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ABSTRACT 

The model of dark matter is presented where the dark matter is a classical gauge field. A spherical symmetric solution 
of Yang-Mills equation is obtained. The asymptotic behavior of the gauge fields and matter density is investigated. It is 
shown that the distribution of the matter density allows us interpret it as the dark matter. The fitting of a typical rota- 
tional curve with the rotational curve created by the spherical solution of SU(3) Yang-Mills equation is made 
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1. Introduction 

One can give such definition for a dark matter [1]: “... 
dark matter is matter of unknown composition that does 
not emit or reflect enough electromagnetic radiation to be 
observed directly, but whose presence can be inferred 
from gravitational effects on visible matter.” The nature 
of the dark matter of the Universe is one of the most chal- 
lenging problems facing modern physics. Following to L. 
Smolin [2] there exist five great problems in the modern 
theoretical physics: 

Problem 1. Combine general relativity and quantum 
theory into a single theory that can claim to be the com- 
plete theory of nature. This is called the problem of quan- 
tum gravity. 

Problem 2. Resolve the problems in the foundations of 
quantum mechanics, either by making sense of the theory 
as it stands or by inventing a new theory that does make 
sense. 

Problem 3. Determine whether or not the various par- 
ticles and forces can be unified in a theory that explains 
them all as manifestations of a single, fundamental en- 
tity. 

Problem 4. Explain how the values of the free con- 
stants in the standard model of particle physics are cho- 
sen in nature. 

Problem 5. Explain dark matter and dark energy. Or, if 
they don’t exist, determine how and why gravity is modi- 
fied on large scales. More generally, explain why the 
constants of the standard model of cosmology, including 
the dark energy, have the values they do. 

The problem of the dark matter is the fifth one. Direct 
observational evidence for dark matter is found from a 
variety of sources: 
 On the scale of galactic halos, the observed flatness of 

the rotation curves of spiral galaxies is a clear indica- 
tor for dark matter. 

 The measured orbital velocities of galaxies within ga- 
lactic clusters have been found to be consistent with 
dark matter observations. 

 In clusters of galaxies there is a hot intracluster gas. 
Its temperature allows to measure gravitational poten- 
tial of a cluster. These data are in agreement with meas- 
urements of galaxies speeds and show presence of dark 
matter. 

 The direct evidence of dark matter has been obtained 
through the study of gravitational lenses. 

One of the strongest pieces of evidence for the exis- 
tence of dark matter is following. Let us consider a rota- 
tional velocity  v r

   

 of stars in a galaxy. According to 
Newton law 

M2
N

r
v r G

r
                (1) 

 Mwhere r r is the mass at a given distance  from 
the center of a galaxy; NG  is the Newton gravitational 
constant. The rotational velocity, is measured [3,4] by 
observing 21 cm emission lines in HI regions (neutral 
hydrogen) beyond the point where most of the light in 
the galaxy ceases. Schematically a typical rotation curves 
of spiral galaxies is shown in Figure 1 (for details, see 
Refs. [5,6]). 
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Figure 1. Schematical rotation curve of spiral galaxies. 
 
If the bulk of the mass is associated with light, then 
beyond the point where most of the light stops,  M r

 
 

would be a constant and 
2

v r 

  : constav r

1 r . This is not the 
case, as the rotation curves appear to be flat, i.e., 

 outside the core of the galaxy. This im- 
plies that 

nt
 M r r  beyond the point where the light 

stops. This fact is the evidence of the existence of dark 
matter. The detailed review for the experimental evi- 
dence of dark matter can be found in [7]. 

Several categories of dark matter have been postulated: 
(a) baryonic dark matter; (b) non-baryonic dark matter. 
The non-baryonic dark matter can be divided into three 
different types: (b1) hot dark matter—nonbaryonic parti- 
cles that move ultrarelativistically[8]; (b2) warm dark 
matter—nonbaryonic particles that move relativistically; 
(b3) cold dark matter—nonbaryonic particles that move 
non-relativistically[9]. 

Another approach for the resolution of the dark matter 
problem is based on a modification of Newton’s law or 
of general relativity, have been proposed to explain the 
behavior of the galactic rotation curves: (a) a modified 
gravitational potential [10,11]; (b) the Poisson equation 
for the gravitational potential is replaced by another equ- 
ation [12-17]; (c) alternative theoretical models to ex- 
plain the galactic rotation curves have been elaborated by 
Mannheim [17,18], Moffat and Sokolov [19] and Roberts 
[20]; (d) The idea that dark matter is a result of the bulk 
effects in brane world cosmological models was consid- 
ered in [21,22]. 

All above mentioned approaches to the resolution dark 
matter problem are based on the assumption that the dark 
matter is one or another kind of quantum particles. The 
problem for this approach is that the most of these parti- 
cles are hypothetical ones: till now these particles were 
not observed in the nature and in spite of general enthu- 
siasm we do not have any confidence that these particles 

Here we propose 

will be discovered. 

the idea that the dark matter is a clas- 
sical gauge field. This approach is based on the fact that 
in the consequence of the nonlinearity of Yang-Mills 
equations there exist a spherically symmetric solution 
without sources (color charge). The matter density in 
such solution is 2r   with 2   that radically dif- 
fers from the dist on matt nsity for Coulomb 
solution. Thus the proposed idea is that some galaxies are 
immersed in a cloud of a classical gauge field. The SU(3) 
classical gauge field does not interact with ordinary mat- 
ter because ordinary matter is colorless. Thus one can 
suppose that SU(3) gauge field can be invisible matter in 
galaxies. The problem for such consideration is why the 
gauge field does not fill all Universe? The probable an- 
swer is that, in certain circumstances, the gauge field 
goes from a classical phase into a quantum phase. Proba- 
bly such transition takes place at some distance from the 
center of the galaxy. 

Let us note that in

ributi er de

 Refs. [23-27] the similar approach 
for a dark energy is considered. In Ref. [23] it is shown 
that the Born-Infeld quantum condensate can play the 
role of dark energy in the present-day universe. In Ref. 
[24], it is demonstrated that both inflation and the late- 
time acceleration of the universe can be realized in modi- 
fied Maxwell-  F R  and Yang-Mills-  F R  gravities. 
In Refs. [25-27  supposed that the energy is a 
condensate of Yang-Mills gauge field where the effective 
Lagrangian density of the YM field is calculated up to 
1-loop order [28,29]. With the logarithmic dependence 
on the field strength, the effective Lagrangian has a form 
similar to the Coleman-Weinberg scalar effective poten- 
tial [30]. 

], it is dark 

2. Classical Gauge Theory 

ve a short introduction 

A AF F

In this section we would like to gi
to SU(N) Yang-Mills gauge theory. The corresponding 
Lagrangian is 


L                   (2) 

where , , 1,2, ,A B C N N) color indexes;    are the SU(
BCD+

v

B B B
v v

C DF A A gf   A A    is the field strength; 
BA  is the SU(N) gauge potentia

stan
l; g is the coupling con- 

t; BCDf  are the structure constants for the SU(N) gauge 
group. The corresponding Yang-Mills field equations are 

0.AF 
                      (3) 

Here we will consider N
eq re non

3  case of the Yang-Mills 
uations. Equations (3) a linear generalizations of 

Maxwell equations. The spherally symmetric static solu- 
tion in electrodynamics is Coulomb potential. Well 
known spherically symmetric static solution for the SU(2) 
Yang-Mills equations are famous monopole and in- 
stanton solutions. The monopole solution has finite  
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energy and is a special solution for corresponding equa- BBTtions. For our goals we will consider practically the same 
equations as for monopole but with different boundary 
conditions. Strictly speaking the solutions of Equations 
(4)-(11) for almost all boundary conditions are singular 
(the energy is infinite) and only for some special choice 
of boundary conditions we have regular solution (mono- 
pole solution with finite energy). In this work we use 
solution with infinite energy but we assume that at some 
distance from the origin the classical phase undergoes a 
transition to a quantum phase. 

2.1. Ansatz for the Gauge Potential 

The classical SU(3) Yang-Mills gauge field BA  we choose 
in the following form [31] 

 2
2 ,2 z

0A r
gr

                 (4)  

 22 ,
y5

0A r
gr

                  (5) 

 2
2

x7
0A r

gr
  ,                 (6) 

 22 1 ,
j

A h r                  (7) 32 ij
i

x

gr



 2 1 ,
jx

A h r


                (8) 25
2

ij
i gr
 

 17
22 1

j
ij xA h r


                   (9) 

 SU 3 ; the SU(2) is the subgroup 
0,1,2,3

i gr

here  2,5,7 SU 2A  
of SU(3);  

 are
ponents are b

 is 
 space

the space-time index and 
, , 1,2,3i j k   indexes. The remaining com- 

elong to the coset    SU 3 SU 2  

   
0A 2,

1
2 ,

3

w rx x

gr
 


       (10) 

 

r 
 



 

  

 3
2 ,

s

i is is

x
A x x v r

gr
 

 
     (11)   

here ijk  is the absolutely antisy
he

mmetric Levi-Civita ten- 

ponents  A

sor. T  ansatz (4)-(11) is the SU(3) generalization of 
ansatz for the SU(2) monopole [32,33]. The SU(3) ansatz 
gives us a spherically symmetric energy distribution that 
is necessary to describe a spherical dark matter distribu- 
tion in a galaxy. 

The coset com


 are written in the ma- 
tri  

 
,

1,3,4,6,8

m m

m

A T 

x form and by definition

 A
  



          (12) 

where 

 

2
  are the SU(3) generators, B  are the  

Gell-Mann matrices. 

uations 

The corresponding Yang-Mills Equations (3) with the 

2.2. Yang-Mills Eq

potential (4)-(11) and     0h r   are r 
2 26 ,x w wv                    (13) 

2 3 2x v v      v vw             (14) 

here we introduce the dimensionless radius 0x r r , r  0

is an arbitrary constant. The asymptotic behavior of the 
functions    ,v x w x  by x1 are [34] 

   0sin ,v x A x                    (15) 

 
 0cos 2 2x



1

4
w x x

x
 

    
 

    (16) 


 23 1A                       

with 1

    (17) 

  . The energy density  x  is  

 

   

 

0

2222 2 2

2 4 2 4 4 4
0

2 4
0

1

11 2
4 2 4

3

1
.

a a i a

vxw wv v w

g r x x x x

x
g r



  0 4i ijr F F F F  aij

      
 
  



(18) 

Using the asymptotic behavior of the gauge potential 
(15) (16) the asymptotic behavior of the energy density 
is. 

     
2 4

22
1 3 1 .

r
x



   


 
          (19) 

03 r
 

2.3. Numerical Investigation 

In this subsection we present the typical numerical so- 
 the consequence of lution of Equation’s (13) and (14). In

the occurrence of the factor 2x  in the front of left hide 
side of Equations (13) and (14) we have to start the nu- 
merical calculations not from 0x   but from from 

= 1x   . To do that we search an approximate solution 
near to the origin in te form 

 

   

 

4 6

2 4
0 2 0 4

0 0 0

2 4
4

2 4

1
2 4!

1
2 4!

v r

r
r v r v

r r r

x x
v v x

    
         
       

    

O

O

(20) 

2
1 1r r 
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      (21) 

After the substitution into Yang-Mills Equations (13) 
and (14), we have 

2
4 2

9
,

5
v v              

Figure 2. The profiles of functions 
      (22) 

  w x v x, , 
2 0.2v  , 

5 2 3

60

7
w v w                 (23) 

an
ters defining the solution. Yang- 

under rr r , 
i.e. 0r  is s
of param

w 3 1 . 

 
d so on for the next , , 4, 7i jv w i j  . It means that 

2 3,v w  are free parame
Mills equations are conforma

a free parameter al
eter 0r  

lly invariant 0

o. We use following choice 
 the 

2 3 1
.r          (24) 0 0

2 3

1
either orr

v w


For the numerical calculations we choose the parame- 
ter 0r  as 

0

1
.r                     (25) 

 

Figure 3. The profile of the dimensionless energy density 
1 3
3w

Th ehavio nctio 
 x . 

 e typical b r of fu ns v x  and  w x  is 
presented in Figure 2, that is in agreement with the 
asymptotic behavior (15) and (16). 

The mass density  r  is 

    2 2 4
0

x
c r

           (26) 
1

r
g

 

where    x x   and  x  is give  Equatio 8). 
The profile of the dimensionless energy density 

n in n (1
 x  

in Figure 3 is presented. 

2.4. The Comparison wi
Curve of Spiral Galaxies 

The idea presented in this work is that in a galaxy there 
n ordinary visible matt

ich
ectromagnetic waves). The vi- 

e 
expe tars in the galaxy out- 

th a Universal Rotation 

exists a er (barionic matter which 
glows) and an invisible matter (classic gauge field wh  
does not interact with el
sible matter is immersed into a cloud of the classical 
gauge field. The main goal of this work is to compare th

rimental rotational curve for s
side light core with the rotational curve created by the 
distribution of the classical gauge field. 

In Ref. [35] a Universal Rotation Curve of spiral gal- 
axies is offered that describes any rotation curve at any 
radius with a very small cosmic variance 

 
 

2

2

1.22

1.432 2

2
0.4

0.4

2 2

2 2

1.97
0.72 0.44 log

0.78

1.6e

1.5

, Km

URC
opt

opt

L L

LM DM

r
V

R

V R

L X

L X

X

L
X

L

V V









  
     
 
 

 
  
  


 

  
 

 

.     (27) 

 
 

 

 

2

2

1.22

1.432 2

1.97
0.72 0.44 log ,

0.78

LM
opt

opt

r
V

R

V R

L X

L X

  
     
 
 
 
 

 
  
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    (28) 
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 
 

2

2

0.4= 1.6e
DM

opt L L

opt

r
V

R

V R
X



  
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 
    

2

0.4

2 21.5

X

L
L

 
 
 

  (29) 

3.2opt DR R  is the optical radius and where DR  is the 
ponenti ;disc ex al length-scale  optX r R ; L  is the lu- 

minosity; the first term 2
LMV  

tter and the second term
is the rotation curve for the 

a 2light m  DMV  the rotation curve 
dar a is to compare the rotation 

curve for the color fields 
for the k m tter. Our goal 

     

   

2 2

0

2

1
4 d

r

N N

N P

r
V r G G r r r

r r

G lc

xg
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22
2

3 2 2
00

1 lx x
c

x rc g r

  
        

M M

where  





M

 (30) 

xM  is the dimensionle ass of the color 
fields 

 

Figure 4. The comparison of DM rotation curve (29) for 
different values L/L* = 0.5, 1.0, 1.5; curves 1a, 2a, 3a corre- 
spondingly) with the rotation curve (33) (curves 1b, 2b, 3b 
correspondingly) for the SU(3) classical color field (4)-(9). α ≈ 
1.21, 1.31, 1.38, g′ = 1, Ropt = 20 KPs = 6 × 1017 m, Vopt = 100 
Km/s. 
 

ss m
BA  inside the sphere of radius 0r xr ;  

2 2 4g g c    is the dimensionless coupling constant 
with the experimental rotation curve for the dark matter 
(29). 

Far away from the center the dimensionless energy
density  

  is given from Section 2.3. The details of fitting 
21

0 01.18 10 cm, 78.6 Km s,r V

L
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     (34 

x  is presented in Equation (19). In or
fit Equation (19) we break up Equation (30) into two 
terms 

der to 

     

 2 2 2
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1 1
d

x
Pll

c x x x V
xg


 
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  

(31) 
where 

1

2

2

2 2
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00

1
d d
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x

V

x x x x x x x
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   

 
         



 2

2

2
0

1 Pll
c

r


  

 


    d .x x x  
2

2 2 2
0 2 2

0 0

1 1 x
Pll

V c x
xg r 

 
         (32) 

0 defined near to the cen- 
ter of galaxy re according to Equation (32) the dif- 

 

  


The numerical value of 2V  is 
 whe

 ference x x   is maximal. Thus the asymptotic 
e rotation curve for the domain filled with 

the SU(3) gauge field is 


hbehavior of t

  2 2
2

2 2

2 2
2

0 0

1 3 12 1
.

3 2 1
Pll r

V c V
r rg


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

     
           

 

(33) 

0



In Figure 4 the profiles of the dark matter rotational 
curves (29) (for different values 0.5,1.0,15L L  ) and 
fitting cu  presented. The value of parameter 

1.21; 0.5,
L




 
) 

18
0 02.01 10 cm, 32.25 Km s,

1.31; 1.0,

r V

L

  

 
     (35) 

L

17
0 08.04 10 cm, 18.5 Km s,r V  

1.38; 1.5
L

L




 
      (36) 

in Appendix (B) are presented. The physical meaning of 

0r  is that by 0r r  one can use the asymptotical be- 
havior (15) and (16). Small values of 0r  (34)-(36) mean 
that we can use the asymptotical behavior (15
practically in the whole region of radius r . 

3. Cut-Off the Region Filled with Classical 
Gauge Field 

The gauge field distribution considered here has an in- 

a

 
the 
he 

value. portant to note that the gauge field in 

) and (16) 

finite energy in the consequence of the asymptotic be- 
h vior (18) of the energy density (18). Consequently it is 
necessary to have a mechanism to cut-off the distri- 
bution of the classical gauge fields in the space. In our 
opinion it can happen in the following way. At some 
distance from the origin the gauge field undergoes 
transition from the classical state to quantum one and t
quantum field tends very fast to its vacuum expectation 

 It is very im
the vacuum state must be described in a nonperturbative rves (33) are

Copyright © 2013 SciRes.                                                                                 JMP 



V. DZHUNUSHALIEV 116 

manner. 
The physical reason why such transition takes place is 

following. As we see from Equations (15) and (16) and 
Figure 2 asymptoticly the gauge potentials are oscillat- 
ing functions with increasing frequency. Far away from 
the origin the frequency is so big that it is necessary 
quantum fluctuations take into account. In this way the 
transition from the classical state to quantum one takes 
place. 

To estimate a transition radius we follow to the Hei- 
senberg uncertainty principle 

1 a ai
tiF A V

c
                    (37) 

here a
tiF  is a quantum fluctuation of the color electric 

field a
tiF ; aiA  is a quantum fluctuation of the color 

electric potential aiA ; V  is the volume where the quan- 
tum fluctuations a

tiF  and aiA  takes place and not any 
summation over repeating indexes. 

For the ansatz (10) and (11) 

2 2sin
.

vw
tF

g r


                (38) 

Let us to introduce the physical com nt of the pone 2
tF  

Ft
2  Ft

2Ft
2  2sin

g

vw

r2
.         (39) 

To an accurac  a num al factor the fluctuations 
of the SU(3) color electric field are 

y of eric

 Ft
2 

g

1 1

r2
vw vw .            (40) 

For the ansatz (10) and (11) 

 41  2 0,A                      ( )

1,3,4,6,8 1
.A v

g                  (42) 

auge potential 
A   

The physical components of the g
1,3,4,6,8

A
1,3,4,6,8  A

1,3,4,6,8A1,3,4,6,8; 
g

1 v

r
.     (43) 

Now we assume that th
of t ponent 

e quantum fluctuations  A
2  

he com A
2  have

tum fluctuations of the ponents 

  A1  1

 the same order as the quan- 
 com A

1  

 A
2

 g

v

r
.                (44)

 
The volume V  where supposed quantum fluctuations 

 is 

24 .V r r                     (45) 

be

wing

 

take place

The period of space oscillations by 0r r  can  

defined in the follo  way 

1
2 ; .

r
x x x

x 
0r

               (46) 

We suppose that the place where the SU(3) classical
co me

ntum fluctuations in the volume 
4V r r

 
lor field beco s quantum one is defined as the place 

where the qua
2    with 

1
0

1 2r

r x


 

 
            (47)     

of the corresponding field becomes comparable with mag- 
nitude of these fields 

,v v w w                  (48) 

Substituting of Equations (40), (15)-(16), (44), (45), (47) 
and (48) into Equation (37) we obtain 

2

2
g

A

    
 

                (49) 

where 
2g

1 4

g c



 

 is the dimensionless coupling con-  

stant that is similar to the fine structure constant in quan-  

tum electrodynamics 
2e   
c

. In quantum chromo- 

dynamics 21 1g   . If we choose 1 1g   and 
from Figure 2 we take 0.4A  we see that 

2

6.25
g

A

   
 

              (50) 

omparablethat is c  with 2 6.28  . 
Thus in this section we have shown that if the con- 

dition (49) is true then at some distance from the center 
the transition from the l phase to quantum one classica
occurs. Unfortunately the rough estimation presented in 

a  the r
akes pl xact evalu- 

ation of the place where such transition happens it is ne- 
cessary to have non-perturbative 
which are missing at the moment. 

4.

es are not experimen- 

teract- 

this section does not llow us to calculate adius 
where such transition t ace. For the e

quantization methods 

 Invisibility of the Color Dark Matter 

The main question in any dark matter model is its invisi- 
bility. For the model presented here the answer is very 
simple: the SU(3) color matter (dark matter in this con- 
text) is invisible because color gauge fields interact with 
color charged particles only. But at the moment in the 
nature we do not know any particles with SU(3) color 
charge. In principle such particles can be SU(3) mono- 
poles but up to now the monopol
tally registered. 

For more details we write SU(3) Lagrangian in
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ing with matter 

 1
tr ,

2

fn
A A

QCD k k
k

F F q i D m q 
    L  (51) 

where 

 kD q igA q                  (52) 

8

1 2

B
B

B

A A 




D

                  (53) 

  is the covarian ative; mt deriv A   is gauge po-
tential in the matrix . Fro e term 

 
 form m th igqA q  in 

Equation (52) we see that the SU lor field h
interaction with quarks only. But the quarks are not 

 the nature. The baryon matter is colorless in
quence with the confinement of quarks in had-

rons and therefore the color dark ma
with the light (photons). As we see above the gauge
matter can be seen in during of 

Thus it is interesting that the problem of the dark mat- 
ter in he p

de

hich have a good agree- 
eters of above mentioned sph

ills equations. 

 
http://en.wikipedia.org/wiki/Dark_matter 

with Physics,” A Mariner book

(3) co as an 
ob- 

 
 

servable in
the conse

tter does not interact 
 dark 

its gravitational field. 

astrophysics is connected with t roblem of con- 
finement in high energy physics. 

5. Conclusion 

In this work we have suggested the idea that the dark 
matter model is SU(3) gauge field. We have shown that 
in SU(3) Yang-Mills theory there exists a spherical sym- 
metric distribution of the gauge potential with slow de- 
creasing matter density. The asymptotic behavior of the 

nsity allow us to describe the rotational curve for the 
stars in elliptic galaxies. The fitting of the typical rota- 
tional curve gives us parameters w
ment with the param
solution of Yang-M

erical 
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7. Appendix A: Heisenberg’s Quantization of 
Strongly Interacting Fields Applying for 
Gauge Fields 

In this section we would like to bring some arguments 
that nonperturbative quantized SU(3) gauge field tends 
very quickly to zero. To do so we use the Heisenberg 
approach [36] for a nonperturbative quantization of a 
nonlinear spinor field. In quantizing strongly interacting 
SU(3) gauge fields—via Heisenberg’s non-perturbative 
method [37] one first replaces the classical fields by field 
operators ˆB BA A  . This yields the following diffe- 
rential equations for the field operators 



ˆ 0.BF 
 

ˆ

                (A1) 

These nonlinear equations for the field operators of the 
nonlinear quantum fields can be used to determine ex- 
pectation values for the field operators BA . Starting 
with Equation (A1) one can generate an operator diffe- 
rential equation for the product ˆ ˆB CA A   consequently 
allowing the determination of the Green’s function BC

G

   

 

  ˆ ˆ, ,BC B Cx y Q A x A y Q  G

 

      (A2) 

 ˆ ˆB C
yQ A x F  0x Q            (A3) 

where Q  is a quantum state. However this equation 
will in it’s turn contain other, higher order Green’s func- 
tions. Repeating these steps leads to an infinite set of 
equations connecting Green’s functions of ever increas- 
ing order. Let us note that absolutely similar idea is 
applied in turbulent hydrodynamics for correlation func- 
tions all orders. This construction, leading to an infinite 
set of coupled, differential equations, does not have an 
exact, analytical solution and so must be handled using 
some approximation. The basic approach in this case is 
to give some physically reasonable scheme for cutting 
off the infinite set of equations for the Green’s functions. 

One can use Heisenberg’s approach to reduce the 
initial SU(3) Lagrangian to an effective Lagrangian 
describing two interacting scalar fields (for details see 
Ref. [29]). Two scalar fields   and   appear in such 
approach. We assume that in the first approximation two 
points Green’s functions are bilinear combinations of 
scalar fields   and   

        ,m n
mn

a b
i jA x A y c x y        (A4) 

        ,a b
ab

m n
i jA x A y d x y 

   

       (A5) 

0 0 0m nA y 

   2 3 , 1, 2,3aA SU SU a  

A x                    (A6) 

where ;  

   3 2 ,mA SU SU m   4,5,6,7,8 ,mn abc d;  are some 
coefficients. 

The next step is the calculation of the 4-points Green’s 

functions. It is assumed that they are a bilinear com- 
bination of 2-points Green functions 

       

 

 

2
1

1

4
1

4

permutations of indices
16

m n p q

mn pq mn pq pq mn

mn pq

A x A y A z A u   

     

 

    

    


  




 


G G G G  (A7) 

the same for remaining indexes 

       

 

 

2
2

2

4
2

4

permutations of indices
16

a b c d

ab cd ab cd cd ab

ab cd

A x A y A z A u   

     

 

    

    


  




 


G G G G

 ,

 

 (A8) 

with some constants 
1,2 1,2

. The assumptions (A3)- 
(A8) allows us to average the SU(3) Lagrangian 

3

1
,

4
A A

SU F F 
 L

 

           (A10) 

and bring it to the form 

  

     

3

1

2
1

, ,
2

a a
eff SU

m m a mV







 

   

   

   

L L
      (A11) 

 
   

  

2 22 21 2
1 2

,

4 4
1

2

a m

a a m m

a a m m

V  

 
     

   

   



   

   (A12) 

with the field equations 

,a m

a
a

V




 





   



   

         (A12) 

,
.

a m

m
m

V




 





   


        (A13) 

Let us consider the spherically symmetric case  
 a k r  ,  a k r  k

d2
d

 where  is some constant. 
In this case the field equations are 

d
dr

 2

r
  2  

1
 2 

1
2 



,     (A14) 

r2

 
2

2 2 2
2 22

d 2 d
.

dd r rr

               (A15)  

It is easy to see that asymptoticly the solution has the 
form 
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 
 
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2
1 12

,
qr r

r1

e
x m

  

         (A16) 

 
  2 2

1 2 2m

r

e qr r

x
 

, , r

 
 

        (A17) 

where q    are constants. We suppose that this 
solution describes the non-perturbative quantized SU(3) 
gauge field after the transition from classical phase to 
quantum one occurs. We see that the non-perturbative 
quantized gauge field decreases very quickly (exponen- 
tially) after transition to the quantum phase and conse- 
quently the total mass becomes finite one. 

8. Appendix B: Fitting of Rotational Curve 
of Gauge Field 

For the fitting of the rotational curve (33) we use the data 
from the Universal Rotational Curve (27). The fitting 
equation is equation (33) in the form 

2

2
,B

opt

V
Ax C 

V
               (B1) 

where 

  2

2

2 2

2

3 2

1 Pl

opt

A

lc

V g

 




 
    

2 2 2

0 0

1 3 1

1

optR

r r







 


 
 
 

2 2,B

      (B2) 

 

2
0C V

                     (B3) 

 

, ,

                   (B4) 

Aand fitted parameters are B C . The fitting is carried 
out using MATHEMATICA package 

1.27445, 0.435011,

0.785905, 0.5;

A B

L
C

L

 

  
          (B5) 

0.656585, 0.639077,

0.322505, 1.0

A B

L
C

L

 

  
         (B6) 

0.428943, 0.753972,

0.18473, 1.5

A B

L
C

L

 

  

0, r

         (B7) 

  and after that we can define parameters 
21

0 01.18 10 cm, 78.6 Km s,

1.21, 0.5;

r V

L

L






  

 
    (B8) 

18
0 02.01 10 cm, 32.25 Km s,

1.31, 1.0;

r V

L

L






  

 
   (B9) 

17
0 08.04 10 cm, 18.5 Km s,

1.38, 1.5.

r V

L

L






  

 
    (B10) 

 

 


