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ABSTRACT 

We briefly describe the importance of division algebras and Poincaré conjecture in both mathematical and physical 
scenarios. Mathematically, we argue that using the torsion concept one can combine the formalisms of division algebras 
and Poincaré conjecture. Physically, we show that both formalisms may be the underlying mathematical tools in special 
relativity and cosmology. Moreover, we explore the possibility that by using the concept of n-qubit system, such con- 
jecture may allow generalization the Hopf maps. 
 
Keywords: Division Algebra; Poincaré Conjecture; n-Qubit Theory 

1. Introduction 

It is known that if there exist a real division algebra then 
the -dimensional sphere  in  is parallelizable 
[1-3]. It is also known that the only parallelizable spheres 
are  and  [4] (see also Ref. [5]). So one con- 
cludes that division algebras only exist in 1, 2, 3 or  
dimensions (see Refs. [6-10] and references therein). It 
turns out that these theorems are deeply related to the Hopf 
maps, ,  and  
[4]. Focusing on , it is intriguing that none of these 
remarkable results seem to have been considered in the 
proof the the original Poincaré conjecture [11-13], which 
establishes that any closed simply connected 3-manifold 

 is homeomorphic to . In fact, until now any 
proof of the Poincaré conjecture associated with  is 
based in the Ricci flow equation [14] (see also Refs. 
[11-13]), but the parallelizabilty of  (or any 
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manifold) is not even mentioned. The main goal of this 
work is to establishes a link between the concept of pa- 
rallelizability and the Ricci flow equation. We also ex- 
plain a number of physical scenarios where such a link 
may be important, including special relativity, cosmo- 
logy and Hopf maps via -qubit systems (see Ref. [15] 
and Refs. therein). 

n

n

D

Before we address the problem at hand it is worth 
making a number of comments. Let us start mentioning 
that it has been shown that division algebras are linked to 
different physical scenarios, including, superstrings [16] 

and supersymmetry [17,18]. Even more surprising is the 
fact that division algebras are also linked to quantum 
information theory via the -qubit theory (see Refs. 
[19-21]). Mathematically, division algebras are also con- 
nected with important arenas such as K-theory [6]. If a 
division algebra is normed then one may also introduce 
the four algebras; real numbers, complex numbers, 
quaternions and octonions (see Ref. [10]). On the other 
hand the Poincaré conjecture seems to be useful in the 
discussion of various cosmological models (see Refs. 
[22-25]) and the study of gravitational instanton theory 
[26]. 

One may ask ourselves: Are all this links a coin- 
cidence? or there is in these links a deep underlying 
message? An indicator that starting with division 
algebras one may obtain a deep physical result is illu- 
strated by superstrings. In fact, in this case the dimen- 
sionality of the spacetime it is not putted by hand but is a 
prediction of the theory. It turns out that at the quantum 
level one finds a consistent superstring theory only when 
the dimension of the spacetime  takes values in the 
set  3,4,6,10E 

2n D
. Considering light-like coordinates 

such that    one realizes that E can be reduced 
to the set  1, 2,4,8 . But  corresponds exactly to 
the only dimensions where a division algebra may exist 
(see Ref. [16] for details). From this perspective one may 
say that in a sense the dimensions where a quantum 
consistent superstring theory may exist are predicted by  
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division algebras. Another scenario where the division- 
algebra/Poincaré-conjecture correspondence may play a 
physical important role is in instanton theory. In this case 
the Hopf maps determine the different structures of 
instanton solutions (see Ref. [26]). 

Let us start introducing the metric tensor 

 .c
ab ab x 

a

                (1) 

Here, x  is a coordinate patch in a -dimensional 
manifold 

n
nM . We also introduce a Riemann symmetric 

connection  and the totally antisymmetric 
torsion tensor ab ba . Geometric parallelizability of 

c c
ab ba  

cT T  c

nM  means the “flattening” the space in the sense that 

  0,a e
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ab ab abT   

0.a e a e
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where 
a a a

bcd c bd d bc ec         (3) 

is the Riemann curvature tensor, with 

.                  (4) 

By substituting (4) into (3) one finds 
a a a
bcd c bd d bc ec bR D T D T T       (5) 

Here, c  denotes a covariant derivative with   as 
a connection and 

.a e a e
bd ed bc  

a
bcdR

[ ] ,e
bda e bd a cT T

a a a
bcd c bd d bc ecR            (6) 

Using in (5) the cyclic identities for  one gets 

cD T                 (7) 

where 
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Substituting (7) into (5) one obtains the key formula 

abcd eabR T             (9) 

For a -dimensional sphere  with radius  we 
have, g  , 

  ,bd ad bcg g g2

1
abcd acR g

l
          (10) 

where abg  is the metric on , and therefore one gets 
the expression 

nS

 2

1
[ ]

e e
ac bd ad bc eab cd e ab c d .g g g g T T T T

l
  

ac

    (11) 

Contracting in (11) with g  and ac
fT  it leads to the 

first and the second Cartan-Shouten equations 

  21 ,abn l g 

  24 ,abcn l T 

1 3,S S 7S
n n

cd
a bcdT T           (12) 

and 
d f e

ea db fcT T T          (13) 

respectively. Durander, Gursey and Tze [27] noted that 
(12) and (13) are mere covariant forms of the algebraic 
identities derived in normed division algebras. It turns 
out that (12) and (13) can be used eventually to prove 
that the only parallelizable spheres are  and  
[5]. In general, however, for other -manifolds M  
the expressions (11)-(13) do not hold. 

nIf the only condition is that M  is parallelizable one 
may start with (9) instead of (11). In this case, one finds 
that contracting (9) with acg  leads to 

.                 (14) cd
ab a bcdR T T

cR R

3S
n

2 2 2 2 2ds dx dy dz dw   
3S
2 2 2 2 2 ,

Here,  is the Ricci tensor. ab acb

Before we relate (14) with de Ricci flow equation used 
in the Poincaré conjecture let us recall how (10) is ob- 
tained. We shall focus on , but in straightforward way 
one can generalize the method to any -sphere. Con- 
sider the line element 

.         (15) 

The sphere  can be defined by the constraint 

x y z w l   

l

 

             (16) 

where  is constant. From (16) one sees that 

 1 2
2 2 2 2 .w l x y z   

 

         (17) 

Rigorously, one must write  

 1 2
2 2 2 2w l x y z    1 



2 2a b
abds dx dx dw 

 

, with . But it turns  

out that our computations are independent of . Further- 
more, it will be useful for further computations to write 
(15) and (17) in the form 

            (18) 

and 
1 22 ,a b

abw l x x  

ab

             (19) 

respectively. The symbol   is a Kronecker delta. 
From (19) one obtains 

 1 22
,

a
a

c d
cd

x dx
dw

l x x 






b
bx x

            (20) 

where a a

2 ,a b
abds dx dx g

 

. So, substituting (20) into (18) yields 
the line element 

                (21) 

with 

2
a b

ab ab c d
cd

x x
g

l x x



 



ab

.           (22) 

The inverse g  of abg  is given by 

2

a b
ab ab x

.
x

g
l

                   (23) 
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Moreover, using (22) and (23) one finds that the Chris- 
toffel symbols  become a

cd

2

1a a
cd cdx .g

l
 

  ,aw x

               (24) 

Considering (6), it is straightforward to see that the 
Riemann curvature tensor associated with (24) is given 
by the expression (10). 

Now we would like to generalize the key constraint 
(19) in form 

                 (25) 

where   is an arbitrary function of the coordinates ax . 
In this case, the metric ab  becomes 

,ab a bab      
ab

             (26) 

while the inverse   is given by 

.
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a b

c
c
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The Christoffel symbols become 

.
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e
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 
  

abcdR

                 (28) 

After lengthy but straightforward computation one 
discovers that the Riemann tensor  obtained form 
(28) is 

 .ad bc

1

1abcd ac bde
e

R      

 

 
 

  
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One can verify that when one considers the particular 
case 

1 2
,a b

abl x x 2                (30) 

then (10) follows from (29). 
Let us now consider the Ricci flow evolution equation 

[14] (see also Refs. [11-13] and references therein) 

2 .ab
abR

t


 


c

abR R
 t

3

               (31) 

Here, as before, acb  is the Ricci tensor. In this 
case the metric ab  is understood as a family of 
Riemann metrics on M . It has been emphasized that 
the Ricci flow equation is the analogue of the heat 
equation for metrics ab . The central idea is that a 
metric ab  associated with a closed simply connected 
manifold  evolves according to (31) towards a 
metric ab

3
g  of . Symbolically, this means that in 

virtue of (31) we have the metric evolution ab

3S

abg 



  is a parallelizable manifold. We shall also assume 

that 
obs

, 
which in turn must imply the homeomorphism  

. 3 3S
The question arises whether one can introduce the 

parallelizability concept into (31). Let us assume that 
3

3  is determined by the general constraint (25). 
First erve that using (14), in this case the Ricci Equa- 
tion (31) can be written as 

2 .cd
a bcdT T

t
 


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This is a interesting result because it means that the 
ev

ab

olution of ab  is determined by the torsion tensor 
a

bcT . Moreover ombining (9) and (29) one derives the 
mula 
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which, using (26), allows to write (32) in the form 

 2

1
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e


.
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In the case of 3S  manifold, using (10) or (12) one 
ob yp

     

tains a Einstein t e metric 

2ab abR g
l

                  (35) 

and the evolution equation becomes 

2

2
.ab

4abg
g

t l
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
               (36) 

This type of equation is discussed extensively in 
re

ab



ferences [11,13]. The relevant feature is that from the 
solution one sees that at large times evolution behavior of  

g  is    2
1 0g t t g   , where 

2ab abl 
 

 0g  corre-  ab

sponds to an initial condition for the metric. In this case  

one has    0R t R  and therefore since ab ab 2l

one has uniform contraction with singularity at 

2
0  

2

2

l
t    

 physical scenarios where the 
di

(see Ref. [13] for details). 
Let us now discuss some
vision-algebra/Poincaré-conjecture correspondence may 

be relevant. Let us start by first recalling the Einstein 
field equations with cosmological constant  , 

1
0.

2ab ab abR R                 (37) 

It is known that the lowest energy solution of (37) 
co

 i
rresponds precisely to 3S  (or to nS  in general). In 

this case the cosmological constant  s given by  

2l

2
  . This can be verified using (1  and (37) (Actually 0)

this solution can be understood as a De Sitter type 
solution.). The question arises: how can be understood a 
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metric solution ab  of (37) associated with both 3  
and the Ricci flow equation? Thinking about quan  
mechanics analogue one may argue that one may vis- 
ualize 3  as a excited state which, according to the 
Poincaré c njecture, must decay (homeomorphically) to 

3S . Symbolically one may write this as 3 3S . 
Considering the transition 3 S scove

tum

o

3  we di r 
th one may at even in special relativity find this kind 
process. Consider the well-known time dilatation formula 

2

2

.

1

dt

c

d



v
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H , of course ere   is th oper time, c  is the light 
ve e

s

e pr
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relativistic object in three dimen ions, namely  
2 2 2 2

x y zv v v  v . It is not difficult to see that 
s 

2v

(38) can 
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2 2 2
0 ,zv v c               (39) 



also be
2

x yv 

where 


0

d

d

c
v

t


 . One can understand the constraint  

 a formula in 

rm

 , , .

(39) as the space of velocities (tangent space) 
which determines a 3

vS  manifold. So, one wonders 
what could be the corresponding generalized 3-mani- 
fold 3

v . One may consider in an extension of (39) in 
the fo  

0 x y zv v v v               (40) 

But in this case, the question arises whether the light 
ve

e





locity c  itself may be understood as excited state  . 
Hence, th  evolution process  

  2 2 2, , 2
x y z x y zv  may be understood  

as th sition c . This ma
city 

n

sible appli- 
ca

 
sitio

prec
hr

(see Ref. [25] for details) used to study cosmological  

de
re correspondence in qu- 

bi


f map for 

higher N -qubit states. Therefore, from the p

to t

7 
o a more ge

o remember th

about two 
topics where our formalism may have some interest. The 
fir

v v v c v v    

e tran y be relevant to con- 
sider the light velo c  not as a given constant but as 
a result of evolution tra sition. It may be interesting to 
see what the torsion means in this context. 

In a cosmology context we also find a pos
tion of the division-algebra/Poincaré-conjecture link. It 

is known that topologically, the standard Friedmann- 
Lemaitre-Robertson-Walker universe corresponds to a 
time evolving radius of a 3S  space. In Reference [22] it 
argues that if this universe modified in 3 , at the end 
the acceleration may produce a phase tran n changing 

3  to a space of constant curvature which corresponds 
isely de Sitter phase associated with 3S . Another 

point of view is that since the Thurston t ee-dimen- 
sional geometrization conjecture (a generalization of the 
Poincaré conjecture) requires one to understand all 
locally homogeneous geometries on closed three mani- 
folds, using Ricci flow one may consider Bianchi classes 

models in a general context [28]. What one may add to 
this scenario is that such a transition may require a tor- 

is 

sion in order to make 3S  (or other Bianchi cosmo- 
logical models) parallelizable. 

We would also like to scribe an application of Di- 
vision-algebra/Poincaré-conjectu

ts theory. It has been mentioned in Ref. [19], and 
proved in Refs. [20] and [21], that for normalized qubits 
the complex 1 -qubit, 2 -qubit and 3 -qubit are deeply 
related to division algebras via the Hopf maps, 

13 2SS S , 
37 4SS S  and 

715 8SS S , respec- 
tively. It seems that there does not exist a Hop

erspective 
of Hopf maps, and therefore of division algebras, one 
arrives he conclusion that 1-qubit, 2-qubit and 3-qubit 
are more special than higher dimensional qubits (see 
Refs. [19-21] for details). Considering the 2-qubit as a 
guide. One notice that 3S  plays the role of fiber in the 
map 

37 4SS S . Thus, in principle one may think in a 
more general map 

3 4   in turn this may 
lead t neral 2-qubit system, which one may 
call 2-Poinqubit (just t at this is a concept 
inspired by Poincaré conjecture). At the end one may be 
able to obtain the transition 2-Poinqubit2-qubit. Of 
course one may extend most of the arguments developed 
in this work to the other Hopf maps 

13 2SS S  and 
715 8SS S . 

Finally, it is tempting to speculate other 

st one refers about a possible generalization of the 
Ricci flow Equation (31) to a complex context. In this 
case the metric ab  and the Ricci tensor abR  may be 
complexified ab ab   and ab abR  , respectively. 
But if this is th ase then instead of (31) one must 
consider a Sch pe equ

e c
rödinger ty ation 

2 ,ab
abi

t


 


                (41) 

for the evolving complex metric ab . The second topic 
is about a possible connection of the Poincaré conjecture 
with oriented matroid theory [29] (see also Refs. [30-35] 
and references therein). This is because to any sphere 

nS  one may associate a polyhedron which under stereo- 
graphic projection corresponds to a graph in 1nR  . It 

ns out that matroid theory can be understood as a 
generalization of graph theory and therefore it  be 
interesting to see if there is any connection between 
oriented matroid theory and Poincaré conjecture. In fact 
in oriented matroid theory there exists the concept of 
pseudo-spheres which generalize the ordinary concept of 
spheres (see Ref. [29] for details). So one wonders 
whether there exists the analogue of Poincaré conjecture 
for pseudo-spheres. 

tur
may
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