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Abstract 
 
Helping hosts are intensively used in various schemes to restore partitioned Mobile Ad Hoc Networks 
(MANETs). Most of the existing schemes offers only deterministic deployment and fixed routes for the 
helping hosts, and are thus not able to deal with fluctuating network traffic, which is a practical condition in 
many MANET applications. In this paper, we argue that flexible helping hosts (referred to as Message Cabs 
(MCabs)), with deployment and routes that response to the changes in the traffic demand of the network, 
may overcome this drawback and reduce the message delay in the networks. To demonstrate the effective-
ness of this observation, we propose a new helping host scheme namely the Message Cab (MCab) scheme 
for partition restoration in MANETs, and validate the performance through simulations. 
 
Keywords: Mobile Ad Hoc Networks (MANETs), Helping Host, Message Cab, Adaptive Route Design,  

Dynamic Deployment 

1. Introduction 
 
A Mobile Ad Hoc Network (MANET), as described in 
[1], is a kind of mobile wireless networks which is com-
prised of a collection of mobile hosts connected through 
wireless channels. The direct connections between the 
hosts are referred to as links. A host in a MANET ex-
changes messages with other nodes as a terminal and 
forwards the messages as an intermediate router at the 
same time. The routing paths of a message in a MANET 
are formed by a series of mobile hosts. Messages are 
forwarded hop-by-hop.  

While the mobility of hosts enables the network to 
span over a large area, it also causes a highly dynamic 
topology, which is a major challenge to the applications 
of MANETs. When a host moves out of another’s com-
munication range, the link between them breaks, and the 
entire message routing path may be destroyed by this 
broken link. This possibility of link breakage may split 
hosts into different parts between which there is no 
possible path. This in turn may result in packets not be-
ing able to reach their destinations. We refer to this phe-
nomenon as network partitioning. Each isolated part of a 
network is referred to as a partition of the network. The 
partitioning problem makes a critical strike on ad hoc 
routing because most protocols typically assume that the 

network is always connected. To enhance the reliability 
and conserve energy, partitioning should be restored in 
MANETs. 

Various approaches have been proposed for MANETs 
survivability and restoration. In particular, helping hosts 
are deployed to reconnect the network partitions, and we 
refer to such action as partition restoration. The helping 
hosts are able to reconnect the network connectivity by 
moving from one partition to another in a MANET de-
spite the fact that the normal hosts (i.e. nonhelping hosts) 
may be partitioned. This idea is also extensively dis-
cussed in Delay Tolerant Networks (DTN) and Wireless 
Sensor Networks (WSN) in order to collect data from 
disconnected parts of the networks. 

The helping hosts are addressed by different names in 
various schemes. In [2-7], they are referred to as ferries, 
while in [8-10], they are called helping nodes or for-
warding nodes. Data MULEs in [11-13] are also known 
as a kind of helping hosts, and in the DakNet project [14] 
buses are used as helping nodes to connect broadband 
network to rural villages. 

One of the most important and commonly discussed 
objectives of these schemes is to enhance the connectiv-
ity and minimize the communication delay in the net-
work. On contrary, helping hosts’ movement consumes 
considerable amount of energy and time, and may cause 
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long message delay in the network. To efficiently utilize 
them, the deployment and route design of helping hosts 
are crucial. 

In this paper, we propose a new helping host scheme 
for partition restoration in MANETs, namely the Mes-
sage Cab (MCab) scheme. The helping hosts are like 
cabs, in the sense that they are more flexible and adap-
tive to traffic than buses or ferries. The MCab scheme 
consists of two essential parts, namely the Dynamic Cab 
Deployment (DCD) algorithm and the Adaptive Cab 
Route (ACR) algorithm for the purposes of selecting 
message cabs and improving the message cab route, re-
spectively. Both algorithms are able to deal with fluc-
tuating traffic in the network, which is a practical scena-
rio in real life, but is not usually discussed in the existing 
works. Therefore we say that the message cabs are flexi-
ble helping hosts. We will demonstrate that the MCab 
scheme overcomes the drawbacks of existing schemes by 
incurring lower average message delay and the results 
are validated through simulations. 

In the following parts of this paper, we introduce the 
backgrounds of our work in Section 2, and the model 
together with our objectives in Section 3. The two parts 
of the Message Cab (MCab) scheme, namely the Dy-
namic Cab Deployment (DCD) algorithm and the Adap-
tive Cab Route (ACR) algorithm are presented in Section 
4 and 5, respectively. Simulation and results are dis-
cussed in Section 6, while Section 7 concludes this pa-
per. 
 
2. Background 
 
Before we present our proposed Message Cab (MCab) 
scheme, we need to explain two important concepts, 
namely the deployment and route design of the helping 
hosts (or cabs in our scheme), together with some exist-
ing solutions. In addition, our assumptions and notations 
are discussed in this section. 
 
2.1. Deployment 
 
Deployment is a procedure for selecting helping hosts. In 
most of the existing works, such as [2,10,13,14], the 
helping hosts are a group of specially designed hosts that 
have larger storage, more energy and/or higher moving 
speed. They are different from the normal hosts and are 
assigned as helping hosts prior to the commencement of 
network operations. The deployment is thus static, or de- 
terministic. Such deployment mechanisms allows help-
ing hosts to have higher capability in delivering messag-
es across partitions but is less flexible. Since the number 
of helping hosts is fixed, it may turns out that there is too 
many, or too few helping hosts to meet the traffic de-

mand in the network. Thus static deployment may not be 
adaptive to network traffic demand. To overcome this 
drawback, dynamic deployment is used in [8], where 
normal hosts with suitable moving direction and speed 
are chosen as helping hosts (a.k.a helping nodes). How-
ever, it is a centralized scheme and thus not scalable with 
network size. More importantly, under the assumption 
that the network is partitioned, it is infeasible to make all 
the hosts’ movement information available to a central 
server to perform the selection. Similar problem can also 
be observed in [9]. Therefore, we propose a localized 
algorithm, namely the Dynamic Cab Deployment (DCD) 
algorithm to deploy helping hosts (i.e. message cabs) in 
the MCab scheme. The DCD algorithm allows the num-
ber of helping hosts to change dynamically with the traf-
fic volume, and thereby reduces the weighted average 
delay of messages in the network, and enhances the sca-
lability of the deployment process. 
 
2.2. Route Design 
 
The route of a helping host is the path it follows, which 
usually connects different partitions or hosts in the net-
work. In [8,12,14], the route is not planned by any algo-
rithm. The hosts’ random movement is utilized to deliver 
messages. However, it has been shown in many other 
works that the message delay can be significantly re-
duced if we consider the problem of route design as an 
optimization problem. For example, in [2], Zhao et al. 
have formulated the Massage Ferry Route (MFR) prob-
lem to find the optimal route for helping hosts (i.e. mes-
sage ferries). In [4-7], solutions from the well studied 
Traveling Salesman Problem (TSP) and its variants are 
adopted as routes for helpinghosts. In these schemes, the 
route does not change after being constructed, and is thus 
a fixed route. It is only suitable when the network traffic 
among the partitions is constant, which is an idealized 
assumption. In most of the practical cases, the traffic 
between any two partitions will be a temporal variable, 
and the route should be able to adapt to the changes. 
Hence fixed routes are unlikely to be optimal in general. 
Therefore, an adaptive route is more desirable. Ou et al. 
proposed a centralized scheme in [10] to let the helping 
hosts (a.k.a helping nodes) move adaptively to the pack-
ets’ destinations. However, as we have discussed in the 
previous section, centralized schemes may perform 
poorly when the network is partitioned. In this paper we 
propose a distributed algorithm, namely the Adaptive 
Cab Route (ACR) algorithm, to construct cab routes by 
adopting the Shortest Process Time First (SPTF) rule 
from the Job Sequencing Problem (JSP). Simulation 
proves that our proposed scheme is able to effectively 
reduce the message delay in the network. 
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2.3. Assumptions and Notations 

While many existing schemes (e.g. [2,7,11] ) focus on 
stationary hosts with known locations and predictable 
network traffic, we try to deal with a more practical sce-
nario, where: 
 the hosts are mobile; 
 the traffic in the network is randomly variant and is 

thus not predictable. 
As discussed in [15], movements of hosts in MANETs 

can be considered as Levy Flights, in which the hosts 
tend to stay in a certain area for a long time and occasio-
nally make long distance flights to places far away. We 
could thus assume that a host stays in the same cluster 
for a certain period of time and will also sometimes de-
cides to move to another cluster. Practically, this could 
be due to the assignment of tasks to the host, such as in a 
wireless sensor network, a sensor may need to reallocate 
itself to new positions to collect new data. 

Let’s assume that the MANET of our interest has nh 
mobile hosts. We assume the network is partitioned to nc 
components, each of which forms a cluster with a chosen 
cluster head. The hosts in the same cluster are always 
connected. In order to simplify the problem, we restrict 
the movement of a cluster head to be inside a circular 
area, which is referred to as the head zone. The radius of 
head zone is equal to the communication range of the 
cluster head, denoted as r, as shown in Figure 1. The 
center of head zone of cluster s  is denoted as point 
1 s n  c . We use sd  to denote the time taken by a 
host to travel from Cs  to Cd ,1 s , cd n . We note 
that sd is a positive real number. We say cluster d is a 
neighbor of cluster s  if a host is able to move directly 
to cluster d  from cluster s in one hop. 

Using proper clustering schemes, such as [16], the 
cluster head will always be aware of the changes in its 
cluster members, such as the movements, arrivals of new 
members and departures of existing members. It also 
knows the locations of other clusters, so when a host 
decides to move to a new place, the cluster head knows 
which is the next cluster the host is going to join. In addi- 

 

Figure 1. Network topology. 

tion, the cluster head works as a proxy between other 
normal hosts in the cluster and the helping host as well. 
If a helping host stops at sC , it is able to communicate 
with the head of cluster s  and deliver the messages to 
other hosts in cluster s  via the cluster head. The route 
of a helping host, denoted as R, will be a sequence of 
head zone centers ( 'ssC ). Each of these head zone cen-
ters is like a waypoint (as illustrated in Figure 1), which 
is a temporary destination for the helping host. Upon 
arriving a waypoint, the helping host stays for a period of 
time to deliver and receive the messages to/from the 
cluster head, before moving on towards the next way-
point. The route segment between two consecutive way-
points is referred to as a leg (shown in Figure 1). 

3. System Model and Objectives 

To demonstrate our methodology of the MCab scheme, 
we describe an analogy between the MANET and a sim-
ple transportation system which serves several small 
towns. It will also explain the reason why we name our 
helping hosts as cabs and how they are different from 
ferries. 

The towns represent the clusters, each of which is dis-
tant away from the others. The cars are like the hosts— 
they usually move within a town, and when it is neces-
sary, they are also able to move from one town to anoth-
er. The passengers are akin to messages, which by them-
selves cannot move from town to town. 

Buses are provided as an existing solution to the in-
ter-town transportation problem. They are similar to the 
other statically deployed helping hosts (such as message 
ferries) that we have discussed in the previous section. The 
static deployment and fixed route design of buses perform 
poorly with varying volume of passengers. Hence, it 
would be preferable if we have a flexible solution. 

Besides taking buses, the passengers could consider 
hiring a cab to travel to another town. The route of a cab 
will depend on the passengers’ demands, and is thus 
more flexible than the bus routes. Practically, it is also 
more convenient in terms of saving time to hire a cab. 
The number of cabs is determined by how many passen-
gers there are. When there are more passengers, more 
cabs can be recruited from the private cars (normal hosts) 
available; when the number of passengers drops, some 
cabs could retire and become private cars again. 

Moreover, since it is possible that some cars will move 
to another town by their drivers’ own decisions, a pas-
senger may also take a ride from a private car which is 
also moving to the his/her destination town. This will 
utilize the mobility of private cars in the transportation 
system to serve the passengers’ needs and save their 
traveling time. A car offering ride to passengers is like a 
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one-time temporary cab that only works for a single trip 
to a particular town. We refer to such cars as temp-cabs. 
To distinguish from them, we refer to those cabs that 
works for multiple trips in a longer period of time as 
professional cabs, or pro-cabs. 

We imitate the method of hiring pro-cabs and taking 
rides from temp-cabs in the MANETs and propose the 
Message Cab (MCab) scheme. As shown in Figure 2, 
the state of a private car (normal host), which is not a cab 
nor a cluster head, can transform to a pro-cab or a temp- 
cab under the control of the Dynamic Cab Deployment 
(DCD) algorithm: 
Pro-Cab 

Its movement is passively determined by the Adaptive 
Cab Route (ACR) algorithm, in which the route is 
adaptively designed based on the network traffic. It is 
recruited from a normal host, and continues moving 
among the clusters for a certain predetermined period 
of time before retiring to be a normal host. 

Temp-Cab 
Its movement is pro-actively determined by the host 
itself. It is a one-time helping host that only leaves its 
original cluster to its destination cluster. It becomes a 
normal host again after it arrives and has delivered the 
inter-cluster messages to the destination cluster.  
The key difference between message cabs and the 

other types of helping hosts in the existing works (such 
as ferries, helping nodes etc.) is that they are not selected 
before the network starts. Therefore the number of cabs 
and cab routes can dynamically change with the traffic. 
Although this kind of deployment does not allow the 
helping hosts to have higher capability in moving speed 
or storage space (since message cabs are just selected 
normal hosts), we found that it can still effectively re-
duce the message delay in the network. 

Since hosts in the same cluster are connected, we can 
use existing MANET routing protocols such as AODV or 
DSR for the communication between a cluster head and 
its members. We note that the delay incurred by the mes-
sage transmission within a cluster (intra-cluster commu-
nication) is much smaller than the delivery between dif-
ferent clusters (inter-cluster communication), and is less 
relevant to the cab deployment and route design. As a  

 

 

Figure 2. States of a host 

consequence, intra-cluster communication will be omi- 
tted in our following discussion. 

We should note that before a message is collected by a 
cab, it needs to wait at some cluster head for a certain 
time duration. We refer to this amount of time spent on 
waiting as the waiting delay    of the message. After 
it is collected by a cab, the cab will travel from its source 
cluster to its destination cluster, and thus incurs a travel-
ing delay    for the message. Therefore, the overall 
delay   of a message is     . 

Assume within time duration (0, t], there are mn  
messages that have been transmitted by the message cabs. 
The size of message   1 mi i n   is i . The waiting, 
traveling and overall delay of message i  are denoted as 
and i , iT and i .respectively. Similar to the objectives 
in [2-4], we are interested in reducing the weighted av-
erage overall delay    of the messages: 
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by 

1

1

,

m

m

n

i i
i

n

i
i



 







 



                   (2) 

and the weighted average traveling delay ( T ) of all the 
messages can be taken as 
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We can see that if there are more cabs in the network, 
each cluster could be visited more frequently, and the 
waiting delay of messages reduces. It shows that the 
waiting delay    is closely related to the cab deploy- 
ment plan. On the other hand, optimization of cab routes 
results in a shorter traveling delay T .  

In the MCab scheme, we bound   from above by 
using the Dynamic Cab Deployment (DCD) algorithm to 
control the number of cabs, and T  is reduced by adopt-
ing optimization techniques in the Adaptive Cab Route 
(ACR) algorithm, which designs the routes of the cabs. 
 
4. Deployment of Message Cabs 
 
In the ideal scenario, once a inter-cluster message is re-
ceived by the cluster head, there is always a cab ready to 
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carry it towards its destination, and   will be 0. How- 
ever, in practice, with unpredictable and fluctuating traf-
fic, it is impossible to have a cab ready for message de-
livery as soon as a message arrives at the cluster head. It 
would also be inefficient if a cab carries only one mes-
sage and does not fully utilize its storage space. To solve 
this problem, we try to make use of the normal hosts 
mobility as a temp-cab to give a ride to the messages as 
well as to recruit pro-cabs from normal hosts in the DCD 
algorithm. We show that by doing so, we are able to 
bound the weighted waiting delay of messages from 
above by a predetermined value, denoted as  seconds. 

Since the change of cluster membership is handled by 
the cluster head, a host (say host a ) needs to report to 
the head of its current cluster, say cluster s  (as source) 
before it leaves for a new location. The cluster head of 
clusters then knows the new cluster (say cluster d , as 
destination) host a  is going to join. It becomes possible 
that the head of cluster s  lets host a  to carry some 
messages which have cluster d  as their destinations. 
Host a  a will then deliver these messages to the cluster 
head d  when it arrives there and registers itself as a 
new cluster member. Therefore, when a host is leaving a 
cluster, its state changes from normal host to temp-cab, 
and it is used to deliver as many messages as possible 
across the partitioned clusters. Upon its arrival, it deliv-
ers the messages to the head of the new cluster and its 
state changes back to that of a normal host. This proce-
dure of deploying a temp-cab is depicted in Figure 3(a).  

On the other hand, a timer is used to control the time 
when a pro-cab should be selected. Assuming there are 

'mn  inter-cluster messages stored in cluster head s, of 
each the size is i . The current waiting delay of a mes-
sage is the length of the time duration since the message 
is received by the cluster head, and is denoted as 'i . 
The timer is set to 

'

1
'

1

'
,

m

m

n

i i
i

n

i
i

t
 







 



 

so that if a pro-cab is recruited right before the timer ex-
pires, the average weighted delay of the messages stored 
in cluster head s  will be less than  , which is the re- 
quired upper bound. We note that the value of t  needs 
to be updated every time there is a change in the number 
of inter-cluster messages which are stored in cluster head 
s , such as when a new inter-cluster message is received 
and stored, or when some messages have been uploaded 
to a cab (either temp or pro) by cluster head s .  

We let the time duration between the recruitment and 
retirement of a cab be denoted as  . After having ser- 
ved for   seconds as a pro-cab, it retires. Upon its re 

tirement, a pro-cab does not stop immediately. It contin-
ues moving among the clusters to deliver the remaining 
messages it has already collected, but without collecting 
new messages. When all the messages are delivered, it 
moves back to the cluster where it has been recruited, 
and register with the head as a normal host again.  

Figure 3 depicts the flowcharts for the DCD algorithm. 
To avoid going into too much details, we make some 
simplifications to the algorithm:  
 The pro-cabs are randomly selected from the nor-

mal hosts in the cluster; 
 If a cab does not have enough space to store all the 

messages for inter-cluster delivery, it delivers those 
messages with larger weighted waiting delay 
 'i i   first; 

 When the memory of a cluster head overflows, 
those messages with larger weighted waiting delay 
 'i i   will also be dropped first (i.e. the hot-po- 
tato rule1); 

 The value of   (i.e. the length of time duration 
between the recruitment and retirement of the cabs) 
is a constant.  

With these simplifications, the DCD algorithm is a fully 
distributed scheme which does not require any global 
information. 

Lemma 1. The worst case complexity of the DCD al-
gorithm is  O mn , where nm is the number of messages 
that have been generated during the period of network 
operation. 
  Proof: Based on the algorithm depicted in Figure 3, 
we can observe the fact that the complexity of the pro-
cedures is independent of the number of clusters and the 
number of hosts. To update the timer (refer to step 5 in 
Figure 3(a) and step 3 in Figure 3(b)), the cluster head 
needs to go through the messages that have been stored 
in its memory space ( 'mn  messages). In the worst case, 
all the nm messages are stored, and it thus requires 
 O mn  time. On the other hand, to upload the messages 

to the cab (step 4 in Figure 3(a) and step 2 in Figure 
3(b)), and to deliver the messages to another cluster head 
(step 7 in in Figure 3(a), step 5 and step 8 in Figure 
3(b)), it requires  O mn  time as well. We note that the 
planning of routes (step 6 in in Figure 3(a), step 4 and 
step 7 in Figure 3(b)) will be handled by the ACR algo-
rithm, and is not part of cab deployment process handled 
by the DCD algorithm; thus its complexity will not be 
counted here. In addition, step 1 in Figure 3(a) is han-
dled by the clustering scheme, and the pro-cab selection 
(step 1 in Figure 3(b)) is random according to our as-
sumptions. Therefore they do not incur additional com- 

1We deal with the elements that have heaviest impact to the system
by either processing them or dropping them first. By dropping those
messages with heavier weighted delay, the average weighted delay of
the success-fully delivered messages can be reduced. 
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(a)Temp-Cab 

 

 
(b) Pro-Cab 

Figure 3. Flowcharts of the dynamic cab deployment (DCD) 
algorithm. 
 
plexity to the DCD algorithm. In addition, the “if” claus-
es (steps 2, 3 in Figure 3(a) and step 6, 9 in Figure 3(b) 
does not incur additional complexity to the algorithm. As 
a result, the overall complexity of the DCD algorithm is 
 O mn  

5. Message CAB Route Design 

To improve the route of cabs, we define the Message 

Cab Route (MCR) problem as a generalization of the 
existing Massage Ferry Route (MFR) problem, and pro-
pose the Adaptive Cab Route (ACR) algorithm as a solu-
tion. Since only the pro-cabs’ route will be designed by 
our algorithm, we refer to them as cabs for the sake of 
convenience in this section. 
 
5.1. The Message Cab Route (MCR) Problem 
 
In [2], Zhao et al. have formulated the Massage Ferry 
Route (MFR) problem to find the optimal route for help-
ing hosts (i.e. message ferries), and its objective is to 
minimize the average delay of the traffic: 

1 ,R
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b
c

c

R
s d n sd sd

s d n sd
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



             (4) 

where bsd is the average traffic per unit time from s  to 

d  and R
sd  is the time spent by the ferry to travel from 

s  to d  on the static route R . But in our case, bsd  
could not be determined beforehand because we have 
assumed that the traffic is unpredictable. Moreover, 
when R  is not fixed (i.e. being adaptive instead), the 
traveling delay from one cluster to another is not a con-
stant. Therefore the solutions for the MFR problem may 
not perform well for the problem that we are addressing. 
Hence we define a generalized version of the MFR 
problem which is able to adapt to both static and dynam-
ic traffic demand and routes. We refer to this problem as 
the Message Cab Route (MCR) problem: 

Definition 1. (The Message Cab Route (MCR) prob-
lem) For a given group of clusters, find the optimal vi-
siting sequence for a cab, so that the weighted average 
traveling delay T  to deliver mn  messages, which is 
expressed by 
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1
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m
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i i
i

T n

i
i

T







 



               (5) 

where iT  is the traveling delay of message i , can be 
minimized. 

We could make the following observations from the 
MCR problem: 
 The MCR problem is a generalization of the 

MFR problem. In the MFR problem, there are two 
additional assumptions made as compared to the 
MCR problem, namely the traffic rate  bsd  be-
tween two clusters is constant, and the distance 
from cluster s  to d  on the given route  R

sdR   
is also a fixed value. That is, for any message i  
sent from cluster s  to cluster d , its traveling de-
lay will be R

i sdT  . Let’s say the network operates 
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from time 0 to t. The total size of all the messages 
that have been generated during this period can be 
expressed as 1 , cs d n sdtb  . On the other hand, us-
ing our notation, since the number of these mes-
sages is mn , and the size of each message is de-  

 noted by i , the total size is thus 
1

mn

i
i



 . Therefore 
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Equation (5) becomes equivalent to Equation 4 un-
der the assumptions of the MFR problem. Hence it 
is easy to see that the MCR problem is a genera-
lized version of the MFR problem. 

 The MCR problem is MAX-SNP-hard, and thus 
polynomial time approximation schemes are un-
likely to exists to this problem. We consider a 
simpler special case of the MCR problem. Consider 
a particular instance where a cab collects 1cn   
messages, each for a distinct destination cluster, 
from cluster s. Before it finishes delivering these 
messages, other clusters do not upload any new 
message to the cab. The objective function, Equa-
tion (5) therefore becomes  

1

1
1

1

c

c

n

i i
i

T n

i
i

T










 



. 

This is exactly the objective function of the Wei- 
ghted Minimum Latency Problem (WMLP) [17], 
where iT  is referred to as the latency of the tour 
starting from s to the destination cluster of message 
i , and i  is the weight. In the WMLP, we try to 
find the tour that visits all the vertices in a graph 
that minimizes the weighted latency, represented by 
the above equation. Unfortunately, the WMLP is 
known to be a MAX-SNP-hard problem [18]. Gen-
erally, there is no polynomial time approximation 
scheme for MAX-SNP-hard problems [19]. Even 
for a more simplified scenario, where i  is con-
stant and the traffic is uniform among the clusters, 

to minimize
1

1

cn

i
i

T



 , we still need to solve the Trav- 

eling Salesman Problem (TSP), which is also 
known to be NP-hard. Therefore, it is infeasible to 
completely generate an optimized cab route. 

 A static route cannot be an optimal solution. This 

is because in the network, traffic cannot be constant 
and uniform all the time. If some cluster i  rece-
ives messages more frequently than others, it will 
be a waste of time to visit all the other clusters be-
fore returning to i , which is what that will take 
place with a static route. Moreover, due to the na-
ture of some of the MANET tasks, such as area ex-
ploration or surveillance, the frequency and sizes of 
messages may vary over time. A static route could 
not adapt itself to such changes. 

 The key to finding a suitable cab route is to de-
termine the next leg. The cab stops to deliver and 
collect messages to/from a cluster head after each 
leg. Therefore, we do not need to plan the route be- 
yond the next leg, as the future legs should be adap-
tively determined according to the messages the 
ferry collects in the future and have not been un-
veiled to the ferry yet. Therefore, if a scheme can 
produce each leg optimally, it offers a good solu-
tion to the MCR problem. 

Based on the above observations, we use a weighting 
scheme to choose the “best”2 cluster head among all the 
neighbors as the next waypoint for a cab to move to and 
this in turn will eventually forms an adaptive route. The 
Shortest Process Time First (SPTF) rule from the Job 
Scheduling Problem (JSP) is adopted to compute the 
weight of the clusters, and we refer to our proposed ap-
proach as the Adaptive Cab Route (ACR) algorithm. 

5.2. The Shortest Process Time First (SPTF) Rule 

In the Job Sequencing Problem (JSP) [20] of a single 
machine, we need to find the optimal sequence of a se-
ries of jobs k  with weight3 kl  and processing time 

kp  to minimize the average delay of these jobs which is 
given by: 

k k k
jsp

k k

l

l


 


 

Smith proved in [21] that the optimal solution to JSP 
can be produced by applying the Shortest Process Time 
First (SPTF) rule to sequence the jobs: 
 SPTF Rule: Sequencing the jobs in order of non- 

decreasing ratio k kp l  produces an optimal sche- 
dule to minimize jsp . 

Comparing Equation (6) with Equation (3), we can ob-
serve that the objective functions of JSP and MCR are 
similar (details will be discussed in the next Section). 
Hence SPTF would be a useful tool to construct adaptive 
ferry routes. In this paper, to ensure that the equations  
that we derive in the next Section are well defined, we 
2As the most suitable waypoint in a cab route to minimize   
3Larger kl  represents higher importance and vice versa. 
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define an inverse SPTF (iSPTF) rule: 
 iSPTF Rule: To optimally sequence the jobs in JSP, 

the job with highest k kl p  value should be chosen 
first. It is easy to see that iSPTF is logically equiv-
alent to SPTF. They are both able to solve JSP op-
timally. 

5.3. The Adaptive Cab Route (ACR) Algorithm 

We may interpret the event that the cab goes to a desti- 
nation cluster d as job d. Assuming the cab is currently at 
cluster s, we could say that the required processing time 
of job d is the traveling time from cluster s to cluster 

,  . . sdd i e  , which is similar to kp  in JSP. 
In order to apply the iSPTF rule, we need to determine 

the weight kl  of these jobs. We note in JSP, the weight 
of a job indicates the how much each job contributes to 
the objective function jsp . Similarly, job d contributes 
to T  in the MCR problem by delivering the messages 
with destinations in cluster d. Using  dest i  to denote 
the index of the destination cluster of message i  (i.e. 
message i  is meant to be delivered to  dest iC ), the total 
size of messages delivered by the cab in job d  can be 
expressed as 

 :
d i

i dest i

   . 

We use this value as the weight of job d  (like lk  in 
JSP). Then we can choose the cluster with maximal ratio 
of sdMd   as the next waypoint of the adaptive cab 
route according to the iSPTF rule. 

We also note that MCR and JSP are still two different 
problems. Because in MCR, sd  varies when the cab’s 
location (cluster s) changes, while in JSP kp  is constant. 
Therefore iSPTF may not provide the exact optimal solu-
tion to MCR. However, we believe it still provides a 
good indication of which cluster head should be chosen 
to be the next waypoint. 

According to iSPTF, we could define a weighting 
function dW  as 

d
dW




sdε
                (7) 

A cluster with the maximal weight will be chosen as the 
next waypoint in the adaptive route. To break a tie, we 
define d  as the time of the most recent arrival of the 
cab at cluster d. Given any two clusters 1C  and 2C , if 

1 < 2 , it means that the time since the last cab’s arrival  
to cluster 1C  is longer than that to cluster 2C . If the 
two clustersboth have the maximum weight W among all 
the clusters, 1C  will be chosen as the next waypoint. 
The algorithm shown in Table 1 illustrates how the ACR 
algorithm determines the cab’s next waypoint when it 
arrives cluster s at time  . 

Lemma 2. The complexity of the ACR algorithm is 

Table 1. ACR algorithm. 

ACR(cluster s, time  ){ 

initialize 0dW   and 0dM   for all d  

for each un-delivered message i  do                %Loop 1% 

  idest i
    

for each cluster d do                             %Loop 2% 

d
d

sd

W



  

for all the clusters do                             %Loop 3% 

find maxd  of which 
maxdW  is the maximum 

if there are multiple that 'd ’s ' maxd dW W  then 

for all the 'd ’s do                            %Loop 4% 

find max'd  of which max'd  is the minimum 

the next waypoint is 'maxdC  

else the next waypoint is 
maxdC  

set s    

} 

 c mO n n . 
Proof: In Loop 1 of ACR, the algorithm goes through 

the cab’s storage to calculate the accumulated size of 
messages that will be delivered to cluster  dest i . Since 
the total number of messages is nm, Loop 1 takes 
 mO n  time in the worst case. To calculate the weight 

Wd for each cluster in Loop 2, the algorithm goes through 
all the nc clusters and therefore  cO n  time is required. 
Similarly, in order to find the cluster with maximum 
weight, another  cO n  time is required in Loop 3. To 
break the tie, Loop 4 will be executed for  cO n times 
in the worst case. The overall complexity for algorithm 
ACR is thus  c mO n n . 

We note the complexity of the ACR algorithm (Lem-
ma 2) as well as the DCD algorithm (Lemma 1) is much 
lower than most of the existing schemes with helping 
hosts. Moreover, being a fully localized scheme, MCab 
is extremely suitable for the MANETs where the re-
sources are limited. 

6. Simulation Results 

To validate the effectiveness of the MCab scheme, ex-
tensive simulations are carried out. We randomly gener-
ate the network topology and traffic in C++ programs 
and compare the results with existing schemes. 

We model a MANET constructed in a 500 m by 500 m 
area. The number of hosts in each cluster is set to 20 at 
the beginning of the simulations. The communication 
range of the hosts is 5 m, and the storage size is 10Mb. 
The hosts move at a speed of 10 m/s. 

The traffic in the MANET can be specified by the 
number of messages per unit time, but as the size of 
messages also varies, it is more convenient to describe it 
as the size of data transmitted per unit time, i.e. kilobits 
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per second (kb/s). We refer it as the volume of the traffic. 
The number of pro-cabs may vary in the simulation. 

We define the effective number of pro-cabs as the aver-
age number of pro-cabs over time to describe how many 
pro-cabs are deployed in the MANET. 
 
6.1. Performance of the DCD Algorithm 
 
We start with our study on the performance of the DCD 
algorithm. The main objective of the DCD algorithm is 
to dynamically recruit cabs in the MANET to deliver 
inter-cluster messages. 

The algorithm is controlled by two parameters, namely 
  (the upper bound of the weighted waiting delay) and 
  (the time duration that a host serves as a pro-cab). To 
deploy temp-cabs, the performance of the DCD algo-
rithm is also closely related to the frequency in which the 
hosts move from one cluster to another. A variable   
is defined as the average length of period (in seconds) 
that a host stays in a cluster before it moves to another 
one. 

Figure 4 displays how the number of recruited cabs 
changes with the volume of inter-cluster traffic. The left 
vertical axis corresponds to the traffic volume while the 
number of pro-cabs are indicated on the right axis. To 
study the impact of  ,  and   on the performance 
of the DCD algorithm, we choose two (high and low) 
values for each of these variables. Each of the figures 
corresponds to a particular combination of the values of 
  and  , and plots the two groups of results which 
correspond to the two values of  . As shown in Table 
2, the values of   are 500 s and 100 s; the values of 
  are 2000 s and 200s; the values of   are 5000 s 
and 200s. The effective number of pro-cabs are also 
shown in Table 2. 

1) The value of  : The value of   significantly 
changes the effective number of pro-cabs. 

With a high value of   (   = 5000 s), the hosts 
tend to stay in the same cluster for a long time, and thus 
there are less chances that messages could be delivered 
by a temp-cab. Therefore, more pro-cabs have to be re-
cruited to keep the waiting delay below  . 

If the value of   is low (  = 200 s), it implies that the 
hosts frequently move among the clusters. Therefore a lot 
of inter-cluster messages could be delivered by temp-cabs, 
and there are fewer messages that are left on the cluster 
head. Therefore, fewer pro-cabs need to be recruited. 

Table 2. Effective Number of Pro-Cabs. 

 5000s  200s  

 200s  2000s  200s  2000s 

100s 2.81 3.78 1.13 1.35 

500s 0.98 1.49 0.15 0.44 

We can observe this phenomenon in Figure 4(a) and 
Figure 4(c) by comparing line 1 ( 200 s  , 100 s  , 

5000 s  ) with line 5 ( 200 s  , 100 s  ,   = 
200 s). For the same values of   and  , more pro- 
cabs will be recruited when 2000 s  , as depicted by 
line 1. When   decreases to 200 s, more temp-cabs 
could be used, and thus fewer pro-cabs are needed to 
deliver the messages, as shown by line 5. Similar fact 
can be observed by comparing line 2 with line 6, line 3 
with line 7, and line 4 with line 8 in Figure 4. In Table 2, 
we can also see the effective number of pro-cabs is much 
smaller when   is low ( 200 s  ). 

2) The value of  :   controls the duration for 
which a host serves as a pro-cab. It controls the frequen-
cy for triggering the pro-cab recruiting procedure, and 
thus affects how fast the system could respond to the 
change in traffic volume. 

When the value of   is high ( 2000 s  ), the pro- 
cabs have a long service time and a slow retirement. 
Comparing line 1 with line 2 in Figure 4(a) on the time 
interval [7000, 8000], we can see that the number of cabs 
stays as high as 6 when 2000 s   (as depicted by line    
2) even though the traffic volume has already dropped to 
a lower level, where only about 3 pro-cabs will be dep-
loyed if 200 s   (as depicted by line 1), meaning that 
several cabs may be unnecessary for the purpose of 
keeping the weighted waiting delay low. Similar pheno-
mena can also be observed in the time interval [4000, 
5000] in Figure 4(a), [9000, 10000] in Figure 4(b), and 
[8500, 10000] in Figure 4(c), resulting in the effective 
numbers of cabs being much larger when   = 2000 s 
(as shown in Table 2). 

A low value of   ( 200 s  ) causes the pro-cabs 
to only serve for a short period of time, and change back 
to the state of normal host sooner. However, messages 
are still being generated and stored in the cluster heads, 
causing new pro-cabs to be recruited. The change in the 
cab number is thus more rapid and frequent than when  

2000 s  . Since cabs are frequently recruited and re-
tired and lines 1, 3, 5 and 7 appear to be more “spiky” 
than lines 2, 4, 6 and 8 respectively in Figure 4. 

We should also note that frequent change in the num-
ber of cabs may also cause unwanted interruption to the 
other tasks of the hosts. For example, in order to collect 
reliable data, a sensor may need to stay stationary at the 
same position for some minimum duration. Hence low  
values of   may affect the efficiency of the network 
task, although it is able to help to reduce the number of  
pro-cabs. 
  3) The value of  : Comparing Figure 4(a) with 
Figure 4(b), or Figure 4(c) with Figure 4(d), we can 
also observe the fact that the value of   influences the 
number of cabs more directly. 
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(a)   = 100 s,   = 5000 s 

 

(b)   = 500 s,   = 5000 s 

 
(c)   = 100 s,   = 200 s  

 
(d)   = 500 s,   = 200 s 

Figure 4. Performance of the DCD algorithm. 

When the value of is high ( 500 s  ), the cluster 
heads are able to tolerate larger weighted waiting delay 
before recruiting new pro-cabs, and less pro-cabs will be 
hired in the MANETs. This is the reason why in Table 2, 
the effective numbers of pro-cabs are much smaller when 

500 s  . 
On the other hand, if the value   is low ( 100 s  ), 

the cluster heads have to frequently hire new pro-cabs to 
keep the waiting delay of the messages low. Comparing 
Figure 4(a) with Figure 4(b), or Figure 4(c) with Fig-
ure 4(d), it is easy to observe that the number of pro- 
cabs significantly increases when the value of   is 
low. 

In general, our simulation results show that the DCD 
algorithm can effectively adapts the number of cabs to 
the traffic volume of the network. We will also show 
how it bounds the weighted waiting delay below   in 
Section VI-C. Before that, the performance of the ACR 
algorithm will be discussed. 
 
6.2. Performance of the ACR Algorithm 
 
To evaluate the performance of the ACR algorithm, we 
assume that cabs are selected beforehand and are ran-
domly deployed without the use of the DCD algorithm in 
this section. We compare the delay incurred by the adap-
tive route constructed by the ACR algorithm with the 
most commonly adopted solution, i.e. the TSP route. It is 
well-known that TSP is a NP-hard problem, where op-
timal solution cannot be found within polynomial time. 
We use brute force to find the optimal TSP route in the 
simulation. However it would only be feasible to use  
To address this issue, we also use the Improving Search 
Algorithm [22] to find an approximate solution to TSP as 
a feasible route. Both optimal and approximate TSP 
routes are static and are used as benchmarks to compare 
with the routes obtained by the ACR algorithm. 

10 clusters of hosts are considered for this simulation. 
The cabs are randomly allocated in different clusters 
initially, and move according to the routes generated by 
the ACR algorithm, optimal TSP algorithm, or approx-
imate TSP algorithm. The results are shown in Figure 5. 

We can see that increasing the number of cabs reduces 
the average delay of the ACR routes, but no significant 
change can be observed for TSP and approximate TSP 
routes. This is because when the same static route is used, 
the delay of a message only depends on the distance be-
tween its source and destination on the route, and is not 
affected by the number of cabs. Therefore once the route 
is constructed, the delay of messages will not be affected 
by the change in the number of cabs. 

On the other hand, when the ACR algorithm is used, 
each cab defines its own route based on the messages it 
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Figure 5 . Performance of the ACR algorithm (traveling 
delay). 

 
is carrying. The delay of a message can be further short-
ened if there are fewer messages to be carried by a single 
cab. For example, if a cab only carries one message, it 
will directly move to the destination cluster of the mes-
sage. A fair amount of time can be thus saved. As the 
number of cabs increases, fewer messages will be carried 
by each of them, and the average delay is thus further 
decreased. Moreover, since the ACR algorithm is fully 
distributed, no collaboration is needed among the cabs. 
Each of them can decide its route locally. The increase in 
cab number does not affect the complexity of the scheme 
at all. 
 
6.3. Overall Performance of the MCab Scheme 
 
In the MCab scheme, when both the DCD and ACR al-
gorithms are applied for the cab deployment and route 
design, the average weighted delay is further reduced. 
We demonstrate this result in Figure 6 to Figure 8 by 
showing how the MCab scheme perform when there are 
different number of clusters  cn . The three figures dis-
plays the weighted average delay of the messages, the 
effective number of pro-cabs and the percentage (in size) 
of messages delivered by procabs, respectively. In each 
figure, two values of   (5000 s and 200 s) are used in 
the simulation. Two different implementations of the 
DCD algorithm ( 100 s  , 2000 s   and 500 s  , 

200 s  ) are demonstrated. The results for the other 
two cases ( 500 s  , 2000 s   and 100 s  , 

200 s  ) exhibit similar results, and are thus omitted 
in this section  

In Figure 6 the simulation results are shown as a 
group of columns. The upper part (above 0) of each 
column shows the duration of average waiting delay  , 
and the lower part (below 0) shows the duration of aver-
age traveling delay T . As a result, the entire bar length 
shows the overall average delay   of the correspond-

ing scheme. We compare the results with the case where 
a single helping host is deployed in theMF scheme, and 
moves on a TSP route or an approximate TSP route. 
Moreover, we also plot the values of the average wei- 
ghted delay when the ACR algorithm is applied to a sin-
gle cab without the DCD algorithm in the figure as a 
reference.  

It can be seen from Figure 6 that the total delay is 
much lower with the MCab scheme. Let’s consider the 
case when there are 5 clusters. We can observe that for 
this case the MF scheme with approximate TSP incurs 
the longest message delay. It is followed by the MF 
scheme with optimal TSP, because the optimal route of 
TSP will be shorter than an approximate route. As we 
have shown in Section VI-B, the ACR algorithm will re-
duce the traveling delay by using adaptive cab routes in-
stead of fixed ones. However, as the ACR algorithm cal-
culates the weights of the clusters based on the messages 
that have been stored in the cab, it does not guarantee a 
lower waiting delay for those messages that have not yet 
been uploaded to the cabs. Therefore, the waiting delay is 
not significantly reduced by the ACR algorithm alone 
(without the DCD algorithm). Moreover, it can be ob-
served in some particular incidences that it may incur a 
slightly higher waiting delay than the MF schemes (e.g. 

5000 s   with 15 clusters). When the DCD algorithm is 
also applied (i.e. the MCab scheme), the waiting delay is 
further reduced, because some of the messages can be car-
ried by the temp-cabs and do not need to wait for the 
pro-cabs. The message delay reduces to the minimum 
when the MCR scheme with 100 s   and 2000 s  is 
adopted. This is because when 100 s  , more pro- 
cabs are deployed than the case when 500 s   as we 
discussed in Section VI-A. The same fact can also be 
observed from Figure 7, where on average 4.5 pro-cabs 
are deployed to serve 5 clusters when 5000 s  , 

100 s   as compare to 1.3 pro-cabs when 500 s  . 
We note the other cluster sizes in Figure 6 also exhibit 
the same performance trend described above. 

It should also be pointed out that when there are 5 
clusters and 5000 s  , the difference between the 
results for MCab ( 500 s  , 2000 s  ) and ACR 
(without DCD) is not as significant as when there are 
more clusters, or when the value of   is lower 
( 200 s  , in Figure 6(b)). This is because the waiting 
delay in this case is lower than 500 s even when there is 
only one cab. As a result, we note that the average num-
ber of cabs is also about 1 when the DCD algorithm is 
used, which means it is not necessary to deploy more 
cabs to further reduce the average weighted waiting de-
lay in the MCab scheme. Moreover, since the number of 
temp-cabs deployed in this scenario is also very few as 
  is large, the performance is very similar to the ACR  
(without DCD) case. 
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(a) =   5000 s                                                  (b) =   200 s 

Figure 6. Delay of messages. 

 

            
(a)   = 5000 s                                         (b)   = 200 s 

Figure 7. Effective number of pro-cabs. 

            
(a)   = 5000 s                                         (b)   = 200 s 

Figure 8. Percentage of messages delivered by pro-cabs. 
 

When the number of clusters increases, the weighted 
average waiting delay with the ACR algorithm (without 
DCD) increases as well. This is due to the fact that the 
pro-cab needs to visit more clusters before delivering the 
message to its destination. As a result, when the DCD 

algorithm is applied (i.e. the MCab scheme), more pro-
cabs will be recruited to lower the waiting delay so that it 
does not exceeds the predetermined upper bound  . 
Moreover, we can observe that under the control of the 
DCD algorithm, the weighted average waiting delay of 
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the messages are bounded by the values of  , which 
are indicated by the respective reference lines (500 s and 
100 s) in Figure 6. 

The effectiveness of deploying temp-cabs can also be 
demonstrated by comparing the height of the columns 
representing MCab scheme ( 500 s  , 200 s  ) in 
Figure 6(a) and Figure 6(b), where the values of 
weighted average waiting delay decrease with the value 
of  . As   decreases from 5000 s to 200 s, more 
temp-cabs can be used for inter-cluster message delivery, 
thus less pro- cabs are recruited (as depicted in Figure 7), 
and a lower percentage of messages will be delivered by 
the pro-cabs (as depicted in Figure 8). It thus reduces the 
waiting delay of the messages, since some of them are 
taken to their respective destination clusters by 
temp-cabs before the timer expires. This phenomenon 
cannot be observed when 100 s  , 2000 s  , and 
when there are 20 clusters for 500 s  , 200 s  , 
because in these cases additional pro-cabs are recruited 
in order to bound the waiting delay below  . 

Interestingly, the traveling delay is also slightly re-
duced by using more temp-cabs. This is because the 
messages carried by a temp-cab are selected based on 
their destinations. The temp-cab takes them from the 
source cluster head and moves directly to their destina-
tion cluster, while a pro-cab is shared by messages with 
different destinations, and may have to visit several other 
clusters (as destinations of other messages stored in the 
pro-cab) before eventually deliver these messages. How- 
ever, as we can see from Figure 8, the majority of mes-
sages are delivered by the procabs in most of the scena-
rios, and the weighted average traveling delay is still 
dominated by the routes of pro-cabs, i.e. the ACR algo-
rithm. 

In conclusion, simulation validates that both the DCD 
and ACR algorithms works as we expected, and the 
MCab scheme effectively reduces the average weighted 
waiting delay. 
 
7. Conclusions 
 
In this paper, we propose a scheme with flexible helping 
hosts, namely Message Cab (MCab) for message deli-
very in partitioned MANETs. It consists of two algo-
rithms, referred to as the Dynamic Cab Deployment 
(DCD) algorithm and the Adaptive Cab Route (ACR) 
algorithm. The DCD algorithm dynamically selects hosts 
to become the helping hosts (cabs) and move among the 
clusters to deliver inter-cluster messages, and the ACR 
algorithm designs the route of the cabs so that the delay 
of the messages can be reduced. Comparing with the 
existing schemes with helping hosts, we have shown that 
the MCab scheme effectively shorten the delay of the 

messages with the simulations and is adaptive to the va-
rying traffic in the network, which has not been dis-
cussed in the existing works. 
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