th ACM internation-
al symposium on Mobile Ad Hoc Networking and Com-
puting (MobiHoc’06), New York, NY, 2006, pp. 37-48.

[6] M. Ye, X. Tang and D. L. Lee, “Fair Delay Tolerant Mo-
bile Data Ferrying,” Proceedings of the 10th Internation-
al Conference on Mobile Data Management: Systems,
Services and Middle-ware (MDM’09). Washington, DC,
2009, pp. 182-191.

[7] M. H. Ammar, D. Chakrabarty, A. D. Sarma, S. Kalya-
nasundaram and R. J. Lipton, “Algorithms for Message
Ferrying on Mobile Ad Hoc Networks,” Proceedings of
the IARCS Annual Conference on Foundations of Soft-
ware Technology and Theoretical Computer Science
(FSTTCS’09), IIT Kanpur, 2009, pp. 13-24.

[8] Q. Li and D. Rus, “Communication in Disconnected Ad
Hoc Networks Using Message Relay,” Journal of Paral-
lel and Distributed Computing, Vol. 63, No. 1, 2003, pp.
75-86.

[9] S.-H. Chung, K.-F. Ssu, C.-H. Chou, and H. C. Jiau,
“Improving Data Transmission with Helping Nodes for
Geographical Ad Hoc Routing,” Computer Networks,
Vol. 51, 2007, pp. 4997-5010.

[10] C.-H. Ou, K.-F. Ssu and H. C. Jiau, “Connecting Network
Partitions with Location-Assisted Forwarding Nodes in
Mobile Ad Hoc Environments,” Proceedings of the 10th
IEEE Pacific Rim International Symposium on Dependa-
ble Computing (PRDC’04), Washington, DC, 2004, pp.
239-247.

[11] D. Borsetti, C. Casetti, C.-F. Chiasserini, M. Fiore and J.
M. Barcel’o-Ordinas, “Virtual Data Mules for Data Col-

T. WANG ET AL.

Copyright © 2010 SciRes. WSN

904

lection in Road-Side Sensor Networks,” Proceedings of
the 2nd International Workshop on Mobile Opportunistic
Networking (MobiOpp’10). New York, 2010, pp. 32-40.

[12] R. C. Shah, S. Roy, S. Jain and W. Brunett, “Data
MULEs: Modeling a Three-tier Architecture for Sparse
Sensor Networks,” Technical Report IRS-TR-03-001, In-
tel Research Lab at Seattle , 2003.

[13] D. Jea, A. Somasundara and M. Srivastava, “Multiple
Controlled Mobile Elements (Data Mules) for Data Col-
lection in Sensor Networks,” Lecture Notes in Computer
Science, Vol. 3560, No. 2005, 2005, pp. 244-257.

[14] A. A. Hasson, R. Fletcher and A. Pentland, “DakNet: A
Road to Universal Broadband Connectivity,” First Mile
Solutions, Technical Report, 2003.

[15] I. Rhee, M. Shin, S. Hong, K. Lee and S. Chong, “On the
Levy-Walk Nature of Human Mobility: Do Humans
Walk like Monkeys?” Proceedings of the 27th Annual
Joint Conference of the IEEE Computer and Communi-
cations Societies (INFOCOM ’08), Rio de Janeiro, 2008.

[16] Y. Zhang, C. P. Low, J. M. Ng and T. Wang, “An Effi-
cient Group Partition Prediction Scheme for MANETs,”
Proceedings of the 2009 IEEE Wireless Communications
and Networking Conference (WCNC’09), Budapest, 2009,
pp. 1-6.

[17] R. Sitters, “The Minimum Latency Problem is NP-Hard
for Weighted Trees,” In: W. Cook and A. Schulz, Ed.,
Integer Programming and Combinatorial Optimization,
ser. Lecture Notes in Computer Science, Springer Berlin/
Heidelberg, Vol. 2337, 2006, pp. 230-239.

[18] A. Blum, P. Chalasani, D. Coppersmith, B. Pulleyblank,
P. Raghavan and M. Sudan, “The Minimum Latency
Problem,” Proceedings of the 26th annual ACM sympo-
sium on Theory of computing (STOC’94), New York, NY,
USA: ACM, 1994, pp. 163-171.

[19] S. Arora, C. Lund, R. Motwani, M. Sudan and M. Sze-
gedy, “Proof Verification and the Hardness of Approxi-
mation Problems,” Journal of the ACM, Vol. 45, No. 3,
1998, pp. 501-555.

[20] K. R. Baker, “Introduction to Sequencing and Schedul-
ing,” John Wiley & Sons, Inc, New York, USA, 1974.

[21] W. E. Smith, “Various Optimizers for Single-Stage Pro-
duction,” Naval Research Logistics Quarterly, Vol. 3, No.
1-2, 1956, pp. 59-66.

[22] P. Merz and B. Freisleben, “Genetic Local Search for the
TSP: New Results,” Proceedings of the 1997 IEEE In-
ternational Conference on Evolutionary Computation,
Indianapolis, USA, April 1997, pp.159-164.

