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ABSTRACT 

We consider sparse signals embedded in additive white noise. We study parametrically optimal as well as tree-search 
sub-optimal signal detection policies. As a special case, we consider a constant signal and Gaussian noise, with and 
without data outliers present. In the presence of outliers, we study outlier resistant robust detection techniques. We 
compare the studied policies in terms of error performance, complexity and resistance to outliers. 
 
Keywords: Sparse Signals; Detection; Robustness; Outlier Resistance; Tree Search 

1. Introduction 

In recent years, some refreshed interest has been given to 
sparse signals, by the signal processing community [1,2], 
while the effective probing/transmission of such signals; 
previously denoted bursty, has been addressed by both 
tree-search [3,4], and random access algorithms [5]. The 
revisited investigation of sparse signals has focused on 
linear transformations [1,2], while the term robustness 
has been used loosely in [1].  

In this paper, we focus on the detection of sparse sig- 
nals embedded in white Gaussian noise with the possible 
occasional occurrence of data outliers. We study both op- 
timal and sub-optimal detection techniques, when data 
outliers are considered both absent and present. In the 
latter case, we consider robust detection techniques, 
where robustness is here precisely defined as referring to 
outlier resistant operations [6,7]. We compare our tech- 
niques in terms of error performance, complexity and 
resistance to outliers. 

The organization of the paper is as follows: In Section 
2, we state the fundamental general problem, present 
assumptions and notation, and determine, as well as par- 
tially analyze, the general optimal detector. In Section 3, 
we present and analyze the optimal detector for the case 
of white Gaussian noise and constant signal, when no 
outliers are considered in the design. In Section 4, we 
present and analyze the robust (outlier resistant) detector. 

In Section 5, we present and evaluate tree-search sub- 
optimal detectors. In Section 6, we include discussion 
and conclusions. 

2. Problem Statement and General Solution 

We consider a sequence of observations generated by 
mutually independent random variables, a small per- 
centage of which represent signal embedded in noise, 
while the remaining percentage represent just noise. Let 
it be known that the percentage of observations repre- 
senting signal presence is bounded from above by a 
given value α. We assume that the random variables rep- 
resenting the signal are identically distributed, and that so 
are those representing the noise. We denote by 1, , nx x , 
a sequence of n such observations, while we denote by 

1, , nX X

, , n

, the sequence of mutually independent ran- 
dom variables whose realization is the sequence 

1x x . We also denote by f1(.) either the probability 
distribution (for discrete variables) or the probability 
density (for absolutely continuous variables) function 
(pdf) of the variables which represent signal presence, 
while we denote by f0(.) the pdf of the variables which 
represent just noise.  

Given the observation sequence 1, , nx x  and as-
suming f1(.), f0(.),  known, the objective is to identify 
the locations of the signal presence; that is, which ones of 
the 1, , nx x  observations originated from the f1(.) pdf.  
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Our approach to the problem solution will be Maxi-
mum Likelihood (ML); which is equivalent to that of  
the Bayesian minimization of error probability approach, 
when all signal locations and their number are equally 
probable [7]. That is, given the sequence 1, , nx x

, , mi i
, the 

optimal detector decides in favor of the ; 0  m 
 n signal locations if: 

1
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Via some straight forward modifications of the ex-
pression in (1), we may then express the optimal ML 
detector as follows:  

Optimal ML Detector 
1) Given the sequence 1, , nx x , compute all g(xj); 1 

 j  n 
2) If g(xk)  0; for all k, 1  k  n, then, decide that no 

observation contains signal. 
3) If  a set of integers ; 1  m  n: g(xk)  

0;  for all   and g(xk)    0;  for all 

, then decide that the observations con-  

 1, , mi i

i








m

 1, , mk i 

i 1, , mk i 
taining the signal are all those with indices in the set 

.  1, , mi i
4) If  a set of integers ; m  n: g(xk)  0; 

for all  and g(xk)  0; for all 

 1, , mi i

 1, , mk i i 

 1, , mk i i  , then decide that the observations con-  

taining the signal are those whose indices k are contained 
in the set  and whose g(xk) values are the n 
highest in the set. 

 1, , mi i

Considering the log likelihood ratio in (2), let hi(w) 
and Hi(w); i = 0, 1, denote, respectively, the pdf and the 
cumulative distribution function of the random variable 
g(X) at the value point w, given that the pdf of X is fi, i = 
0, 1. Let Pd(0) denote the probability of correct detection 
induced by the optimal ML detector, given that no ob-  

servation contains signal. Let, instead,  1, ,dP i i   

denote the probability of correct detection , given that the 
indices of the observations containing signal are given by  
the set  . Then, assuming absolutely continu-  1, , mi i
ous {Xi} random variables; without lack in generality, we 
obtain the following expressions; without much difficulty, 
where n is assumed an integer; for simplicity in nota-
tion: 
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(3) 
Remarks 
It is important to note that the optimal detector pre- 

sented above assumes no knowledge as to any structure 
of the sparse signal and requires n-size memory, as well 
as ordering of the positive g(xk) values, inducing com- 
plexity of order nlogn. If, on the other hand, a structure 
of the signal is known a priori and is such that it appears 
as a bursty batch, then, the sequential algorithm in [7-9] 
that monitors changes in distribution should be deployed 
instead; it requires no memory and its complexity is of 
order n. 

3. Constant Signal and White Gaussian 
Additive Noise 

In this section, we consider the special case where the 
signal is a known constant   0, and the noise is zero 
mean white Gaussian with standard deviation . After 
some simple straight forward normalizations, the optimal 
ML detector of Section II takes here the lollowing form: 

Optimal ML Detector 
1) Given the sequence 1, , nx x , compute all (xi – 

/2); 1  j  n 
2) If (xk – /2)  0; for all k, 1  k  n, then, decide that 

no observation contains signal. 
3) If  a set of integers  1, , mi i ; 1  m  n: (xk – 

/2)  0; for all  , , mi1k i   and (xk – /2)  0; for all 

 1, , mk i i  , then decide that the observations con-  

taining the signal are all those with indices in the set  
 1, , mi i . 

4) If  a set of integers  1, , mi i ; m  n: (xk – /2) 

 0; for all  1, , mk i i   and (xk – /2)  0; for all 

 i1, , mk i  , then decide that the observations con-  

taining the signal are those whose indices k are contained 
in the set  1, , mi i  and whose (xk – /2) values are the 
n highest in the set. 

As to the probabilities of correct detection, defined in 
Section 2, they take the following form here, where (x) 
and (x) denote, respectively, the pdf and the cumulative 
distribution function of the zero mean and unit variance 
Gaussian random variable and where αn is assumed 
again to be an integer : 

  1, ,    ; 0
2

n

d mP i i m n
 


         
  
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(4) 

Remarks 
It is interesting to note here that if it is known that the 

signal may appear as a set bursty batches of unknown 
sizes, then the re-initialization sequential algorithm in [8] 
will sequentially detect the beginning and the ending of 
each batch with minimal complexity, no memory re- 
quirements and with accuracy increasing with the sig- 
nal-to-noise ratio and the size of each batch. Let then Tn 
denote the value of the algorithm which detects the be-
ginning of such a batch, upon the processing of the nth 
datum xn from its beginning. Let Wn denote the value of 
the algorithm which detects the ending of the batch, upon 
processing the nth

 datum yn from the beginning of its ini- 
tialization. The whole algorithmic system operates then 
as follows, where 0 and 1 are two positive thresholds 
pre selected to satisfy power and false alarm trade offs: 

1) Process the observed sequence 1, , nx x  sequen- 
tially starting with the algorithm {Tn} whose values are 
updated as follows: 

0 0T   

1 1max 0,
2n n nT T x


 
   
 

  

Stop the first time n, such that Tn  0 and declare n as 
the time when the signal batch begins.  

Then, switch immediately to the algorithm {Wn} 
whose values are updated as follows, where time zero 
denotes the time when the algorithm begins and where yn 
denotes the nth observed datum after the latter beginning: 

2)  0 0W 

1 1max 0,
2n n nW W y


 
   
 



k

 

Stop the first time n, such that Wn  1 and declare that 
the signal batch has ended. 

We now express a Corollary which will be useful in 
the computation of bounds for the probability of correct 
detection in (4). The expressions in the Corollary are 
derived from recursive relationships produced via inte- 
gration by parts and can be proven easily by induction. 

Corollary 
The following equations hold: 
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Lemma 1 below utilizes the results in the Corollary, to 
express two lower bounds for the probability of correct 
detection in (4). The bound in (9) is relatively tight for 
low signal-to-noise ratio values /. The bound in (10) is 
relatively tight for high signal-to-noise ratio /, in- 
stead. 

Lemma 1 
The probability of correct detection in (4) increases 

monotonically with increasing value of the signal-to- 
noise ratio /, converging to the value 1 as / reaches 
asymptotically large values. This probability is bounded 
from below as follows, assuming that n is an integer; 
for simplicity in notation: 
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Proof 
Considering / asymptotically large, we first appro- 

ximate        by 1, in Expression (4). We then, 
use expression (5) and consider again asymptotically 
large values of /. The result proves that the probability 
in (4) converges to 1, as / approaches infinity. 

To derive the bound in (9), we first bound 
       from below by (–w) in the integrand of 

expression (4). Then, we use Equation (7) on the result- 
ing integral expression. 

To derive the bound in (10), we bound        
from below by: 1) (/); for negative w values and 2) 
by (–w); for positive w values. We then use Expres- 
sions (5) and (8) from the Corollary.  

Lemma 2 below states a probability of correct detec- 
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tion result for the case where the percentage of signal- 
including observations and the signal-to-noise ratio are 
both very small. 

Lemma 2 
Let   0 and /  0. Then, the probability of cor-

rect detection in (4) is of order n n(/). 
Proof 
We brake the integral in (4) into two parts: the part 

from − to 0 and the part from 0 to /2. For the first  

part, we expand    1 n
  


     via Taylor series  

expansion to first order / approximation. For the sec- 
ond part, we approximate the integral by /2 times the 
value of the integrand at zero. Then, we approximate 1 – 
  1. As a result, we then obtain: 
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We note that, in general, the probability of correct de- 
tection induced by the ML optimal detector is of the or- 
der  2

n
   , increasing exponentially to 1; with 

increasing signal-to-noise ratio /, while it is also de- 
creasing exponentially to 0; with increasing sample size. 

4. The Outlier Resistant Detector 

In this section, we consider the case where extreme occa- 
sional outliers may be contaminating the Gaussian envi- 
ronment of Section 3. Then, instead of white and Gaus- 
sian, the noise environment is modeled as white with pdf 
belonging to a class F of density functions, defined as 
follows, for some given value  in (0, 0.5), where ε 
represents the outlier contamination level: 

F = {f;   01f f h    , f0 is the Gaussian zero 
mean and standard deviation  pdf, h is any pdf}. 

The outlier resistant robust detector is then found 
based on the least favorable density f* in class F above, 
where the Kullback-Leibler number between f* and its 
shifted by location parameter  version attains the in-
fimum among the Kullback-Leibler numbers realized by 
all pdfs in F [6,7]. As found in [7], the log likelihood 
ratio in (2) is a truncated version of that used in Section 3, 
As a result, for   0, the ML robust detector is operating 
as follows: 

Robustl ML Detector 
1) Given the sequence 1, , nx x , compute all  

  2iz x    ; 1  j  n, where, 
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2) If   2kz x  0   ; for all k, 1  k  n, then, de-  

cide that no observation contains signal. 
3) If  a set of integers  1, , mi i ; 1  m  n:  

  2 0kz x     ; for all  and  1, , mk i i 

  2kz x  0   ; for all, then decide that the observa-  

tions containing the signal are all those with indices in  
the set  1, , mi i . 

4) If  a set of integers  1, , mi i ; m  n:  

  2 0kz x     ; for all  and   1, , mk i i 

  2kz x  0   ; for all , then decide   1, , mk i i 
that the observations containing the signal are those  
whose indices k are contained in the set  and 

whose 

 1, , mi i

  2kz x     values are the αn highest in the 

set. 
We will denote by   1, ,r

do mP i i  the probability of 
correct detection induced by the robust ML detector, 
given that the noise is Gaussian containing no outliers 
and given that the signal occurs at the observation indices  

 1, , mi i . Then, we can derive the expressions below,  

with some extra caution, assuming again that αn is an 
integer: 
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



    

                         



(14) 

Comparing Expressions (4) and (14), we notice that 
the robust detector induces lower probability of correct 
detection at the nominal Gaussian model; for the case of 
m = n, where the difference of the two probabilities 
decreases monotonically with decreasing contamination 
level ε. As we will see in the sequel, this loss of per- 
formance of the robust detector at the nominal Gaussian 
model is at the gain of resistance to outliers.  

Let there exist a small positive value ς, such that the 
noise per observation is zero mean Gaussian; with prob- 
ability 1 − ς, and is an infinite positive value y; with 
probability ς. We express below the probabilities  

        (12) 

Copyright © 2013 SciRes.                                                                                 JSIP 



Parametrically Optimal, Robust and Tree-Search Detection of Sparse Signals 340 

 1, ,dP i i  m m and  induced by this   1, ,r
dP i i 

outlier model and the optimal ML detector in Section 3 
versus the robust detector, respectively.  
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(16) 
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                  

                   



1

;

 

(17) 

Comparison between Expressions (16) and (17) re-
veals that the robust detector attains higher probability of 
correct detection than the detector in Section 3; in the 
presence of the extreme outliers, where the difference of 
this performance increases with increasing ς value. 

Remarks 
If it is known that the signal may appear as a set of 

bursty batches of unknown sizes and protection against 
data outliers is needed, then, the robust re-initialization 
sequential algorithm in [9] will sequentially detect the 
beginning and the ending of each batch with minimal 
complexity, no memory requirements and with accuracy 
increasing with the signal-to-noise ratio and the size of 
each batch. Let then  denote the value of the robust 
algorithm which detects the beginning of a signal batch, 
upon the processing of the nth datum xn from its begin-
ning. Let  denote the value of the robust algorithm 
which detects the ending of the batch, upon processing 
the nth datum n  from the beginning of its initialization. 
The whole algorithmic system operates then as follows, 
where 0

r
nT

r
nW

y

r  and 1
r  are two positive thresholds pre se- 

lected to satisfy power and false alarm trade offs and 
where z(x) is as in (12): 

1) Process the observed sequence 1, , nx x  sequen-  

tially starting with the algorithm  whose values are   r
nT

updated as follows: 

0 0rT   

 1 1max 0,
2

r r
n n nT T z x


 

   
 



r

 

Stop the first time n, such that 0
r

nT   and declare n 
as the time when the signal batch begins.  

Then, switch immediately to the algorithm  r
nW  

whose values are updated as follows, where time zero 
denotes the time when the algorithm begins and where yn 
denotes the nth observed datum after the latter beginning: 

2) 0 0rW   

 1 1max 0,
2

r r
n n nW W z y


 

   
 



r

 

Stop the first time n, such that 1
r

nW   and declare 
that the signal batch has ended. 

5. Suboptimal Tree—Search Detectors 

In this section, we consider the special case where the αn 
components of the sparse signal are spread relatively 
evenly across the n members of the observation set. Then, 
we wish to devise a detector whose objective is to iden-
tify the presence of isolated signal—including observa-
tions within clusters of signal-absent observations. In this 
case, we may draw from the information theoretic con-
cepts of noiseless source coding to devise tree-search- 
type detectors for sparse signals, as was done for the 
transmission/probing of bursty signals [3,4]. In particular, 
referring to the notation and model in Section 2, where 
f1(.) and f0(.) are the pdfs of signal-including versus sig- 
nal-absent observations, respectively and where 

      1 0logg x f x f x , we define a tree-search de- 

tector as follows, considering for simplicity in notation 
that the size of the observation set is a power of 2: 

Tree—Search Detector 
1) Given the sequence 1, , Nx x , compute all g(xj); 1 

 j  N = 2n. 
2) Utilize a sequence {βk} of given algorithmic con-

stants as: 

a) If  
1

N

k
k

g x n


 , then, decide that at most a single  

signal component is contained in the sequence  

1, , Nx x
N
.and stop. 

b) If  
1

k
k

g x n






, then, create the two partial sums 


2

1

N

kg
k

x

  and  

1
2

N

k
N

g x


 . 

c) Test each of the two sums in b) against the constant 
βn–1 and go back to steps a) and b). 

3) In general, the observation set 1, , Nx x  is se-
quentially subdivided in powers of 2 number of portions, 
until the subdivision stops. If, during the algorithmic 
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

l

process, the observations with indices ; m = 2l 
are tested, then,  

 1, , mi i
 1 1 2

1 2 1 2 2
n l

n l
ln n ld  


  

 
   

1

nl

     (20) 

a) If  
1

k

m

i
k

g x 


 , then, decide that at most a single 

signal component is contained in the sequence 

Proof 
For the proof, we consider that a single signal compo- 

nent per 2n–l observations is present. Then, we express Pd 
(l, n) as the probability that two independent sums of 
such 2n–l observations are each smaller than βn–l, while 
their sum is larger than βn–l+1. 

1x , , Nx   

and stop. 

b) If  
1

k

m

i
k

g x l






, then, create the two partial sums  


2

1
ki

It is relatively easy to conclude that the probability of 
correct decision in (18) is increasing with increasing sig- 
nal-to-nose ratio θ/σ, as well as with increasing differ- 
ence n – l. It is also relatively simple to conclude that the 
βn–l and βn–l+1 values should be of 2–(n–l) order; for as- 
ymptotically large values of the difference n – l. We may 
select the specific values of the constants βn–l and βn–l+1 
based on a maximization of correct detection criterion, as 
stated in Lemma 4 below. 

m

k

g x

  and  

1
2

k

m

i
m

k

g x
 

 . 

c) Test each of the two sums in b) against the constant 
βl–1 and go back to steps a) and b). 

When the signal—including observations are uni- 
formly distributed across all observations, the operational 
complexity of the tree—search detector is of order [logm] 

N; where m is the number of signal-including compo-
nents and N is the size of the observation set. The error 
performance of the tree—search detector may be studied 
for general pdfs, asymptotically: that is when the obser-
vation set is asymptotically large and each signal—in- 
cluding observation component is isolated in the middle 
of an asymptotically large population of signal—absent 
observations. Then, the central limit theorem provides 
probability of correct detection expressions which are 
functions of the Kullback—Leibler numbers between the 
pdfs f1(.) and f0(.). However, in this section, we will focus 
on the constant signal and additive Gaussian noise model 
of Section 3, where the function g(x) in the description of 
the tree—search detector equals x – θ/2. In the latter case, 
we express the induced probabilities of correct detection 
in Lemma 3, below. 

Lemma 4 
Let a constant signal θ be additively embedded in 

white zero mean Gaussian noise with standard deviation 
σ. Let the signal  occur with probability q per observa- 
tion, independently across all N = 2n observations. Let Pd 
(n – l, q) denote then the probability of correctly deciding 
between at most one and at least two signal components 
in 2n–l observations, via the use of the tree-search con- 
stant βn–l. The constant βn–l may be selected as that which 
maximizes the probability Pd (n – l, q), where the latter is 
given by the following expression. 

         

   

2 2

0 1

2
2

2

, 1 2 1
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n l
n l

n l
d nl

n l
kk

nlk
k

P n l q q c q q c

q q c
k

 











      

 
    

 


(21) Lemma 3 
where, Let a constant signal θ be additively embedded in 

white zero mean Gaussian noise with standard deviation 
σ. Let m =2l be the number of signal components, given 
that they are spread uniformly across a total of N = 2n 
observations, where n > l. Let the constants {βk} used by 
the tree–search detector be such that: βk < 2βk–1; for all 2 
≤ k ≤ n. Then, the probability, Pd(l, n), of correct detec-
tion induced by the tree-search detector is given by the 
following expression, where this probability is condi-
tioned on the above uniform signal spreading assumption 
(see Equation (18)). 

 12n l
clk n l n lc k  

             (22) 

22

n l
n l n l







                (23) 

22
n l n l




                (24) 

For signal-to-noise ratio / asymptotically small, for  

n – l  2 and 
1

2 12
n l

q



 , the constant βn–l is given by  where, 

 1 1 22 1 2
n l

n l
ln n lc   


  


            (19) 

Equation (25) below, where it can be then shown that 
βn–l+1  2βn–l.  
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
                    (18)
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

 


  
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     (25) 

Proof 
Expression (25) is derived in a straight forward fash- 

ion. When / is asymptotically small, we use first order 
Taylor expansion approximations with respect to the n–l 
(defined in (24)) of the (.) functions in (21). Subse- 
quently, we find the maximizing n–l (defined in (23)) 
value of the resulting expression, as given by (25). 

We note that we may “robustify” the tree-search de- 
tector at the Gaussian nominal model, by using, instead, 
g(x) = z(x) – θ/2; for z(x) as in (12). The error perform- 
ance of the robust tree-search detector may be then stud- 
ied asymptotically. We will not include such asymptotic 
study in this paper. 

6. Discussion and Conclusion 

In this paper, we investigate the problem of detecting 
sparse signals that are embedded in noise. The effective 
solution of the problem requires clear modeling of any a 
priori knowledge available to the designer. We first pre- 
sent and analyze the problem solution when only the 
highest percentage of signal-including observations is a 
priori known. In the latter case, we consider the special 
case of a constant signal embedded in additive white 
Gaussian noise and presented both parametric and outlier 
resistant solutions. Secondly, we present an efficient so-
lution to the problem when it is a priori known that the 
signal occurs in bursty batches. Finally, we present a 
tree-search solution approach for the case when the 
sparse signal is known to be uniformly distributed within 
the observations set. We analyze all our approaches in 
terms of probability of correct detection performance and 
complexity. 
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