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ABSTRACT 

The role of free fatty acids (FFAs) as a source of energy and their functions in energy transport within the body are well 
established. Equally important is a role that FFAs play in oxidative stress following cell membrane depolarization. 
FFAs are physiologically active, not only as nutritional components, but also as molecules involved in cell signaling 
and stabilization of membranes via palmitoylation and myristoylation. Protein palmitoylation is involved in numerous 
cellular processes, including apoptosis, and neuronal transmission. Besides nuclear peroxisome proliferator-activated 
receptors that mediate the biological effects of FFAs, G protein-coupled receptors (GPCRs) that are activated by FFA, 
have been recently identified. Those multiple FFA receptors (FFARs), which function on the cell surface as activated 
FFAs, play significant roles in the regulation of energy metabolism and mediate a wide range of important metabolic 
processes. FFARs have been targeted in drug development for the treatment of type 2 diabetes and metabolic syndrome. 
FFAs upregulate transcription of uncoupling proteins, increasing their expression in brain, cardiac, and skeletal muscle 
that may be protective or cytotoxic, depending on the cellular energy state. Recently, FFA effects on the endothelial 
function and dysfunction are being recognized. FFAs play a key role in endothelium-dependent nitric oxide production. 
A disturbance of endothelial function, due to an imbalance in production and release of relaxing and constricting factors, 
has implications in the development of cardiovascular problems, such as hypertension, as well as neurotoxicity follow- 
ing loss of blood-brain barrier integrity. This review presents information on broad range of FFAs actions of prime im- 
portance for physiological processes. Understanding of FFA functions in the body is crucial for developing new thera- 
peutic strategies against several metabolic disorders.  
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1. Introduction 

In animals, many of the dietary lipids are hydrolysed to 
FFAs before being absorbed and utilized further for lipid 
synthesis. Lipids can be hydrolysed to FFAs in tissues by 
lipolytic enzymes, such as lipoprotein lipase, hormone- 
sensitive lipase, and phospholipases A and C, before they 
are metabolised in many different pathways, including 
oxidation, desaturation, elongation and re-esterification 
[1]. 

FFAs play an important role as a source of energy for 
the body. Fat stored in adipose tissue is transported to 
other tissues in the form of FFAs hydrolyzed from 
triglycerides and combined with albumin [1]. These satu- 

rated fatty acids (SFA), such as the 18-carbon stearic 
acid, the 16-carbon palmitic acid, and the 14-carbon 
myristic acid are also important for various biological 
functions such as the production of hormones, cellular 
membrane signaling, and the stabilization processes in 
the body [2,3]. A biochemical process in which the body 
uses palmitic acid in stabilization processes by regulating 
G protein-coupled receptor (GPCR) signaling is called 
palmitoylation [4-6].  

2. Physiological Role of FFAs as an Energy 
Substrate 

FFAs Beta-Oxidation and the Carnitine Shuttle  
*Disclaimer: The views presented in this article are those of the authors 
and do not necessarily represent the views of the US Food and Drug 
Administration. 

Fatty acid beta-oxidation is a multistep metabolic path- 
way, by which fatty acids are utilized to produce energy. 

Copyright © 2013 SciRes.                                                                                  FNS 
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Protein transporters on the cell surface, including fatty 
acid translocase (FAT/CD36), tissue-specific fatty acid 
transport proteins (FATP), and plasma membrane bound 
fatty acid binding protein (FABPpm), play an important 
role in transporting FFAs to the cell. Inside the cell, the 
thioester, coenzyme A (CoA) is added to the fatty acid by 
fatty acyl-CoA synthase (FACS), forming long-chain 
acyl-CoA. 

The mitochondrial membrane is impermeable to acyl- 
CoA that enters mitochondria via the “carnitine shuttle”. 
The first step of this biochemical process is mediated by 
carnitine palmitoyltransferase 1 (CPT1) that converts 
acyl-CoA into acylcarnitine. CPT1 binding of the long 
chain acyl-CoA to long chain acylcarnitine allows the 
fatty acid to be transported across the inner mitochon- 
drial membrane via facilitated diffusion by carnitine 
translocase (CAT), which exchanges long chain acylcar- 
nitines for carnitine. The long chain acylcarnitine is then 
converted back to long chain acyl-CoA by an inner mi- 
tochondrial membrane enzyme, carnitine palmitoyltrans- 
ferase 2 (CPT2). The beta-oxidation pathway of fatty 
acid and long chain acyl-CoA yields acetyl-CoA that 
enters the mitochondrial tricarboxylic acid (TCA) cycle. 
Electron carriers, coenzymes NADH and FADH2, sup- 
plied by both fatty acid beta-oxidation and the TCA cycle, 
are used in the electron transport chain to produce energy 
stored in ATP molecules [1,7,8].  

3. “Passive” Role of FFAs 

3.1. Degradation of Cellular Membranes in  
Energy Insults 

Although FFAs serve in the first instance as an important 
energy substrate, high concentrations of FFAs are asso- 
ciated with insulin resistance, fatty liver disease, athero- 
sclerosis and myocardial dysfunction. Increased concen- 
trations of FFAs are risk factors for the development of 
type 2 diabetes [9-11]. The increased metabolism of 
FFAs leads via an inhibition of insulin receptor sub- 
strate-1 (IRS1) and phosphoinositol 3-kinase to reduced 
the intracellular effects of insulin [9]. Moreover, FFAs 
lead directly to reduction in the uptake and phosphoryla- 
tion of glucose and to a reduced glycogen synthesis. 
FFAs also impair the insulin signal transduction in the 
liver [9].  

FFAs play a role in the development of fatty liver dis- 
ease because 60% of the triglycerides stored in the liver 
originate from circulating FFAs [12]. FFAs are also in- 
dependent risk factors for the development of arterial 
hypertension [13]. It seems likely that an alpha a1- 
adrenergic activation may partially be responsible for the 
link between FFAs and arterial hypertension [13]. In ad- 
dition, FFAs raise the oxidative stress, lead to a reduced 
production of vasodilatory nitric oxide (NO) and reduce 

the insulin mediated vasodilation [13]. FFAs also stimu- 
late the proliferation of smooth muscle cells of the vessel 
walls. This causes vascular hypertrophy and vessel-wall 
rigidity and is associated with the development of arterial 
hypertension [13]. A raised concentration of FFAs with 
subsequent increased beta-oxidation in the cardiomyo- 
cytes can be harmful for the heart in various ways. 
Comparatively, more oxygen is needed for producing 
energy through beta-oxidation than through glycolysis. 
This “oxygen wastage” through beta-oxidation has an 
extremely negative effect, particularly in diseases that are 
associated with increased energy requirements by the 
cardiomyocytes, such as heart failure or acute coronary 
syndromes [14,15]. In addition, FFAs contribute to the 
development of atherosclerosis and have a proathero- 
sclerotic effect onendothelial cells, macrophages and 
smooth muscle cells of the vascular walls [16-18].  

3.2. Oxidative Stress in Mitochondrial  
Dysfunction and FFAs 

Reduction in cellular energy production can lead to a 
significant loss of mitochondrial membrane potential in 
all cells, including neurons. Energy depletion and cellular 
membrane depolarization are associated with mitochon- 
drial dysfunction due to ischemia/hypoxia or exposure to 
toxicants lead to accumulation of intracellular Ca2+ and 
excitotoxicity as well as oxidative stress. Glutamate ex- 
citotoxicity contributes to oxidative stress through a dis- 
ruption of reduced glutathione (GSH) synthesis. GSH 
acts as an endogenous scavenger of reactive oxygen spe- 
cies (ROS). But far more important for ROS generation 
is the effect of Ca2+ activation of phospholipases, libera- 
tion of FFA and their metabolism to prostaglandins or 
eicosanoids (Figure 1) [19-27]. 

Mitochondrial dysfunction due to irreversible inactiva- 
tion of mitochondrial complex II by the mitochondrial 
inhibitor, 3-nitropropionic acid (3-NPA), results in a de- 
creased ATP/ADP ratio and an increased lactate/pyruvate 
ratio [20]. The concentration of FFAs in all brain regions 
increases significantly as well [22]. An increase in FFAs 
is followed by production of ROS and activation of en- 
dogenous radical oxygen scavengers [28]. Increases in 
FFA levels may be correlated with uncoupling protein 
concentrations in heart and skeletal muscle tissue [27].  

Other studies suggest that FFAs and oxidative stress 
lead to activation of several transcription factors includ- 
ing activator protein-1 (AP-1), comprised of the proteins 
c-Fos and c-Jun, and nuclear peroxisome proliferator- 
activated receptor-alpha (PPARα) that have a bipotential 
role in mediating cell regeneration or death depending on 
conditions of cell plasticity and repair [29,30].  

In vitro preliminary studies with SHSY-5Y neuroblas- 
toma cells exposed to 10 and 0 nm ferric oxide (Fe2O3)  3   
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Figure 1. Schematic illustration of reactions following mitochondrial dysfunction and cellular energy deficit. AP1—activator 
protein-1; PPARα—peroxisome proliferator-activated receptor-alpha; ROS—reactive oxygen species. 
 
nanoparticles (NPs) showed depletion of dopamine and 
conditions for oxidative stress [31]. Therefore, we ex- 
amined the response of brain and liver FFAs in adult 
male Sprague-Dawley rats treated systemically with 
Fe2O3-NPs at 25, 50 and 100 mg/kg. Rats were sacrificed 
72 h after injection. Concentrations of saturated FFAs 
(palmitic and stearic acids) in the liver and brain did not 
change following exposure to iron NPs. However, un- 
saturated brain FFAs (oleic and linoleic acids) decreased 
in a dose-dependent fashion in the caudate nucleus (p < 
0.05). In the liver, the concentration of unsaturated FFAs 
increased significantly at 25 and 50 mg/kg (p < 0.05). A 
link between a long-term regulatory involvement of 
FFAs and early activation of the inducible transcription 
factors such as c-Fos and c-Jun proteins (AP1) in a dif- 
ferential response to metabolic stress in brain and liver 
was suggested [31]. 

(PPARs) act as sensors of FFAs [28]. These receptors 
maintain homeostasis under physiological and patho- 
physiological conditions by coordinating the expression 
of proteins that are involved in the uptake, synthesis, 
transport, storage, degradation and elimination of lipids. 
However, some of the biological effects of FFAs may be 
mediated by alternative mechanisms and may be medi- 
ated independently of PPARs. Recently, G protein-cou- 
pled receptors (GPCRs) activated by FFAs have been 
identified as FFAs receptors (FFARs) that function on 
the cell surface and play significant roles in nutritional 
regulation [32,33]. The FFARs not only act as nutrient- 
sensing receptors, independent of PPARs, but also are 
known to mediate a wide range of important metabolic 
processes. These receptors have the ability to monitor 
FFA levels in the intestine, pancreas, macrophages, and 
adipose tissue, and are considered to be a major drug 
target for the treatment of type 2 diabetes due to their 
role in energy homeostasis [34,35].  4. “Active” (Regulatory) Role of FFAs 

4.1. Biological Effects 
4.2. Myristoylation and Palmitoylation 

Some FFAs are not only the essential dietary nutrients 
but also contribute to various physiological processes. 
Nuclear peroxisome proliferator-activated receptors  

Multicellular organisms use chemical messengers to 
transmit signals between organelles and between cells. 
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Relatively small hydrophobic molecules, such as FFAs, 
serve this signaling purpose. The two most common 
modifications, myristoylation and palmitoylation, differ 
with respect to the type and chemical nature of fatty acid 
attachment to the polypeptide receptor backbone. 

Myristic acid, a 14-carbon saturated fatty acid, is a 
source of myristoyl groups utilized within the body to 
stabilize many different proteins, including proteins in 
the immune system [36]. Myristoyl group is commonly 
added cotransitionally to the amino terminus of glycine 
in receptor-associated kinases to confer the membrane 
localization of the enzyme. Myristoylation occurs in 
signal transduction via G protein when myristoyl group 
links the G protein to the inner surface of the plasma 
membrane allowing the G protein to interact with its 
receptor [37-40]. Myristoleic acid is biosynthesized from 
myristic acid by the enzyme delta-9-desaturase. This 
unsaturated fatty acid acylates an NH2 terminus of a pro- 
tein related to signal transduction in photoreceptors in the 
retina [41]. Furthermore, the presence of myristoleic acid 
is of diagnostic value in patients with defects of long- 
chain fatty acid oxidation [42], and it is known to be cy- 
totoxic to tumor cells. Myristoleic acid induces apoptosis 
and necrosis in human LNCaP prostate cancer cells [43].  

In contrast, palmitoylated proteins contain the 16- 
carbon saturated fatty acid palmitate, attached via a thio- 
ester linkage to one or more cysteine residues. Palmitoy- 
lation is a posttranslational reaction that appears to be 
mediated by a membrane-bound palmitoyl acyl trans- 
ferase. Unlike myristoylation, which is generally a rela- 
tively stable lipid modification, palmitoylation is reversi- 
ble through the thioester (S-acylation). Since linkage 
between the palmitate and protein is readily cleaved, cy- 
cles of palmitoylation and depalmitoylation occur in a 
regulated manner for many proteins [44]. 

Protein palmitoylation has been involved in numerous 
cellular processes, including signaling, apoptosis, and 
neuronal transmission [45]. Palmitoylation of proteins 
increases their hydrophobicity to promote protein-mem- 
brane association [46,47]. Modification of proteins 
through palmitoylation is involved in protein trafficking 
between organelles and in the segregation or clustering 
of proteins in membrane compartments [48-50]. Palmi- 
toylation allows the control of protein-protein interaction 
[51-53], lipid raft targeting [54], and intracellular traf- 
ficking [55,56].  

The palmitoylation process is involved in multiple 
diseases, such as degenerative Huntington’s disease, 
various cardiovascular and T-cell mediated immune dis- 
orders, and cancer [57].  

5. Effects Induced by Fatty Acids in the  
Cardiovascular System 

Cardiovascular disease (CVD) remains the leading cause 

of death worldwide, possibly as a result of population 
growth, increased longevity and exposure to risk factors 
associated with high blood pressure, obesity, hypergly- 
cemia and hyperlipidemia [58]. The severity of cardio- 
vascular problems has led to global concern and conse- 
quently to study of the relationship between CVD and 
dietary fat. Over the years, much research has been fo- 
cused on the effects and imbalance between SFA, mono- 
unsaturated fatty acids, polyunsaturated fatty acids 
(PUFA), trans-fatty acids (TFA), and most recently, 
conjugated linoleic acid (CLA). It has become clear that 
the relationship between total fat intake and CVD is re- 
lated more to the quality than to the quantity of fat con- 
sumed [59].  

5.1. Endothelium  

Endothelium, or intima, of the inner wall of blood vessels 
is a selectively permeable barrier between the blood and 
the vascular tissue, whose function is to mediate the in- 
tegrity and metabolism of vascular wall (i.e., vascular 
tone and inflammatory response) through synthesis and 
release of vascular modulators [60]. Therefore, distur- 
bance of endothelial function due to an imbalance in 
production and release of relaxing and constricting fac- 
tors has implications for the development of CVD [61]. 
One of the most potent vasodilator agents released from 
the endothelium is NO, a free radical with an ultrashort 
half-life and highly versatile functions. NO is synthe- 
sized by endothelial nitric oxide synthase (eNOS), an 
endothelial Ca2+-dependent enzyme modulated by palmi- 
toylation and myristoylation processes [62]. NO diffuses 
into smooth muscle cells (SMC) of the blood vessels and 
promotes vasodilation [63].  

Some studies have reported a modulating effect of 
FFAs on endothelium-dependent NO production. Chronic 
exposure to a 2:1 (w/w) mixture of oleate/palmitate sig- 
nificantly reduces NO production induced by phospholi- 
pase C-activating receptor agonists, such as bradykinin 
and ATP-dependent vasodilators, in bovine aortic endo- 
thelial cells [64]. In rat aortic endothelial cells, palmitic 
acid (PA) has been reported to decrease NO bioavailabil- 
ity via the pAKT/PeNOS/NO pathway [65]. However, 
the steroidogenic acute regulatory protein inhibits PA- 
induced-inflammation and attenuates impairment of NO 
bioavilability via pAKT/PeNOS/NO pathway. It also 
regulates the lipid metabolism, decreasing intracellular 
lipid levels in endothelial cells. Those actions may offer 
protection against endothelial dysfunction.  

Polyunsaturated fatty acids (PUFA), such as ei- 
cosapentaenoic acid (EPA) and docosahexaenoic acid 
(DHA) omega-3 fatty acids, are recognized to have bene- 
ficial effects against atherosclerosis [66]. The incorpora- 
tion of PUFA in the endothelial membrane phospholipids 
promotes synthesis of series 3 prostaglandins and series 5 

Copyright © 2013 SciRes.                                                                                  FNS 
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leukotrienes, favoring vasodilation and anti-aggregation 
[67]. It has been recently shown that EPA has cardio- 
vascular-protective effects via activation of protein 
kinase and up-regulation of the mitochondrial uncoupling 
protein-2 (UCP-2), leading to an increase in NO produc- 
tion [68]. The molecular mechanism underlying UCP-2 
upregulation is not known. The nuclear PPAR-gamma 
(PPARγ) receptors could be involved, since an agonist of 
PPARγ promoted a significant increase in UCP-2 ex- 
pression [68].  

More cellular and molecular studies at the level of 
palmitoylation and myristoylation should be conducted 
as these reactions play a key role in the regulation of the 
eNOS activity. The identification of those signaling 
pathways induced by EPA in endothelial cells opens a 
new avenue for potential drug development in the treat- 
ment of atherosclerosis or endothelial dysfunction in 
human hyperlipidemia. 

Endothelial dysfunction and associated inflammatory 
events are critical for the initiation of cardiovascular dis- 
eases such as atherosclerosis. The mechanisms by which 
selected fatty acids induce endothelial cell activation, 
oxidative stress, and inflammation are not fully under- 
stood. 

5.2. Vascular Smooth Muscle and Heart 

The Ca2+ channels and large-conductance calcium-acti- 
vated potassium (BK) channels operate as a functional 
unit in the regulation of smooth muscle tone in the blood 
vessels [69]. A recent study has shown that DHA me- 
tabolites (16,17-EpDPE) produced in the cytochrome 
P450 (CYP450) pathway induce vasodilatation through 
activation of BK channels in vascular smooth muscle 
cells [70,71]. Like DHA, EPA is metabolized by CYP. 
However, an EPA metabolite, 17,18-epoxyeicosatetra- 
noic acid, activates the vascular BK channels independ- 
ent of intracellular Ca2+ concentration or local sar- 
coplasmic reticulum Ca2+ release [72].  

As in the endothelium, CLA has protective effects on 
SMC by lowering the eicosanoid release from resting 
SMC; probably as a result of a reduced cellular pool of 
amino acids. CLA may compete with LA for the incor- 
poration into the membrane phospholipids, interfering 
with the production of amino acids, and in consequence 
with the production of its derivatives [73,74]. In acti- 
vated SMC, the reduction of cytokine-stimulated pro- 
stanoid release by cis-9, trans-11-CLA and trans-10, 
cis-12-CLA is mediated by the PPARγ-dependent inhibi- 
tion of the NF-κB pathway, which lowers the expression 
of genes involved in prostanoid synthesis. This action 
could contribute to the anti-inflammatory and anti- 
atherogenic effects induced by CLA [73,75].  

In cardiomyocytes, eNOS is linked with the plasma 
membrane by the saturated fatty acids, myristic and 

palmitic acids, and subsequent formation of a hetero- 
meric complex of eNOS with the caveolin-3 protein into 
the caveolae, which are small indentations in plasma 
membranes. The co-localization of caveolin-3 and eNOS 
may facilitate both eNOS activation by cell surface re- 
ceptors and NO release at the cell surface for intercellular 
signaling [76]. Palmitic acid induces deregulation of car- 
diovascular homeostasis by a decrease in the caveolin-3 
level, and consequently the translocation of eNOS from 
the plasma membrane to a perinuclear location in the 
cardiomyocytes, which is related to a decrease of the 
phosphorylation of eNOS at its Thr495 inhibitory site 
and decrease of NO production [77].  

Apoptosis may play an important role in the patho- 
genesis of several cardiovascular diseases, such as ische- 
mia, infarction and heart failure [78]. Autophagy has 
been recognized recently as an important modulator of 
apoptotic cell death [79]. Palmitic acid and TFA, such as 
vaccenic acid and elaidic acid induce apoptosis regulated 
by autophagy in cardiomyocytes and cardiomyoblasts, 
whereas EPA protects against palmitate-induced auto- 
phagy and apoptosis via the regulation of cardiolipin loss, 
translocation of Bcl-2-associated X protein (Bax) to the 
mitochondria, release of cytochrome c, and caspase-3 
activation [79-82].  

The mechanisms by which selected fatty acids induce 
endothelial cell activation, oxidative stress, and inflam- 
mation are not fully understood. Further studies will help 
to identify specific and selective endogenous and exoge- 
nous molecules capable of preventing the detrimental 
effects induced by SFA. 

6. Conclusions 

The “passive” role of FFAs as a source of energy, mainly 
in peripheral tissues but also in brain, has been well rec- 
ognized. FFAs are established biomarkers of neuronal 
membrane degradation and have directly toxic effect in 
the pathogenesis of ischemic-hypoxic brain damage.  

The “active” roles of unesterified fatty acids, such as 
the effects of polyunsaturated fatty acids on up- and 
down-regulation of gene expression or on FFAs cell sur- 
face G coupled receptor myristoylation and palmitoyla- 
tion, where they help to mediate and modify receptor 
signaling, are still poorly understood.  

The same poor understanding pertains to the active 
role of FFAs in endothelial function, where they may 
modulate endothelium-dependent nitric oxide production 
or mediate inflammatory reactions in endothelial dys- 
function. 

Understanding mechanisms of FFA actions in the body 
is crucial for prevention and new drug development for 
multiple diseases, such as metabolic and degenerative 
disorders, cardiovascular and T-cell mediated immune 
disorders, and various forms of cancer.  

Copyright © 2013 SciRes.                                                                                  FNS 
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Abbreviations  

FFAs  free fatty acids 
SFA   saturated fatty acids 
FFARs  multiple FFA receptors 
GPCR  G protein-coupled receptor 
FAT/CD36 fatty acid translocase 
FATP  fatty acid transport proteins 
FABPpm plasma membrane bound fatty acid bind-

ing protein 
CoA   coenzyme A 
FACS  fatty acyl-CoA synthase 
CPT1  carnitine palmitoyltransferase 1 
CAT   carnitine translocase 
CPT2  carnitine palmitoyltransferase 2 
TCA   tricarboxylic acid cycle 
IRS1   insulin receptor substrate-1 
NO   nitric oxide 
GSH   reduced glutathione 
ROS   reactive oxygen species 

3-NPA  3-nitropropionic acid 
AP1   activator protein-1 
PPARα peroxisome proliferator-activated recep-

tor-alpha 
NPs   nanoparticles 
CVD  cardiovascular disease 
SMC  smooth muscle cells 
PUFA  polyunsaturated fatty acids 
TFA   trans-fatty acids 
CLA   conjugated linoleic acid 
LA   linoleic acid 
eNOS  endothelial nitric oxide synthase 
EPA   eicosapentaenoic acid 
DHA  docosahexaenoic acid 
UCP-2  uncoupling protein-2 
CYP450  cytochrome P450 
BK   calcium-activated potassium channels 
Bax   Bcl-2-associated X protein 
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