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ABSTRACT 

Coherent and convex risk measures, Choquet expectation and Peng’s g-expectation are all generalizations of mathe- 
matical expectation. All have been widely used to assess financial riskiness under uncertainty. In this paper, we investi- 
gate differences amongst these risk measures and expectations. For this purpose, we constrain our attention of coherent 
and convex risk measures, and Choquet expectation to the domain of g-expectation. Some differences among coherent 
and convex risk measures and Choquet expectations are accounted for in the framework of g-expectations. We show 
that in the family of convex risk measures, only coherent risk measures satisfy Jensen’s inequality. In mathematical 
finance, risk measures and Choquet expectations are typically used in the pricing of contingent claims over families of 
measures. The different risk measures will typically yield different pricing. In this paper, we show that the coherent 
pricing is always less than the corresponding Choquet pricing. This property and inequality fails in general when one 
uses pricing by convex risk measures. We also discuss the relation between static risk measure and dynamic risk meas-
ure in the framework of g-expectations. We show that if g-expectations yield coherent (convex) risk measures then the 
corresponding conditional g-expectations or equivalently the dynamic risk measure is also coherent (convex). To prove 
these results, we establish a new converse of the comparison theorem of g-expectations. 
 
Keywords: Risk Measure; Coherent Risk; Convex Risk; Choquet Expectation; g-Expectation; Backward Stochastic 

Differential Equation; Converse Comparison Theorem; BSDE; Jensen’s Inequality 

1. Introduction 

The choice of financial risk measures is very important in 
the assessment of the riskiness of financial positions. For 
this reason, several classes of financial risk measures 
have been proposed in the literature. Among these are 
coherent and convex risk measures, Choquet expecta- 
tions and Peng’s g-expectations. Coherent risk measures 
were first introduced by Artzner, Delbaen, Eber and 
Heath [1] and Delbaen [2]. As an extension of coherent 
risk measures, convex risk measures in general probabil- 
ity spaces were introduced by Föllmer & Schied [3] and 
Frittelli & Rosazza Gianin [4]. g-expectations were in- 
troduced by Peng [5] via a class of nonlinear backward 
stochastic differential equations (BSDEs), this class of 

nonlinear BSDEs being introduced earlier by Pardoux 
and Peng [6]. Choquet [7] extended probability measures 
to nonadditive probability measures (capacity), and in- 
troduced the so called Choquet expectation. 

Our interest in this paper is to explore the relations 
among risk measures and expectations. To do so, we re- 
strict our attention of coherent and convex risk measures 
and Choquet expectations to the domain of g-expecta- 
tions. The distinctions between coherent risk measure 
and convex risk measure are accounted for intuitively in 
the framework of g-expectations. We show that 1) in the 
family of convex risk measures, only coherent risk 
measures satisfy Jensen’s inequality; 2) coherent risk 
measures are always bounded by the corresponding 
Choquet expectation, but such an inequality in general 
fails for convex risk measures. In finance, coherent and 
convex risk measures and Choquet expectations are often 
used in the pricing of a contingent claim. Result 2) im- 
plies coherent pricing is always less than Choquet pricing, 
but the pricing by a convex risk measure no longer has 
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this property. We also study the relation between static 
and dynamic risk measures. We establish that if g-ex- 
pectations are coherent (convex) risk measures, then the 
same is true for the corresponding conditional g-expecta- 
tions or dynamic risk. In order to prove these results, we 
establish in Section 3, Theorem 1, a new converse com- 
parison theorem of g-expectations. Jiang [8] studies g- 
expectation and shows that some cases give rise to risk 
measures. Here we are able to show, in the case of g- 
expectations, that coherent risk measures are bounded by 
Choquet expectation but this relation fails for convex risk 
measures; see Theorem 4. Also we show that convex risk 
measures obey Jensen’s inequality; see Theorem 3. 

The paper is organized as follows. Section 2 reviews 
and gives the various definitions needed here. Section 3 
gives the main results and proofs. Section 4 gives a 
summary of the results, putting them into a Table form 

for convenience of the various relations. 

2. Expectations and Risk Measures 

In this section, we briefly recall the definitions of g-ex- 
pectation, Choquet expectation, coherent and convex risk 
measures. 

2.1. g-Expectation 

Peng [5] introduced g-expectation via a class of back- 
ward stochastic differential equations (BSDE). Some of 
the relevant definition and notation are given here. 

Fix  0,T    and let 
0t t T 

 be a -dimen- 
sional standard Brownian motion defined on a completed 
probability space 

 W d

 , , P  . Suppose   t T0t  
 is the 

natural filtration generated by   , that is 


0 t T tW
 ;t sW s t .   We also assume . Denote T  

 

     22 , , :  is measurable random variables with < ,  0, ;t tL P E t     —  T  

 

   22

0
0, , :  is valued, adapted processes with d <

Td d
t sL T X X E X s — —    

 
Let :g   0,d T     

, ,  dy z   
 satisfy 

(H1) For any  
0t

 is a 
continuous progressively measurable process with 

  , ,g y z t 

  2

0
, , d <

T
E g y z s s     . 

(H2) There exists a constant  such that for any  0K 

   1 1 2 2, , , dy z y z     

   
   
1 1 2 2

1 2 1 2

, , , ,

, 0, .

g y z t g y z t

K y y z z t T



    
 

(H3)      ,0, 0,  , 0, .g y t y t T     
In Section 3, Corollary 3 we will consider a special 

case of  with . d 1d 
Under the assumptions of (H1) and (H2), Pardoux and 

Peng [6] showed that for any , the 
BSDE 

2 , ,L    P

T , , d d ,  0
T T

t s s s st t
y g y z s s z W t         (1) 

has a unique pair solution 

     2 2

0
, 0, , 0, , d

t t t
y z L T L T


   . 

Using the solution t  of BSDE (1), which depends 
on 

y
 , Peng [5] introduced the notion of g-expectations. 

Definition 1 Assume that (H1), (H2) and (H3) hold on 
g and . Let  2 , ,L P     ,s sy z  be the solution of 
BSDE (1). 

 g   defined by   0:g y   is called the g-ex- 

pectation of the random variable  . 

g t     defined by :g t t  is called the 
conditional g-expectation of the random variable 

y    
 . 

Peng [5] also showed that g-expectation  g   and 
conditional g -expectation g t  preserve most of 
basic properties of mathematical expectation, except for 
linearity. The basic properties are summarized in the next 
Lemma. 

   

Lemma 1 (Peng) Suppose that  

 2
1 2, , , ,L P      . 

1) Preservation of constants: For any constant  ,c
 g c c . 
2) Monotonicity: If 1 2  , then    1 2g g   . 

3) Strict monotonicity: If 21  , and , 
then 

 1 2> >P   0
   1 2>g g   . 

4) Consistency: For any  0,t T ,  

 g g t g          . 

5) If g  does not depend on , and y   is - 
measurable, then  

t

.g t g t                 

In particular, 0g g t t           . 

6) Continuity: If n   as n  in   2 , ,L P  , 
then    limn g n g   . 

The following lemma is from Briand et al. [9, Theo- 
rem 2.1]. We can rewrite it as follows. 
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Lemma 2 (Briand et al. ) Suppose that  tX  is of  

the form 
0

d ,
t

t s sX x W    ,0 t T   where  t  is a 

continuous bounded process. Then 

 , , ,  0,lim
g s t s t

s t t t

X E X
g X t t

s t


       


  
  

where the limit is in the sense of .  2 , ,L P 

2.2. Choquet Expectation 

Choquet [7] extended the notion of a probability measure 
to nonadditive probability (called capacity) and defined a 
kind of nonlinear expectation, which is now called Cho- 
quet expectation. 

Definition 2 
1) A real valued set function  : 0V  ,1  is called 

a capacity if 
a)     0, 1;V V   

b) , whenever  and    V A V B ,A B  A B
 , ,L  

. 
2) Let V  be a capacity. For any , 

the Choquet expectation 
P2

 V   is defined by  

     0

0
: 1 dV V t t V t  


        dt


 

Remark 1 A property of Choquet expectation is posi- 
tive homogeneity, i.e. for any constant  0,a 

   .V Va a    

2.3. Risk Measures 

A risk measure is a map : ,    where   is in- 
terpreted as the “habitat” of the financial positions whose 
riskiness has to be quantified. In this paper, we shall con- 
sider .  2 , ,L P  

The following modifications of coherent risk measures 
(Artzner et al.[1]) is from Roorda et. al. [10]. 

Definition 3 A risk measure   is said to be coherent 
if it satisfies 

1) Subadditivity:      1 2 1 2X X X X    

    ,

, 
; 1 2

2) Positive homogeneity: 
,X X 

X X    for all 
real number 0;   

3) Monotonicity:     ,X Y   whenever ;X Y  

4) Translation invariance:    X X      for 
all real number  . 

As an extension of coherent risk measures, Föllmer 
and Schied [3] introduced the axiomatic setting for con- 
vex risk measures. The following modifications of con- 
vex risk measures of Föllmer and Schied [3] is from 
Frittelli and Rosazza Gianin [4]. 

Definition 4 A risk measure is said to be convex if it 
satisfies 

1) Convexity: 

        1 2 11 1 2X X X          X , 

 0,1 ,   1 2,X X  ; 
2) Normality:  0 0  ; 
3) Properties (3) and (4) in Definition 3. 
A functional     in Definitions 3 and 4 is usually 

called a static risk measure. Obviously, a coherent risk 
measure is a convex risk measure. 

As an extension of such a functional  Artzner et 
al. [11,12], Frittelli and Rosazza Gianin [13] introduced 
the notion of dynamic risk measure  which is 
random and depends on a time parameter . 

  , 

  ,t 
t

Definition 5 A dynamic risk measure  

     2 2: , , , ,t tL P L      P  

is a random functional which depends on t , such that 
for each  it is a risk measure. If  satisfies for 
each 

t  t 
 0,t T  the conditions in Definition 3, we say 

 t   is a dynamic coherent risk measure. Similarly if 
 t   satisfies for each  0,t T  the conditions in De- 

finition 4, we say  t   is a dynamic convex risk meas- 
ure. 

3. Main Results 

In order to prove our main results, we establish a general 
converse comparison theorem of g-expectation. This 
theorem plays an important role in this paper. 

Theorem 1 Suppose that 1,g g  and 2g  satisfy (H1), 
(H2) and (H3). Then the following conclusions are 
equivalent. 

1) For any  2, , ,L P     ,   

     
1 2

.g g g         

2) For any      1 1 2 2, , , , , 0, ,dy z t y z t T     

 
  
1 2 1 2

1 1 1 2 2 2

, ,

, , , , .

g y y z z t

g y z t g y z t

 

 
         (2) 

Proof: We first show that inequality (2) implies ine- 
quality 3). 

Let  1 1, ,t ty z   2 2,t ty z  and   be the solutions 
of the following BSDE corresponding to the terminal 
value 

,t tY Z

, X    and ,   and the generator 1 2, g g g  
and g , respectively 

 , , d d .
T

t s st t
y X g y z s s z W   

T

s s       (3) 

Then  
1

1
0 ,g y    

2

2
0 ,g y     0 .g Y    

For fixed  1 1,y zt t , consider the BSDE 

  1 1 1 1
2 1, , , ,

d .

t

T

s s s s s st

T

s st

y

 dg y y z z s g y z s s

z W

  

     







  (4) 
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It is easy to check that  is the solu- 

tion of the BSDE (4). 

 1 2 1 2,t t t ty y z z 

Comparing BSDEs (4) and (3) with X     and 
g g , assumption (2), (2) then yields 

  

 

1 2 1 2 1 1
1

2 2
2

, , , ,

, , ,  0.

t t t t t t

t t

g y y z z t g y z t

g y z t t

  

 
 

Applying the comparison theorem of BSDE in Peng 
[5], we have  Taking , thus by 
the definition of 

1 2 ,  0.t t tY y y t   0t 
g -expectation, the proof of this part is 

complete. 
We now prove that inequality (1) implies (2). We dis- 

tinguish two cases: the former where g  does not de- 
pend on , the latter where y g  may depend on . y

Case 1, g  does not depend on . The proof of this 
case 1 is done in two steps. 

y

Case 1, Step 1: We now show that for any  0,t T , 
we have  

 
1 2

2

,  

 , , , .

g t g t g t

L P

   

 

             

  

     


 

Indeed, for  0,t T  , set  

 1 2
: >t g t g t g tA                       .  

If for all  0,t T , we have  then we ob- 

tain our result. 

  0,tP A 

If not, then there exists  0,t T  such that   > 0tP A . 
We will now obtain a contradiction. 

For this , t

 1 2
>

t tA g t A g t g tI I                     .  

That is  

  1 2
| >A g t g t g tt

I                   0.  

Taking g-expectation on both sides of the above 
inequality, and apply the strict monotonicity of g -ex- 
pectation in Lemma 1 (3), it follows 

 1 2
> 0.

tg A g t g t g tI                          

But by Lemma 1 (4) and (5), 

 

  
1 2

1 2
.

t

t t t

g A g t g t g t

g A g A t g A t

I

I I I

   

   

               

           

      

    

 

Note that by Lemma 1(v) 

0,  1, 2.
i t i tg A g A tI I i           

Thus 

 
1 2

1 2

1 1

2 2

0 <

0

t t t

t t t t

t t

t t

g A g A t g A t

g A g A t A g A t

g A g A t

g A g A t

I I I

I I I I

I I

I I

   

   

 

 

          
           
      
      



   

    

  

  



 

This induces a contradiction, thus concluding the proof 
of this Step 1. 

Case 1, Step 2: For any  , 0,t T   with t 
1,i
 and 

, let us choose  d
iz    ,i tWiX z W  2 . 

Obviously,  .2 , ,iX L P     
By Step 1,  

 
1

2

1 2 1

2 ,  0, .

g t g t

g t

X X X

X t T

  



    
  
   

  

 


 

Thus 

1 2 1 2

1 1

1

2 2

2 .

g t t

g t t

g t t

X X E X X

t

X E X

t

X E X

t

   

 

 







     
  


      


      



 

  

  



 

Let ,t 
,y

 applying Lemma 2, since g does not de- 
pend on  we rewrite  , , g y z t  simply as  , ,g z t  
thus     1 2t g z 2, , , ,  t g z t t1 2g z z 1 0.     The proof 
of Case 1 is complete. 

Case 2, g depends on y. The proof is similar to the 
proof of Theorem 2.1 in Coquet et al. [14]. For each > 0  
and    1 1 2 2, , , dy z y z    , define the stopping time 

  

  
  

1 1 2 2

1 1 1 2 2 2

1 2 1 2

, ; ,

inf 0; , , , ,

, , .

y z y z

t g y z t g y z t

g y y z z t T

 



  

    



,

 

Obviously, if for each     1 1 2 2, , , dy z y z   
  1 1 2 2, ; , < 0P y z y z T  , for all ,  then the proof 

is done. If it is not the case, then there exist > 0  and 

   1 1 2 2, , , dy z y z    ,  

such that 

  1 1 2 2, ; , < > 0P y z y z T . 

Fix  , , , 1, 2 ,i iy z i   and consider the following 
(forward) SDEs defined on the interval  ,T  

    
 

d , , d

,  ,  1, 2

i i
i i i

i
i

Y t g Y t z t t z W

Y y t i  

   


  

d ,t
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and 

      
 

3 3
1 2 1 2

3
1 2

d , , d

,   .

tY t g Y t z z t t z z W

Y y y t  

     


  

d ,
 

Obviously, the above equations admit a unique solu- 
tion  which is progressively measurable with  iY

 
2

0 < .sup i
t TE Y t 

    
 

Define the following stopping time  

    

  

1 2
1 1 2 2

3
1 2

: inf ; , , , ,

, , .
2

t g Y t z t g Y t z t

g Y t z z t T

  



  


   


 

It is clear that T     and note that T   
whenever ,T 

< > 0
 thus,  Hence 

. 
  < T     < .

 P   
Moreover, we can prove  

      1 2 3> ,  on <Y Y Y    .      

In fact, setting  

       3 1 2Ŷ t Y t Y t Y t   , 

then 

    
     

3
1 2

1 2
1 1 2 2

ˆd , ,

, , , , d .

Y t g Y t z z t

g Y t z t g Y t z t t

  
  

 

Thus 
     

ˆd ˆ,  , ,  0.
d 2

Y t
t Y

t   
        

It follows that on  ,   ,    ˆ < 0.
2

Y   
      

This implies 

        3 1 2< <P Y Y Y P          > 0

 a   are

.   (5) 

By the definition of  and , the pair pro- 
cesses nd  3

1 2Y  
the solutions of the following BSDEs with terminal 
values 

1 2,Y Y
 1 2 ,t z  

3Y
   1 2, ,Y t z Y



  ,t z z

1 ,Y T  2Y T  and  3Y T , 

   , , d d ,   1,2i
t i s i i st t

y Y T g y z s s z W i    
T T

 

and 

     3
1 2 1 2, , d d

T T

t st t
y Y T g y z z s s z z W      .  s

Hence,  

   
1 1

1 1
1,g gY Y T

              y  

   
2 2

2 2
2g gY Y T

             y  

and 

   3 3
1 2 .g gY Y T

              y y  

Applying the strict comparison theorem of BSDE and 
inequality (5), by the assumptions of this Theorem, we 
have 

    
   

1 2

3 1 2
1 2

1 2
1 2

<

.

g g

g g

y y Y Y Y

Y Y y

 

 

 

 


y

        
        

 

  
 

This induces a contradiction. The proof is complete. 
Lemma 3 Suppose that g satisfies (H1), (H2) and (H3). 

For any constant , let  = 0c 

  1 1
, , , ,g y z t cg y z t

c c
   
 

. 

Then for any  2 , ,L P    ,    .g gc c    
Proof: Letting t g ty c     , then ty  is the solu- 

tion of BSDE  

 , , d d .
T T

t s st t
y c g y z s s z W    s s  

Since  

  1 1
, , , ,g y z t cg y z t

c c
   
 

, 

the above BSDE can be rewritten as 

1 1
, , d d

T T

t s st t
y c cg y z s s z W

c c
     

   .s s     (6) 

Let t g ty      , then  satisfies tcy

 , , d d .
T T

t s st t
cy c cg y z s s cz W    s s       (7) 

Comparing with BSDE (6) and BSDE (7), by the 
uniqueness of the solution of BSDE, we have 

   , ,t t t tcy cz y z .  

Let 0,t   then 0 0cy y . The conclusion of the 
Lemma now follows by the definition of g-expectation. 
This concludes the proof. 

Applying Theorem 1 and Lemma 3, immediately, we 
obtain several relations between g-expectation  g   
and g . These are given in the following Corollaries. 

Corollary 1 The g-expectation  g   is the classical 
mathematical expectation if and only if g does not de- 
pend on  and is linear in . y z

Proof: Applying Theorem 1,  g   is linear if and 
only if  , ,g y z t  is linear in  ,y z . By assumption 
(H3), that is  , 0t,0g y   for all  ,y t . Thus g  does 
not depend on . The proof is complete. y

Corollary 2 The g -expectation  g   is a convex 
risk measure if and only if g  does not depend on  
and is convex in . 

y
z

Proof: Obviously, g -expectation  g 
 0,1

 is convex 
risk measure if and only if for any   
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       
 2

1 1   

 , , , .

g g

L P

      

 

      
  

 



,g



  (8) 

For a fixed , let  0,1 

 

   

1

2

1 1
, , , , ,  

1 1
, , 1 , , .

1 1

g y z t g y z t

g y z t g y z t


 


 

   
 

      

 

Applying Lemma 3, 

         
1 2

,  1 1 .g g g g                

Inequality (8) becomes 

     
 

1 2

2

1

 , , , .

g g g

L P

     

 

        

  

  



1 ,  
 

Applying Theorem 1, for any  

   , , 0, ,  1, 2,d
i iy z t T i      

   
      
     

1 2 1 2

1 1 1 2 2 2

1 1 2 2

1 , 1 ,

, , 1 1 ,

, , 1 , ,

g y y z z t 
g y z t g y z t

g y z t g y z t

   

   

 

   

    

  

 

which then implies that g is convex. By the explanation 
of Remark for Lemma 4.5 in Briand et al. [9], the 
convexity of g  and the assumption (H3) imply that g  
does not depend on . The proof is complete. y

The function g  is positively homogeneous in  if 
for any , 

z
0a     , , , ,g az ag z     . 

Corollary 3 The g -expectation  g   is a coherent 
risk measure if and only if g  does not depend on  
and it is convex and positively homogenous in . In 
particular, if , 

y
z

1d  g  is of the form 

 , t tg z t a z b z   with . 0a 

Proof: By Corollary 2, the g -expectation  g   is a 
convex risk measure if and only if g  does not depend 
on  and is convex in . Applying Theorem 1 and 
Lemma 3 again, it is easy to check that 

y z
g -expectation 

 g  is positively homogeneous if and only if  g  is 
positively homogeneous (that is for all  and > 0a ,  

   g ga a  
   ,


, ,
 if and only if for any , 0a 
,g az ag z    
d
. 

In particular, if , notice the fact that 1 g  is con- 
vex and positively homogeneous on , and that  g  
does not depend on . We write it as y  , g z t  then 

         

        

0 0

0

, , ,

1, 1, .

z z

z

g z t g z t I g z t I

g t zI g t z I

 



 

    0z

    (9) 

Note that , , but  0zzI z     0zz I z 

,   .
2 2

z z z z
z z  

   

Thus from (9)  

         1, 1, 1, 1,
, .

2 2

g t g t g t g t
g z t z z

   
   

Defining  

   1, 1,
:

2t

g t g t
a

 
 , 

   1, 1,
:

2t

g t g t
b

 
 . 

Obviously  since the convexity of 0,a g  yields 

     
1, 1,

0, 0.
2

g t g t
g t

 
   

The proof is complete. 
Remark 2 Corollaries 2 and 3 give us an intuitive 

explanation for the distinction between coherent and 
convex risk measures. In the framework of g-expectations, 
convex risk measures are generated by convex functions, 
while coherent measures are generated only by convex 
and positively homogenous functions. In particular, if d = 
1, it is generated only by the family  , t tg z t a z b z   
with . Thus the family of coherent risk measures is 
much smaller than the family of convex risk measures. 

0a 

Jensen’s inequality for mathematical inequality is im- 
portant in probability theory. Chen et al. [15] studied 
Jensen’s inequality for g-expectation. 

We say that g -expectation satisfies Jensen’s 
inequality if for any convex function : ,    then 

    
   2

,

whenever  , , , .

g g

L P

   

  

   

 

 


         (10) 

Lemma 4 [Chen et al. [15] Theorem 3.1] Let g  be a 
convex function and satisfy  1H ,  2H  and  3H . 
Then 

1) Jensen’s inequality (10) holds for g -expectations 
if and only if g  does not depend on  and is posi- 
tively homogeneous in 

y
z ; 

2) If 1,d   the necessary and sufficient condition for 
Jensen’s inequality (10) to hold is that there exist two 
adapted processes  and  such that 0a  b

 , t tg z t a z b z  . 

Now we can easily obtain our main results. Theorem 2 
below shows the relation between static risk measures 
and dynamic risk measures. 

Theorem 2 If g -expectation  g  static convex 
(coherent) risk measure, then the corresponding condi- 
tional g-expectation 

  is a

g t  
.T  

  namic convex (co- 
herent) risk measure for each t

 is dy
0,

Proof: This follows directly direct from Theorem 1. 
Theorem 3 below shows that in the family of convex 

risk measure, only coherent risk measure satisfies Jen- 
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sen’s inequality. 
Theorem 3 Suppose that  g   is a convex risk 

measure. Then  g   is a coherent risk measure if and 
only if  g   satisfies Jensen’s inequality. 

Proof: If  g   is a convex risk measure, then by 
Corollary 2, g  is convex. Applying Lemma 4,  g   
satisfies Jensen’s inequality if and only if g  is posi- 
tively homogenous. By Corollary 2, the corresponding 

 g   is coherent risk measure. The proof is complete. 
Theorem 4 and Counterexample 1 below give the rela- 

tion between risk measures and Choquet expectation. 
Theorem 4 If  g   is a coherent risk measure, then 
 g   is bounded by the corresponding Choquet expec- 

tation, that is      2,  , ,g V L       P  where 
   g AI V A . If  g   is a convex risk measure then 

inequality above fails in general. By construction there 
exists a convex risk measure and random variables 1  
and 2  such that  

       1 1 2  and  >g V g V 2        

The prove this theorem uses the following lemma. 
Lemma 5 Suppose that g  does not depend on . 

Suppose that the 
y

g -expectation  g   satisfies (1) 
     ,   BI ,g A B gI I    

a
AI

< 1
g  (2) For any 

positive constant ,  
A B

     2,  , , .g ga a L P        

Then for any  the  2 , ,L    P g -expectation 
 g   is bounded by the corresponding Choquet expec- 

tation, that is 

     
0

0
1 d d .g g gx xI x I 



 
              x  (11) 

Proof: The proof is done in three steps. 
Step 1. We show that if 0   is bounded by , 

then inequality (11) holds. 
> 0N

In fact, for the fixed , denote N  n  by  

 
 

2 1

10

2 2

: .
2

n

n n

n

i Nni iN

iN
I


 

     
  

   

Then  in    ,n n  
 n

  2 , , .L P 
Moreover,   can be rewritten as  

  2

1

2

.
2

n

n

n

n iNi

N
I


    

 

   

But by the assumptions (1) and (2) in this lemma, we 
have 

 
2

1
2

2

1
2

2

.
2

n

n

n

n

n
g g n iN

i

gn iN
i

N
I

N
I





  
 

 

 
 

 

 
      

 
 
  





 



Note that 

 
2

1 0

2

d ,  .
2

n

n

g g xn iNi

N
I I x





   
 

 
       

   n 



 

and     ,  .n
g g n      

Thus, taking limits on both sides of inequality (12), it 
follows that    0

d .g g xI x 

       The proof of Step 
1 is complete. 

Step 2. We show that if   is bounded by , 
that is 

> 0N
N  , then inequality (11) holds. 

Let  then  Applying Step 
1, 

,N N   0  2N N  .

x   0
d .g g N xN I 



 
                (13) 

But by Lemma 1(v),     .g gN N      On the 
other hand, 

   

 

 

 

2

0 0

0

0

d d

d

d

d .

N

g gN x x N

N

g xN

g xN

N

g x

I x I x

I x

I x

I x

 









   







   
  

   

   

   

 







 









.x

 

Thus by (13) 

     
0

0
d d

N

g g gx xN
N I x I   

     
        

Therefore 

     
0

0
1 d d .

N

g g gx xN
I x I   

  x     
         

Step 3. For any  2 , , .L P     let ,N
N

I      
  

then N N  . By Step 2,  

   
0

0
1 d d .

NN
g g gx xN

I x I   
  x        

         

Letting , it follows that  N 

     
0

0
1 d d .g g gx xI x I 



 
  x     

         

The proof is complete. 
Proof of Theorem 4: If the g -expectation  g   is 

a coherent risk measure, then it is easy to check that the 
g -expectation  g   satisfies the conditions of Lemma 
5. 

Let    g AV A I   A  . By Lemma 5 and the de- 
finition of Choquet expectation, we have    .g V    
The first part of this theorem is complete. 

Counterexample 1 shows that this property of coherent 
risk measures fails in general for more general convex 
risk measures. This completes the proof of Theorem 4. 

         (12) 
Counterexample 1 Suppose that   is 1-dimen- 

sional Brownian motion (i.e. d = 1). Let 
tW
   1g z z

   
where  max ,0x x  . Then  g   is a convex risk  
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measure. Let 1 1

1

2 TWI   . and  2 12
TWI   Then  

   1 V 1g     However    2 >g V 2 .  
 V 

 Here the 
capacity  in the Choquet expectation  is given 
by 

V
   .IgV A   A

Proof of the Inequality in Counterexample 1: The 
convex function  satisfies (H1), (H2) 
and(H3). Thus, by Corollary 2, 

 

   1g z z
 
g -expectation  g   is 

a convex risk measure. This together with the property of 
Choquet expectation in Remark 1 implies 

     

      

1 1 1

11 1

1 1

2 2

1 1
.

2 2

T T

T T

g g gW W

V V VW W

I I

I I





 

 

        
    
 

  

  

 

Moreover, since  by Corollary 3, 1d   g   is a 
convex risk measure rather than a coherent risk measure. 
We now prove that    2 > V 2g    In fact, since 

       1 12 2 2
T TV V gW W WI I I 

       1 ,
T 

.



 

we only need to show  

   1 12 > 2
T Tg gW WI I 

  
     

Let  ,y z  be the solution of the BSDE 

   12 1 d
T

T T

t sW t t
y I z s z W


     d .s s

 0,

     (14) 

First we prove that 

        , 0, : > 1 >tL P t T z      (15) 

where  is Lebesgue measure on L  0, .T


 
If it is not true, then  a.e. 1tz  0,t T  and BSDE 

(14) becomes  

 12 d
T

T

t sW t
y I z W   .s  

Thus 

   1 12 2
T T t tt tW W W Wy E I E I   

     .t

  

By the Markov property,  

  2 1t T t t ty P W W W W    .



 

Recall that  and  are independent and 
. Thus  

T tW W
0,T t 

tW

T tW W N

 
1

2 d
t

t x Wx
y y y




  ,  

where  x  is the density function of the normal 
distribution . Thus 0,N T t

Secondly we prove that  

   1 12 > 2
T Tg gW WI I  .   

      

Let  ,t tY Z  be the solution of the BSDE 

 12 2 1 d d
2T

T Ts
t s sW t t

Z
Y I s Z W




     
 

  .     (16) 

Obviously,  

 1 1 d d ,
2 2T

T Tt s

2
s

sW t t

Y Z Z
I s W




     
 

   

which means ,
2 2
t sY Z


 


  is the solution of BSDE  

   1 1 d d .
T

T T

t sW t t
y I z s z W


     s s  

But  1 .
Tt g tWy I 

      Thus by the uniqueness of  

the solution of BSDE,  1 .
2 T

t
g W

Y
I 
  t


  On the  

other hand, let  ,t ty z  be the solution of the BSDE 

   12 1 d
T

T T

t sW t t
y I z s z W


     d .s s      (17) 

Comparing BSDE(17) with BSDE (16), notice (15) 
and the fact  

 1 2 1
2

z
z


     

 
 and 

 
   g V  

g 
 

whenever z >1. By the strict comparison theorem of 
BSDE, we have  > ,  0, .t ty Y t T  

Setting 0t  , thus  

      1 12 > 2 2
T Tg g VW WI I I 

          1TW  .  

The proof is complete. 
Remark 3 In mathematical finance, coherent and 

convex risk measures and Choquet expectation are used 
in the pricing of contingent claim. Theorem 4 shows that 
coherent pricing is always less than Choquet pricing, 
while Counterexample 1 demonstrates that pricing by a 
convex risk measure no longer has this property. In fact 
the convex risk price may be greater than or less than the 
Choquet expectation. 

4. Summary 

Coherent risk measures are a generalization of mathe- 
matical expectations, while convex risk measures are a 
generalization of coherent risk measures. In the frame- 
work of g -expectation, the summary of our results is 
given in Table 1. In that Table, the Choquet expectation 
is    :

  2 1 ,t t t tz D y W  
tz

tW

 
where  is the Malliavin derivative. Thus  can be 
greater than 1 whenever  is near 0 and  is near 0. 
Thus (15) holds, which contradicts the assumption 

 a.e. 

tD
t

1tz   0,t T . 

g A

Counterexample 1 shows that convex risk may be  
or 

V A I  . 


  Choquet expectation. Only in the case of coherent  
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Table 1. Relations among coherent and convex risk mea- 
sures  g  , choquet expectation and Jensen’s inequality. 

Risk Measures 
Relation to Choquet 

Expectation 
Jensen inequality 

g is linear 

math. expectation    g V    true 

g is convex and positively homogeneous 

coherent    g V    true (*) 

g is convex 

convex Neither ≤ nor ≥ not true except (*)

 
risk there is an inequality relation with Choquet expec- 
tation. 
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