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ABSTRACT 

Various aspects of the influence of the quasi-real photons and the Coulomb resonances on the formation of the cross- 
section of inelastic scattering of high energy electrons on atomic nuclei are investigated. Emiss is the energy that disap- 
pears in the processes of knocking-on of protons in the reactions . A new hypothesis that interprets the 

origin of the energy losses is proposed. Specific experiments that can confirm or refute this hypothesis are proposed as 

well. The “regularized” cross-sections of electro-disintegration of nuclei by high-energy electrons  are 

calculated in the framework of the nuclear shell model. It is shown that for the experimental verification of the exis- 
tence of Coulomb resonances, it is necessary to investigate the  processes at relatively small angles of scattering. 

The peculiarities of numerical methods that are crucial in the investigation of inelastic scattering of high-energy elec- 
trons on nuclei in the framework of the nuclear shell model are analyzed in this work as well. The cross-sections of the 
scattering of high-energy electrons on the angle  are calculated. It is shown that the orthogonality of the wave 
functions of a knocked-on proton in the initial and final states plays an important role in the interpretation of this proc- 
ess. 
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1. Introduction: The Electro-Disintegration 
of Atomic Nuclei by High-Energy  
Electrons 

Due to the relative weakness of the electromagnetic and 
weak interactions of electrons, positrons, muons and neu- 
trinos with nuclei, the structure investigation of atomic 
nuclei in the processes of elastic and inelastic scattering 
of these particles on nuclei [1-27] provides the most re- 
liable information on various aspects of the structure of 
atomic nuclei. The above statement is based on the rela- 
tively high reliability of the information about the prop- 
erties of electromagnetic and weak interactions, as well 
as the relatively high accuracy of the perturbation theory, 
in the framework of which (impulse approximation) we 
interpret the inelastic scattering of high-energy leptons 
by nuclei. The technical perfection reached at the mo- 
ment in forming the monoenergetic high-energy elec-  

trons beams, as well as in registering these particles in 
nuclear experiment, played a decisive role in the choice 
of particles-projectiles as means of external influence on 
the atomic nucleus for studying the structure and proper- 
ties of nuclei: they were certainly the high-energy elec- 
trons. 

It is important to note that the structure of nuclei is in- 
vestigated in this paper in the framework of the nuclear 
shell model (LS-coupling, independent particles). In the 
framework of this nuclear shell model, we will study and 
interpret the features of such unusual phenomena as the 
Coulomb resonances and the quasi-real photons in the 
aspect of their influence on the dynamics of electro-dis- 
integration of nuclei. In other words, the aim of this pa- 
per is the investigation of possibilities of visualization 
and identification of Coulomb resonances in experimen- 
tal studies of nuclear electro-disintegration. 

Copyright © 2013 SciRes.                                                                                 OJM 



A. A. PASICHNYI, O. A. PRYGODIUK 86 

It must be emphasized that the Coulomb resonances 
are the something more than merely the Coulomb reso- 
nances. First, the Coulomb resonances present a practi- 
cally essential part of the quantum-mechanical theory of 
quasi-discrete spectrum in non-relativistic quantum me- 
chanics [12,25,27]. Second, the Coulomb resonances are, 
first and foremost, a natural extension of the nuclear shell 
model to the continuous spectrum region [12,25,27]. Third, 
it is the Coulomb resonances that will provide additional 
and very useful insight into our understanding of gigantic 
dipole resonance phenomenon in the framework of the 
shell model [12,25,27], etc. Finally, the reader may re- 
member [12,25,27] that at this stage the Coulomb reso- 
nances and the quasi-real photons are investigated exclu- 
sively poorly. However, in both theory of inelastic high- 
energy electron scattering and theory of atomic nuclei, 
the Coulomb resonances and the quasi-real photons are 
phenomena that can manifest itself in many phenomena 
and experiments of nuclear physics [12,25,27]. 

We suppose that the study of the reactions of proton 
knockout  and neutron knockout  

 from various atomic nuclei presents a 
particular interest just in the framework of the nuclear 
shell model. From this point on, we shall assume that the 
process of inelastic scattering of a high-energy electron at 
a nucleus is accompanied by transfer of energy  
( ;  and  are the initial and final energies of 
the scattered electron), and momentum  to the 
nucleus.  and  are the electron momenta before 
and after the act of inelastic collision of the electron and 
the nucleus. We also suppose that the process of inelastic 
collision of the electron with the nucleus in the investi- 
gated region of the kinematic variables  is caused 
mainly by a collision of the scattered electron with a 
single nucleon of the nucleus. 
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 As a result of this collision, one of the nucleons of 
the atomic nucleus, having received the required energy 

 in this act, overcomes the action of attractive nuclear 
forces and flies out from the atomic nucleus A with mo- 
mentum 

ω

x≡K K  ( x p=  and x n=  in the cases of 
knocking out of a proton and a neutron, respectively) and 
energy xE E≡ : 2 xME=xK . 

Note that according to the conservation laws of mo- 
mentum and energy, the exact expression for the distri- 
bution of the transferred electron energy  between the 
nucleus 

ω
1A −  and the knocked-out nucleon has the fol- 

lowing form (here and in the following  [28]): 1=c=
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The new quantities appearing in Equation (1) are as 
follows: x lw ν  is the energy required for ejection of nu- 
cleons from the xvl-shell of an infinitely heavy nucleus 

(the separation energy of the nuclear xvl-nucleon); A  is 
the energy of motion of the center of mass of the target 
nucleus 

T

A  after its collision with the scattering electron; 
 is the energy of relative motion of the knocked-  ( , 1p AT − )

out proton and the residual nucleus 1A − ; =p

A 1
M

A

−
M   

is the reduced mass of the proton. 
We point out that Equation (1) could be written in the 

following form as well: 
2

,
2

eff
x l

p

w
M νω = +K

              (2) 

where the effective separation energy eff
x lw ν  is defined by 

the following apparent formula:  
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It is important to point out that, according to Equation 
(3), the effective separation energy eff

x lw ν  of the xvl- 
nucleon depends somewhat on the kinematics of experi- 
ment. In the limit case of 1A  we have: 

( )

2

, 1 ;
2

eff
p x l x lp AT E w w

M ν ν− = = =K
.       (4) 

The effective separation energy eff
x lw ν  in the approxi- 

mation ( 1, p )A M M=  will be identified in the fu- 
ture numerical calculations with the binding energy of 
the nucleon x lνε  in the nuclear shell. There is a good 
reason to believe that the calculations of the cross sec- 
tions of nuclear electro-disintegration of heavy, medium 
and even light nuclei, which are performed in this ap- 
proximation, will be quite acceptable for preliminary 
conclusions. 

A nucleon knocked out from a nucleus moves in the 
average field  of this nucleus in both the bound 
state and the state of continuous spectrum. In the shell 
model the knocked-out nucleon dynamics in the bound 
state is presented by the wave functions  
calculated in average field ; here 

( )AxV r

( ) )ψ ϕ=
1,

(x lmνr r
2,3,( )AxV r ν = 

( )AxV r
( ) )ψ ϕ=

( )

 
is the radial quantum number; l = 0(s), 1(p), 2(d), 3(f), ··· 
is the orbital quantum number. It is reasonable to calcu- 
late the continuous spectrum wave functions  

K  in the same average field  In this 
case the bound state wave functions  
and the continuous spectrum wave functions  

 are orthogonal to each other. 
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(ψ ψr

(ψ ψr

)r
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±

±
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Note that the wave functions of the discrete  
and continuous  spectra are solutions of the 
Sturm-Liouville problem based on the non-relativistic 
single-particle Schrödinger equation: 

( > 0E )

( ) ( ) ( )
2

.
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The bound state solutions of Equation (5) must satisfy 
the following integrability conditions: 

( ) 22 0, > 0;
r

r δ δ+

→∞
Ψ →r          (6) 

in the latter case, the condition (6) must be re
following condition: 

placed by 
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iKr
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= Kn
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   (7) 

One can recall that the vector K appearing in Equation 
(7) is the wave vector of the knocked-out nucleon: 

2 .K ME= =K  

2. The Cross Sections of the Nucleus  
Electro-Disintegration 

 
om the 

In this paper we restrict ourselves to those processes in
which the knockout of protons and neutrons fr
nuclei is associated with relatively small transfers of 
energy ω and momentum q  from the scattered elec-  

trons to the atomic nucleus A : 1
M

ω  ; 1
q

M
 ; 

1xK

M
 ; In the present approxim on tera f 

 can be quite accurately described the quasi-rela- 

ati  the in ction o  

a relativistic electron with a non-point nucleon of the 
nucleus
tivistic Hamiltonian of McVoy-Van Hove [1,2], which 
takes into account empirically the electromagnetic struc- 
ture of the knocking-out non-point nucleon in the form of 
relativistic corrections. After carrying out simple calcula- 
tions (perturbation theory, the impulse approximation), 
the cross section ( ), ,x lνσ ′k k K  of knocking out of an 
x -nucleon from the x lν -shell of the nucleus A  by an 
inelastically scattered ultra-relativistic electron is pre- 
sented in the follow  expression [5,7,21,25]: 
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where is the proton charge,e   x lN ν  is the number of 
x -nucleons in the nuclear x lν -shell,  
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is a dimensionless, positive definite and continuous 
 function of the vector arguments 

 is in this function that the structural features 
of the interaction of the scattered relativistic electron and 

ocked-out nucle
tonian o
tially di

( )( ), , 1| |xS ′ k k K
, ,′k k K . It

the kn on in the quasi-relativistic Hamil- 
f McVoy-Van Hove are reflected. Two essen- 

fferent functions appearing in Equation (8), which 
depend on kinematic variables of the process of the elec- 
tro-disintegration of nuclei, 
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exert most comprehensive and determinative [25,2
fluence on the interpretation of various aspects 
processes electro-disintegration of nuclei. The function 

7] in- 
of the 

( ),q K  x lG ν depending on the kinematic parameters 
and 

q  
K  defines the distorted momentum distribution of 

nucleons in the x lν -shell of the atomic nucleus. It is 
( ),x lG ν q K  that contains the most complete information 

abou ynamics of the nucleon in the nucleus force 
field ( ) ( ):Ax x lV r νϕ r  appearing in Equation (14) are 
the wave function of the nucleon in the bound state;  

t the d

m

( )− ( )
uous spectrum

field on
final state, the factorization of expression (8) for the cross 

x

ψ
K

r  is the wave function of the nucleon in the state  

of contin . 
If we take into account the influence of the nuclear 

 the motion of the knocked-on nucleon in the 

section ( ), ,σ ′k k K  is approximx lν ate. The factorized 
expression (8) becomes exact only in the plane-wave 
approximation, which is valid when the energy of the 
knocking-out protons is quite large. In this case  

( ) ( )ψ ± ≈K r Kr , and ( ),x lG ν q K  transforms into 
( )0

x lG ν −q K , which determines the momentum distribu- 
( )exp i
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tion of the nucleons in the xvl-shell: 

( )
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Here and below the exclusive and inclusive cross
tions of the nucleus electro-disintegration calculate
the plane-wave approximation will be labeled, if neces- 
sary, in the graphs, tables and formulas by the symbol 0, 
an

of

 sec- 
d in 

d the similar values calculated with taking into account 
the interaction of the knocked-out nucleon in the final 
state will be labeled by the symbol d. Formula (8) speci- 
fies the initial exclusive cross section of electro-disinte- 
gration of the atomic nucleus. Experimental verification 
of (8) requires fairly laborious experiments in which both 
the inelastically scattered electron and the knocked-out 
proton are simultaneously registered or identified. At the 
moment, a large number of less laborious experiments 
are realized. In these experiments one investigates the 
energy distributions of inelastically scattered electrons at 
certain scattering angles and initial energies of the scat- 
tered electrons. 

There are carefully developed methodologies taking 
into account the inelastically scattered electrons that have 
lost their energy in a variety of quantum-electro-dy- 
namical [28,30] processes such as bremsstrahlung, birth 

 electron-positron pairs, etc. If we subtract these elec- 
trons from other scattered ones, we obtain the inclusive 
cross section ( ),σ ω θ ′  of inelastic scattering of high- 
energy electrons in the process of collisions of ultra- 
relativistic electrons and nuclei:  
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are th lete and specific knock-out cross se
a x-n the 

σ ω
e comp
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ctions of 
rom x lν -shell of the atomic nucle

partially, filled shells of the investigated

us, 
respectively. The summation in Equation (9) is applied to 
all, ful  
nucleus, and ( ),x lνσ ω θ ′  is calculated in 0- and d-ap- 
proximations by direct numerical integration of the 
differential cross section (8) over the total solid angle 
Ω ≡ Ω

ly or 

K  of propagation of the knocked-out nucleons: 
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ing the reaction ( )( ), 1A e e n A′ − , we can extract

3

Study  
realistic information about t ic nuclei 
in the framework of an investigated model by co
the calculated and measured exclusive (8) and inclusive 
(1  sections of t

shell model then the calculations of these cross sections 

he structure of atom
mparing 

7), (17) differential cross he electro-disin- 
tegration of nuclei. If we restrict ourselves to the nuclear 

are associated with labor-intensive computing of the over- 
lap integrals: 
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These integrals determine the distorted momentum 
distributions (Equation (14)) of nucleons in the filled 
xvl-shells of atomic nuclei. The deductions an
sions of this paper depend strongly on the numerical 
values of the calculated electro-disintegration cross sec- 
tio

 of nuclear forces is re- 
st

 the knocked-out nucleon 
m

d conclu- 

ns of various nuclei. Because of this, the reliability and 
correctness [33] of applied numerical methods of the 
electro-disintegration cross-section calculation will be dis- 
cussed in Appendix A in detail. 

Note that the electro-disintegration processes of nuclei 
are relatively easy interpreted in the approximation pre- 
sented below by the quantum-electro-dynamical Feyn- 
man diagram of second order. 

If we suppose that the range
ricted then we can assert that the wave function of the 

knocked-out ( )> 0E  nucleon [29] has the asymptotic 
form given by Equation (7). The condition (7) mentioned 
above once more affirms that

oving in the region of the residual nucleus ( )1A −  
scatter itself elastically on this one. 

 

 
 

These processes of the nucleus electro-disintegration 
are presented on the above Feynman diagram. On this 
diagram, we can distinguish the initial electron with 4- 
momentum k kμ≡ , which acquires the status of  scat- 
tered electron 

a
( )k kμ′ ′  

with the residua
rese

≡

ts 
 is p

after emission of a virtual pho- 
ton. The virtual photon q  is absorbed by one of the 
nucleons of the target nucleus and provokes the ejection 
of this nucleon from the nucleus. The knocked-out nu- 
cleon interac l nucleus in the final state. 
This interaction nted on the diagram by a hypo- 
thetical exchange meson with 4-momentum π . 

In this paper we estimate the dependence of the so- 
called χ-sections (see Equation (35)) of nuclear electro- 
disintegration from the processes represented below by 
the sum of Feynman diagrams of higher order: 
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In these diagrams we see new additional participants 
of the more comprehensive theoretical interpretation of 
the inelastic scattering of high-energy electrons on nuclei. 
First and foremost, it is a quasi-real ( )0 0q q μ≡

oton of the 
 virtual

photon [25], which is absorb  by a pr nucleus 
 

ed
A  and provokes the transition of this proton in the qua-

si-discrete state Kr of the nucleus A  or 1A − . The 
knocked-out protons pK  and rK  interact in the final 
state with the residual nucleus. This in  shown 
schematically in the diagrams by 4-momenta of π π

teraction is

μ=  
 hypothetical mesons. The knocked-out nucleons ex-

change by such a meson with the daughter nucleus A − 2. 
The Feynman diagram (diag.2 diag.2b) describe the 
processes of the two-proton knockout from the atomic 
nucleus, which are predicted by the nuclear shell  
As we will see later, these processes are also capable to 
provide a non-trivial impact on the results of experimen- 
tal studies of reactions ( )( ), 1A e e p A′ − . 

It is well known that 4-vertex quantum-electro-dy- 
namical processes (diag.2a, diag.2b) in general case (if 
we substitute 0 0 0,q q q q q′→ ≠ ≠  in diag.2a, diag.2b) 
are weakly visible against the backgrounds of the 2- 
vertex processes (diag

of

s a, 

model.

.1). It is use

s (diag.2a and dia

ful to remind once 
again that 4-vertex quantum-electro-dynamical processes 
(diag.2a, diag.2b) become apparent only in the case when 
in both diagram g.2b) and in, at least, 
one of two left vertex of each diagram the electron emits 
a quasi-real photon 0q  ( 0θ ′ = , “0-0”-scattering). It is 
the quasi-real photon 0q  that, as we will see subse- 
quently, is capable to excite with high probability the 
Coulomb resonance in the atomic nucleus. 

It is necessary to note that the nucleon knocked out 
from the nucleus A  an participate in the processes of 
inelastic scattering on th  residual ( )1A −  nucleus. For 
example, this nucleon can spend a part of its energy for 
the excitation of the discrete state of the res

c
e

idual nucleus. 
C

c
ng int

is 

olliding with another nucleon of the residual nucleus, 
the knocked-out nu leon is capable to increase the num- 
ber of knocked-out nucleons. Taki o account the 
process of inelastic scattering of the knocked-out nucleon 
on the residual nucleus can essentially complicate the 
interpretation of the electro-disintegration processes in 
the coincidence experiments. 

3. Quasi-Discrete Spectra of Atomic Nuclei 

Let us calculate the cross sections (8) and (16) of the 
knockout of a nucleon (reactions ( )( ), 1A e e p A′ − ). In 
the nuclear shell model (LS-coupling) we approximate 
the potential ( )AxV r  by a sum of two terms:  

( ) ( ) ( )Ax WS xp CV r V r V rδ= + . The first term ( )WSV r  
the short-range Woods-Saxon potential:  
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is the Heaviside unit function; 
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Saxon potential. 
The second term is the lon

lomb potential:  
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The wave functions of continuous spectrum can be 
obtained in the form of the following series: 
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The radial functions 
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wave equation with
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e real potential ( )AxV r : 
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It is useful to remind [31] that the asymptotic behavior 
of the wave functions of continuous s rum

( )Z rλ : 
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


(25) 
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( )lg ρ  and ( )lf ρ  ( )Krρ =  
oulomb funct

Here: in Equation (25) 
are the n [3 ions   well-know
( )0≠ : 

4,35] C
( )CV r

( ) ( ) ( ) ( ), ,  , ,l l l lg G f Fρ η ρ ρ η ρ= =      (26) 

where 

( ) 21
2

M
Z e

E
η = −             (27) 

mb pais the Coulo rameter. If , then  

 

( ) 0CV r =

( ) ( ) ( )
( ) ( ) ( )

0

0

, ;lim

 , ,lim

l l l

l ll

g n G

f j F

η

η

ρ ρ ρ η ρ
ρ ρ ρ η ρ

→

→

= − =

= =  

where ( )ln ρ  and ( )lj ρ  are the N

utions (25 ion (24) 
at the point , we find the coefficients  

eumann and Bessel 
spherical functions. 

Tailoring [12,25,27] the sol ) of Equat
r b=

( )( ) ( )
KL LA A E :  

( )−

− −≡

( ) ( ) ( ) 1
,L LA E w E iw E

−
= +  L GZ FZ 

where 

    (28) 

( ) ) ( )( ( ) ( )d d ,

d d
Kl lL

GZ Kl

Z r G
w E Z r

r r

η ρ
ρ

 
= − ,lG

r b

η
 =

 ;


(29) 

( ) ( ) ( ) ( ) ( )d d ,
,

d d
Kl l .l Kl

Z r F
F Z r

r r
r b

η ρ
η ρ

 
= − 
  =

 

(30

Simple mathematical analysis of the amplitude expres- 
sion 

L
FZw E

) 

( ) ( )lA E−  
ing conclusions. 

omb reson

in Equation (28) [12] leads to the fol
One can determine the energies of the 

Coul ances 

low- 

r
pNLE E=  from the condition [12] 

( )

( )

( )

( )

d d ,

d d
KL LZ r G

r r

Z

η ρ   
   

,KL Lr G

r b r b

η ρ
   =

= =

   (31) 

and the half-width r
NLpγ  from the equality [12] 

( )
( )( ) 1

d
.

2 d

Lr
GZpNL L

FZ

r
NL

w E
w E

E
E E

γ
−

 
 =
   =

  

Direct mathematical analysis of the expression (28) for 

   (32) 

the amplitude ( )
L ( )A E

reveals [1
 magnitude
of the prot

−  of the separate radial compo- 
nent 2,25,27] the cause of the abrupt 
increase  of the cross section
in th  on resonance energy 

( )KlR r  
of the

e vicinity
 ( ),σ ω θ ′  

r
pNL

e in the 
E E= . 

We lities (31) and (32) are tru
case when the strong inequality 

recall that the equa

( ) ( ) ( ) ( )2 2

2 2d , d ,
, ,

d dL L

G F
G F

η ρ η ρ
η ρ η ρ

ρ ρ
   

+ >>> +   
  

 

is valid. When the energy r

L L



pNLE E=  of Coulo  
nance approaches the Coulomb barrier height  

( )

mb reso-

2

3
Cr

pNL

V b
E

 
≥ 

 
, the mentioned strong inequality re-  

laxes to a more delicate inequality:  

( ) ( ) ( ( ))
2 2

2d , d ,
,L

G F2 ,
d d

L L
LG F

η ρ η ρ
η ρ

   

he Coul he status of 
incipient resonanc
apparent when one calculates spectra of inelastically 

peaks of resonances 
have moderate heights and rather large half-widths 

η ρ
ρ ρ

+ +   
   

 .  

In that case t omb resonances acquire t
es. Such Coulomb resonances become 

scattered electrons. In this case the 
r
p lνγ . 

)-(3As an example of application of Equations (24
we present the calculated main characteristics (the ener- 

2), 

gies NLxE , the half-widths NLxγ  and the wave function 
amplitudes NLxA ) of quasi-discrete levels of some 
atomic nuclei in Table 1. It is important to keep in mind 
that these characteristics can depend essentially [12,27] 
on the parameters of the Woods-Saxon potential. N e otic
th

 the c

mental a ical inv
ockout reac- 

tio

9,25,27] that t

 functions of transmitted energy 
r shell 
width) 

 changed due to the small 

at the parameters r0 and a of the Woods-Saxon poten- 
tial in the calculations of this article are kept invariable: 

0 1.24r = Fm and 0.55a =  Fm. This simplification does 
not influence onclusions of this paper. 

Note also that the analysis of the quasi-discrete spectra 
(jj-coupling) of the light, medium and heavy nuclei per- 
mits to affirm that the nucleus quasi-discrete spectrum is 
the natural extension of the nuclear shell structure to the 
continuous spectrum region. For this reason, the experi- 

nd theoret estigations of quasi-discrete 
spectra properties in ( ) ( ), 1A e e p A′ − -kn

 

ns of protons are, at the same time, investigations of 
the nuclear shell model. 

4. The Cross-Sections of Excitation of  
Coulomb Resonances 

It is well known [12,13,1 heoretical inves- 
tigations of the inelastic scattering of high-energy elec- 
trons predict the resonance structure of inclusive (Equa- 
tion (9)) cross-sections as
ω  ( 50ω ≤  MeV) in the framework of the nuclea
model. The dynamic characteristics (height, half-

resonance peaks substantiallyof 
variations of the parameters of Woods-Saxon potential. 
For instance, the maximum values of ( ),l NLνσ ω θ→ ′  and 
the half-widths l NLνγ →  of resonance cross-sections  

( ),l NLνσ ω θ→ ′  can undergo enormous quantitative  
ang  huge variations of characteristics of reso- 

nance peaks undoubtedly require additional investiga- 
tions of this phenomenon. 

ch es. Such
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Table 1. The principal physical characteristics of the quasi-discrete spectra of some atomic nuclei. 

NL x ENLx NLxA  γNLx NL x ENLx NLxA  γNLx 
56Fe; (0 ; 0 ) = (63.3 ; 50.55)p nV MeV 58Ni; (0 ; 0 ) = (62.0 ; 49.3415)p nV MeV 

21.36 10−×  53.82 10×  123.05 10−×  13 n 32.02 10−×  71.67 10×  14 N 166.06 10−×  

14 P 21.3 −×  6 10 446.85 10×  901.07 1 −×  0 14 p 15.9 −×  7 10 67.15 1×  0 146.33 10−×  

22 P 15 p  1   
81Y; MeV 119Sn; 

2.78  15.43  21.48 10−×  3.35 0.76 0.47

( ) ( )0 ;0
= 54.13 ; 41.73V 4

p n ( )0 ( ); 0
= 63.3 ; 50.55

p n
V MeV 

14 P 38.83 10−×  783.27 10×  1583.51 10−×  23 p 2.26  36.0932 10×  71.06 10−×  

22 N 24.40 10−×  31.58 

22 P  16 p 

3.99  

10.31 
27 MeV 40Ca; 

43.15 10−×  31 p 3.96  12.6415 10×  35.09 1×  0−

3.48 22.43  38.17 10−×  7.20 2   2.4490 10× 41.82 10−×  

30 P 4.12  11.60 10−×  17 n 11.48  5.96 13.34 10−×  

15 P 11.18  29.52 10−×  17 p 17.64  9.98  11.60 10−×  

Al; ( ) ( )0 ; 0
= 63.5 ; 54.

p n
V 0 ( )V ( )0 ; 0

= 53.9 ; 42.352
p n

MeV 

13 P 0.455  309.17 1×  83.3172 10−×  13 n 3−5.27 10×  403.79 1×  101.76 10−×  

13 N 0.748  31.20  33.2143 10−×  13 p 3−6.06 10×  513.93 10×  1042.02 10−×

21 P  21 p 
208Pb; MeV 198Au; MeV 

0.802  22.63 33.0319 10−×  1.56  11.77 10×  37.54 10−×  

( ) ( )0 ; 0
= 57.48 ; 47.4125

p n
V ( ) ( )0

= 57.48 ; 47.4125
p n

V
; 0

17 N 3−8.17 10×  109.71 10×  233.57 10−×  17 - - - - 

23 P 22.70 10−×  1005.75 10×  2021.31 10−×  23 p 16.72 1 −×  0 153.09 10×  312.28 10−×  

16 P 17 n 

 

  

 

1.98  91.30 10×  183.22 10−×  1.39  31.88 10×  61.25 10−×  

31 P 2.39  54.36 10×  111.66 10−×  16 p 2.86  66.82 10  × 131.41 0−×  1

24 P 7.74  77.53  31.16 10−×  31 p 2.99  41.90 10×  99.65 10−×  

18 N 8.30  17.37 23.38 10−×  24 p 8.49  13.67 10×  35.35 10−×  

32 P 9.83  5.00 12.12 10−×  18 n 9.81  11.14 28.78 10−×  

17 P 10.06  23.71 10×  58.92 10−×  17 p 11.14  21.73 10×  44.31 10−×  

18 P 18.53  22.39  23.23 10−×  18 p 19.79  15.88 26.67 10−×  

 
te th t in this cas  the location of peaks 

re s [25,27] practically unchanged
th ample, the microscopical m fica
MeV) of depth 

l NLνω ω →=  
gain 

tions ( 410−≤  

No a e  
main . Note once a
at, for ex odi

0 pV  

f 

of Woods-Saxon poten
to

tions of the nu tial para

 of Coulom

 almost insurmountable difficulties in the inter- 
pr

of this onance does exist in the cr tion given  
E at (16) [27]. Indeed, the predicted values of the 
r na ross secti ns  (which are me s- 
ured in experiment) pr t depend on the 

 a nucleus wh

tial can lead 
  

 reso-

of varia- 

 an increase of the Coulomb resonance peak
( )( ),l NLνσ ω θ→ ′  of order of 100 20010 10−  times and a 

corresponding decrease of the half-width of this  
nance of order o 100 20010 10− −−  times. In this connec- 
tion it is necessary to investigate the influence 

clear shell poten meters on the 
theoretically predicted measurable values of cross-sec- 
tions of excitations b and centrifugal reso- 
nances. 

It is worth noting that the absence of inter-compensa- 
tive relation between the increase of height of any peak 
and the decrease of its half-width would mean the exis- 
tence of

 res oss sec by
qu ion

eso nce c o

etation of processes of nuclei electro-disintegration in 
the framework of the nuclear shell model. However, we 
will see that a correlation of high order between the in- 
crease (decrease) of the height of Coulomb resonance 
and the “adequate” decrease (increase) of the half-width  

height and half-width of Coulomb resonances, as we will 
see below. 

Let us consider an example of the influence of so- 
called quasi-real photons [25,27] on the scattering of 

( ),l NLνσ ω θ→
actically do no

′ a

high energy electrons on nuclei. Let us recall that the 
quasi-real photons are the result of such collision of a 
high energy electron and en the direction of 
movement of the electron is practically unchanged after  

it ( 0θ ′ = , “0-0” - scattering): 
′

≈k k
. The energy ω  

′k k
transmitted at such a frontal collision and the value of the 
transmitted momentum ′= −q k k  (the energy and mo- 
mentum of the quasi-real photon 0q q=  on the Feyn- 
man diagrams (the diag.2a and diag.2b)) are approxi- 
mately equal. Let us recall also [25,27] that the cross 
section ( ),σ ω θ ′  as a function of the electron scattering 
angle  sharp maximum e point ,  θ ′  have a  at th  0θ ′ =
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especially in the region where t d energy ω  is 
not l ( )ω ε ′ . Moreover, ry confirms [25, 

ransmitte
arge our theo

retica

e

27] that it is the quasi-real photons that gives the main 
contribution to the knockout of the protons in the reac- 
tion ( ) ( ), 1A e e p A′ −  in the investigated kinematic re- 
gion. Scattering of electrons to large angles is barely no- 
ticeable in the proton knock-out mentioned above. 

The theo l interpretation of the inclusive cross- 
section ( ),σ ω θ ′  as a function of ω allows us to 

′confirm that at arbitrary electron scattering angl θ  
( )0 θ π′≤ ≤ or some values of transmitted energy 

l NLνω ω →=  one can see sharp and high (10300 b/MeV/sr 
and more) peaks on the plots of ( ),σ ω θ ′ . The half- 
width 

 
 and f

l NLνγ →  of such peaks may be abnormally small 
( 30010−  MeV and less). These peaks correspond to the 
excitation of so-called Coulomb ( )x p=  and centrifu- 
gal ( )x n=  resonances in atomic nuclei. Note that the 
excitation e f the resonances is equal to the sum of 
the binding energy of the nucleon 

nergy o

x lνε  in the nuclear 
x lν -shel
resona

l an
nce 

d the energy of the Coulomb (centrifugal) 

xNLE : r
x l xNL x l xNLEν νω ε→ = + . 

Taking into account properties of the fun on  
( ),x lνσ ω θ ′  and properties of the inelastic electron scat- 

tering with l NLνω ω →=  and 0θ ′ ≈ , one can conclude 
that the integral 

( )
0 2π

0 0

, d d ,

,

Er
r ur
p l pNL p l l NL

Er

r
NL

N
θω δ

ν ν ν
ω δ

σ σ σ ω θ ω

γ

′+

→ →
−

′ ′≡ × = Ω  



(33) 

determines le

cti

Eδ

the lower limit of the comp te ( r )p l pNLσ →  ν
fic ( )urand speci p l pNLνσ →  cross-sections of excitation of 

the pNL-Coulomb resonance of the investigated atomic 
nucleus quite accurately. The  limit of integration 
over the angle, 

upper
, appearing in Eq

is a small qu we restrict ou  

value of 

0θ θ′ ′= 
antity. As a ru

1
le, 

uation (33) 
rselves to the 

0

π

60
θ ≈  during the numerical integration. 

The total cross-section of excitation of the Coulomb 
NL -resonance r

NLσ  is equal to the sum  
r
NL p l NL

p l
ν

ν
σ →=               (34) 

In the case of low Coulomb NL-resonances this cross- 
section is defined  the only term corresponding 
to the dipole transition: ,

σ

 mainly by

L lN ν=  1L l= + . 
For instance et us consider the process of inela

scattering the energy 500ε =  MeV
, l stic 

of electrons with  on 
th

tion  of the 
Ca with the quantum num

d in Table 2. The prot

 

es of excit on of pNL- 

C
f the in

on

e nucleus 40Ca. The results for specific cross-sections 

NL of excita  of the Coulomb reso
40

ur
lνσ →

nucleus 
are presente
from di
this nu

nances
bers 13, 21NL =  

ons are knocked out 
fferent occupied shells ( )10,11,12, 20lν =  of 

cleus. The dominant position in the excitation of 

Table 2. The theoretical predictions of specific cross-sec- 
tions →νσ ur

l NL  and energi  ati →νω r
l NL

oulomb resonances with quantum numbers NL = 13.21 in 
the nucleus 40Ca. The initial energy o elastically 
scattered electrons is ε = 500 MeV. The half-widths of that 
res ances are 13γ r

p = 1.964 × 10−117 MeV and 21γ r
p  = 7.51 

× 10−3 MeV. The depth parameter of the W  
potential is V0p = 53.9020 MeV. 

l

oods-Saxon

ν 13

ru

lνσ → , b 13

r

lνω → , MeV 21lν → ,b 21lν → , MeVruσ rω

10 2.288 10×  33.59 8.414 10×  35.54 3− 3−

11 110−×  23.59 29.12 10−×  25.31 

12 15.19 12.20 2.19 13.96 

20 57.55 10−×  9.57 17.98 11.29 

1.265

 
Coulomb reson es belongs to the dipole transitions: anc
[ ] [ ] [ ] [ ]12 13 , 20 21→ → , as follows from the results 
given in Table 2. 

In this cas e assum the radi quantum - 
bers are equal 

e w
to each ot

e that al  num
her: l LNν =

resonance
. One can see  

th excitation o ou s c used the 
q upole 

that
 by e f C lomb a

uadr [ ] [ ]( )11 13→ , octupole [ ] [ ]( )10 1→
tion again
ike to 

]  for the

3 , etc. 
tr n f the 
background  on, 
for exam  chosen 

that the abov

ansitio s is very diff
of d pole o

ple, that [ ] [
ur

e inequality
rbitrary 

icult or obs
We wo

[ ] [
urσ σ→ →

1 . 

erva st 
i nes. uld l menti

]

θ ′

12 13 10 13

parameters of the model. At the same time, it is possible 
 may be strongly weakened or 

even violated for a



Let us assume that the radial quantum numbers are not 
equal now: l LNν ≠  (usually, 1l LN ν= + ). In this case 
the magnitude of ur

l NLνσ →  is significantly smaller as 
compared wi  l LNth the case of ν = . 

The effect considered above may be a starting point 
for the interpretation of the phenomenon of gigantic di- 
pole resonance in t he nuclear shell 
model. Thus, the investigation of the inelastic scattering 
of high-energy electrons in the region where the trans- 
mitted energy is not large e 

he framework of t

can b used for studying the 
ph

that the lts have to
 comm

nd on e choice of the nu- 
cl

enomenon of gigantic dipole resonance. It is interest- 
ing to note  above resu  some extent 
general character and on quantum nature. 

These results do not depe th
ear target and the energy of the scattered ultra-relativ- 

istic electrons. For instance, let us consider the excitation 
of the Coulomb resonance with the quantum numbers 
[NL] = [12] in the nucleus 12C when a proton is knocked 
out from one of two filled shells [ ] [ ] [ ]( )10 , 11lν = . The 
initial energy of the scattered electrons is 2020ε =  
MeV. It follows from the data of Table 3 that the excita- 
tion cross-section [ ] [ ]11 12

ru
p pσ →  substantially exceeds the 

cross-section [ ] [ ]10 12
ru
p pσ → . Let us note that the cross - 

se

 

ctions of exitation of Coulomb resonances as well as 
the role of quasi-real photons increase significantly with 
an increase of the initial energee ε  of the scattered 
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Table 3. Main physical characteristics (energies 12

r
pE , maximum amplitudes 12p alf-widths 12

rA , h γ r
p ) of the Coulomb 

resonance NL = 12, specific cross-sec  energies →νω l NL  of excitation of the Coulomb resonance NL = [12] in 

the nucleus 12C versus the depth V0p of the Woods- te al. The initial energy of the inelastically s attered electrons is 
ε = 2020 MeV. 

12

r

pE , MeV 

tions 

Saxon po nti c
→νσ r

l NL  and  

12

r

pA  12

r

pγ , MeV 11

ruσ →12 10 12 11 12, b , b , MeV ruσ →
rω → 0 MeVpV  

0.0062 136.85 10×  296.36 10−×  540.4 2.705 16.71 61.412 

0.182 750.8  2.81  539.98 2.654 16.48 60.5 

2.090 5.23  0.169  570.2 2.52 15.24 56.0 

68 10−×

 
electrons [25,27]. We note lso that the enon of 
the a us increase of the scattering cross-section
caused an increase of the
initial y of the electro eam may have significan
influe  the results o investigation of rious as-
pects of nuclear structure. For instance, the results of 

 do not require additional comments. 

i- 
re

 determin

a phenom
nomalo  

by quasi-real photons with 
 energ

 
t n b

nce on f  va  

experimental measurements of different cross-sections of 
inelastic electron scattering can essentially depend on the 
target thickness. 

As an additional illustration of the above statements, in 
the Table 4 we present the calculated values of specific 
cross-sections of the Coulomb resonances excitation in 
the heavy nucleus 198Au for two initial energies of scat- 
tered electrons: ε = 2020 MeV and ε = 3365 MeV. The 
results of Table 4

We would like to attract attention the fact that the 
inclusive cross-sections ( ),σ ω θ ′  have the form of 
sharp resonance peaks at certain values of the transmitted 
energy r

l NLνω ω →= . Note that the theoretically predicted 
enormous heights and insignificantly small half-widths 

of ( ),r
l NLνσ ω θ→ ′  give no possibility to determine d

ctly the shape of the Coulomb resonances in experi- 
ment. That is why we can e only integral char- 
acteristics of the Coulomb resonances, such as the cross- 
sections r

p l pNLνσ →
the physical experim

 of excitation of these resonances, in 
ent. 

Let u nce again [25,27] that the physical cha-
racteristics (the half-widths r

s recall o

NLpγ  and the amplitudes 
( NLpA ) of the wave functions) of Coulomb resonances 
can undergo essential changes. For example, the sharp 
decrease of r

NLpγ  and the equally drastic increase of 

NLpA ) is possible even at ne e changes of parame- 
te

 cr
on of

 we
pende

gligibl
rs of nuclear shell model potential. This uncertainty 

raises the question whether the oss-sections of excita- 
ti  Coulomb resonances undergo essential changes 
too. Table 5 gives an answer to this question. 

In Table 5  present the calculated functional de- 
nce of the most important specific cross-sections 

r
p l pNLνσ →  of excitation of resonances of nucleus 40Ca. 

These cross-sections are interpreted as functions of the 
half-width of Coulomb resonances, which varies with the 
change of the depth 0 pV  of the Woods-Saxon potential. 

used by the d le transition [13], [20] → 21] 
h, in tu used by  ine- 

astic scatte f ultra-rela c electrons nu- 
leus 40Ca. 

The resul ted in ble 5 do quire 
extensive comments as well. The specific cross-sections 

ca ipo s [12]→ [
whic
l

rn, are ca
ring o

 quasi-real pho
tivisti

tons in
 on the 

c
ts presen the Ta not re

Note that the specific cross-sections mentioned above are  

of the Coulomb resonance excitation ru
p l pNLνσ →  and the 

n energies r
l NLνω →  are practically invariant 

when the half-widths and the amplitudes of the wave 
function of Coulomb resonances change substantially. 
This result is very im rtant. It essentially increases the 
chances of success for the nuclear shell model in the 

excitatio

po

lusive Cross-Sections 

lf-widths of the 
b and cen ifu- 
ly less tha he 

ha c peaks. At the 

scattered 
el

recall that the cross-section  at the arbitrary  

interpretation of inelastic electron scattering experiments 
aimed at studying the nuclear structure. 

5. The Inc ( ), ′σ ω θ  
and the Coulomb Resonances 

One of the top-priority tasks of this paper is to study the 
manifestation of Coulomb and centrifugal resonances in 
experiments on inelastic scattering of high-energy elec- 
trons. In particular, it is of interest to investigate the pos- 
sibilities to disclose and identify Coulomb and centrifu- 
gal resonances in the spectra of high-energy electrons 
inelastically scattered on various atomic nuclei. 

Comparing the Coulomb resonances and the quasi- 
elastic peaks, one can state that the ha
theoretically calculated peaks of Coulom tr
gal resonances are, as a rule, considerab n t

lf-widths of the calculated quasi-elasti
same time, the height of a Coulomb resonance peak is 
significantly larger than the height of a quasi-elastic peak. 
For convenience, such peaks of ( ),σ ω θ ′  should be 
“cut off” on the plots of ( ),σ ω θ ′  versus transmitted 
energy ω. For this reason, we lose clarity and important 
information about the observability of Coulomb reso- 
nances in the measured spectra of inelastically 

ectrons. Taking the logarithm of that function adds very 
little information since the microscopical half-width of a 
Coulomb resonance can hardly be represented on the 
plot. 

In order to investigate the possibility of detection of 
Coulomb resonances in physical experiment, one should 

( ),σ ω θ ′
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Table 4. Specific cross-sections [ ] [ ]→νσ ru

l NL  of excitation of the pNL-Coulomb resonances with the quantum numbers NL in the 

nucleus 198Au. The initial energies e inelastically scattered ectrons are ε = 2020 MeV and ε = 3595 MeV. The parameters 
of the Woods-Saxon potential are V0p = 51.13 MeV and V0n = 41.734 MeV. 

202ε =

 of th  el

0  MeV 

NL →  23 16 31 24 17 18 

lν   23

ru

lνσ → , b 16

ru

lνσ → , b ru

lνσ 31→ 24 17 18, b , b , b , b ru

lνσ →
ru

lνσ →
ru

lνσ →

10 22.42 10−×  61.28 10−×  21.97 10−×  31.89 10−×  63.73 10−×  41.45 10−×  

11 12.57 10−×  56.04 10−×  13.67 10−×  22.41 10−×  65.97 10−×  54.28 10−×  

12 1.20  32.91 10−×  13.00 10−×  12.29 10−×  42.12 10−×  47.32 10−×  

20 

13 

21 

 6.  

 5.  

 8.  

M

29.82 10−×  88.81 10−×  1.88  34.54 10−×  58.49 10−×  31.42 10−×  

3  .82 11.31 −  10× 13.10 −  10× 17.22 −  10× 36.50 −  10× 32.62 0−  1×

4.08  60−1.03 1×  5.71  10−1.16 1×  4−1.20 10×  30−3.59 1×  

14 45.3 73 33.19 10−×  4.49  12.21 10−×  21.49 10−×  

22 498.0  51.04 10−×  108.3 39 47.41 10−×  37.67 10−×  

30 31.81 10−×  123.60 10−×  596.3  31.23 10−×  32.10 10−×  39.15 10−×  

15 12.02 10−×  665.5  75.22 10−×  43.53 89 13.57 10−×  

3595ε =  eV 

10 0.077  64.07 10−×  26.27 1×  0− 36.02 10−×  51.19 10−×  44.66 10−×  

11 0.817  41.92 1×  0− 1.17  27.68 10−×  51.91 10−×  41.37 10−×  

12 3.81  39.22 10−×  1−9.52 10×  17.27 10−×  46.75 10−×  32.34 10−×  

20 0.311  72.79 10−×  5.95  21.44 10−×  42.70 10−×  34.53 10−×  

13 12.1  1−4.15 10×  19.81 10−×  2.29  22.06 10−×  38.36 10−×  

21 

 

  28   

12.9  63.25 10−×  18.0  13.69 10−×  43.81 10−×  21.14 10−×  

14 143.0  21.2  21.00 10−×  14.2  17.00 10−×  24.75 10−×  

22 1566.0  53.28 10−×  341.1  17.0 32.34 10−×  22.43 10−×  

30 35.67 1×  0− 111.13 10−×  1876.0  33.87 10−×  36.63 10−×  22.90 10−×  

15 0.636  2093.0 61.64 10−×  137.3 .1 1.13

 
Table 5 ecific cross-sections  and ene gies o citation of the Coulomb resonan s with the qua um 

number 3,21] in the nucle s elas cat  electrons versus t e resonance half-w th

. Sp  →νσ ru
l NL

 40Ca at in

r →νω l NL  

tering of

f ex ce nt

s [1 u tic s h id  γ r
NLp . The initial 

energy e electrons is ε = 500 MeV. The angle of scattering is θ  

 , MeV

of th ' = =0.

12σ 13

ru

→ , b 12 13

rω →  13

r

pγ , MeV , Me20 21

ruσ → , b 20 21

rω → V 21

r

pγ , MeV 0 MeVpV  

1  12.20 17.98 11.30 53.9085.19 2941.116 10−×  37.41 1×  0− 4 

15.19 12.20 53.9050 

15.19 12.20 1171.964 10−×  .98 11.29 37.51 10−×  53.9020 

15.20 12.19 382.935 10−×  17.98 11.27 38.46 10−×  53.8400 

15.22 12.18 256.105 10−×  17.97 

1514.688 10−×  17.98 11.29 

17

11.48 53.7500 

15.31 12.10 18.00 11.19 53.2000 

37.46 10−×  

21.00 10−×  
1110−×3.392  210−×  2.41

15.52 11.87 63.680 10−×  18.47 10.65 29.22 10−×  52.0000 

15.60 11.87 52.917 10−×  18.90 10.64 11.40 10−×  51.5000 

 
point )  is mea xperimentally by means
of ”av ” proced

( ,ω θ ′ sured e  
eraging' ure: 

( ) ( ) ( )′
0 Eω +Δ

0 Ex ω −Δ
 

1
, d d

2

x

x xxE
σ ς ω θ σ ω θ ω

Ω
′ ′= ΩΔ ⋅Ω

(35)

Here 

, , ;

2

ω θ ′  

 

xE  is the spectral widt of gap - 
eter. Note that

Δ h of the scat
tered electron spectrom  ( ),ς ω

fficiency of registration 
of sc

we su
assu

θ ′  is the 
ction at determines the e of 

d electrons at various an les  
ne . Hereinafter 

 in this pap we 

fun
the scattere

 th

rgie
) 1=

g attering θ ′  
that 
 the 

and e s ε ′ = −ε ω
her on

ppose 
( ,ς ω θ ′ . Furt er me that
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strong inequality 2NLx xEγ Δ

vy
stance is connected wi

t (0.5 MeV γ
h

2

 is true. 
 worth n

 nuclei in our model. This 
circum th the existence [27] of the 
so-called incipien )  Coulomb
resonances. When t sible that 
the inequality

It is oting that this inequality may be broken in 
the case of medium and hea

2 MeVNLx≤ ≤
ey take place, it is quite pos

 

 NLx xEγ ≈ Δ  mentioned above ma
br nd e

y be 
oken a ven inverted: 2NLx xEγ ≥ Δ . In the calcu- 

lated cross-sections the parameters of W xon po- 
tential were chosen so that the inequality 2

oods-Sa

NLx xEγ Δ  
was true for the most of investigated cases. 

Consequently rons losing their energy l NLνω →  

0 0<
, the elect

( )<x l NL xEνω ω→ + Δ  during the excitation of 
a Coulomb resona gistered a

E
nce will be re

ω − Δ

the en
s electrons with 

ergies in the interval  

0 0x xE Eε ω ε ε ω′− − Δ ≤ ≤ − + Δ . In this case the “regu- 
larized” cross-section ( ),regσ ω θ ′  can be theoretically 
determined as 

( ) ( )1
, , d d .

2

xE
reg

x xE

ω

ω
σ ω θ σ ω θ ω

+Δ
′ ′ ′= Ω Δ ⋅Ω

 (36) 

It is necessary to note that the proposed above regu- 
larization practically does not change the fu  
regions of its smooth variation. In this co

x xE−Δ Ω

nctions in the
nnection, for 

exam

nces and may have values 
comparable with the height of th

 be done i
solated Coulomb resonance in the 

specified energy interval 

ple, we have: ( ) ( ) ( )0 0, ,regσ ω θ σ ω θ′ ′≈ ;  
> 60 MeV.  

This “regularized” cross-section has resonant form in 
the area of Coulomb resona

e quasi-elastic peak. Our 
further conclusions will n the assumption that 
we have only one i

( ) ( ),d reg dσ ω θ ′ ≈ ( ), for :σ ω θ ω′

2 xEΔ
.0

r these co

. In the following
suppose that MeV for all experiment
various kine nditions we get pre- 
di

es  of inelastic scattering of 
electrons. In this case  photons emitted by 
rel

pola
 one studie

electrons is

is
 the id

ented plot that
 

 we 
s with 2 1xEΔ =  

matics. Unde
ctive plots of experimental cross-sections ( ),regσ ω θ ′  

of inelastic scattering of high-energy electrons on nuclei. 
In the examples presented below we will investigate 

relatively large angl ( )0 1θ ′ ≈
 the virtual

ativistic electrons have relatively large ( )2 2 2mω− q  
imaginary masses. This fact manifest itself, first of all, in 
reduction and disappearance of the dominant role of di- 
pole transitions during the excitation of Coulomb reso- 
nances. Dipole, quadrupole, octopole transitions and tran- 
sitions of even higher multi- rity should be taken into 
account when s the spectra of inelastic large- 
angle scattering of high-energy electrons. 

Very often the scattering of high-energy  
investigated with a carbon (12C) target. This light nucleus 

 selected as standard for comparison of the efficiency of 
different kinematics in entification of Coulomb 
resonances in the spectra of inelastic scattered electrons 
(Figure 1). One can see from the pres , 
using the kinematics [15], one cannot observe the Cou- 

 

Figure 1. The inclusive and “regularized” cross-sections 
of inelastic scattering of electrons on nuclei 12C 

initial energy of scattered electrons ε and the 
 scattering . The kinematics of scattering is 

 in fulfilled riments [15]: ε = 500 MeV, θ' = 
 MeV, ' = 37˚ (b); ε = 730 MeV, θ' = 37˚ 

MeV,  = 50.1˚ (d). The parameters of 
Woods-Saxon potential are: V0p/MeV = 61.412, V0n/MeV = 
55.684. Here and hereinafter the solid and the dashed 
curves were calculated, respectively, with allowance for the 
final-state interaction (regularized cross-sectins, [(14),(36)]), 
and in the plane-wave approximation (15). 

 
lomb resonance with quantum numbers , which 
is theoretically predicted by the nu l, in 

be empha

 corre- 
sponds to the height of the peri rmined 

( )′regσ ω,θ  

versus the 
angle of
selected as
60˚ (a); ε =
(c); ε =

′θ
 expe

 θ
θ'

537
 779.5 

12NL =
clear shell mode

the spectra of inelastically scattered electrons. It should 
sized that this conclusion is wrong in the case 

of other kinematics presented on Figure 1. It is also 
pertinent to note that for the disclosure and identification 
of the resonances of the nucleus 12C with the quantum 
numbers 12NLx p=  and 12NLx n= , it is necessary to 
carry out more thorough experimental measurements in 
the spectral region of interest, having essentially reduced 
the step of the argument ωΔ . 

It is worth noting that the height of the regularized re-
sonance peak on the graphs of regσ ( ),ω θ ′

mentally dete ex
cross-section if the energy gap width of the recording 
device of scattering electrons is, as indicated above, 
2 1xEΔ =  MeV. At the same time, the width of the re- 
sonance peak is equal to the theoretically calculated width 
of the investigated resonance. It is necessary to empha-

Copyright © 2013 SciRes.                                                                                 OJM 



A. A. PASICHNYI, O. A. PRYGODIUK 96 

size that the height of the Coulomb resonance essentially 
depends on the width of the energy gap of the recording 
device of  for inst width of the energy 
gap of spectrometer is equal to 5 MeV, then the possibil-
ity of manifestation of Coulomb resonances in the spec- 
tra of inelastically scatter lec

electrons. If, ance, the 

ed e trons strongly decreases. 

tering 

heights o

One can conclude from Figure 1 that decreasing the 
initial energy ε and the angle of scat of elec- 
trons improves the conditions for observation of Cou- 
lomb resonances in the spectra of inelastically scattered 
electrons. Let us remind that the theoretically predicted 

f Coulomb and centrifugal resonances are com- 
parable with the height of the quasi-elastic peak. 

Note that the Woods-Saxon potential depth parameters 
( 0

θ ′  

pV  and 0nV ) giving the highest accuracy were used, as 
a rule, in our calculations. The half-width γ12 of a Cou- 
lomb resonance essentially increases (see Table 3) with a 
decrease of the depth of the Woods-Saxon potential. In 
this case the theoretically calculated Coulomb resonance 

12NL =  is widened so much that its half-width can 
considerably exceed the spectral energy gap of the spec- 
trometer 2 xEΔ . In this case the height of inci ient Cou- 
lomb resonance decreases and this resonance can be iden- 
tified directly in spectra of inelastically scattered electrons. 

Figure 2 shows theoretically calculated regularized 
cross-sections ( ),regσ ω θ ′  of inelastical scattering of 
electrons and experimentally measured cross-

p

sections 

ne c

heavy nucle

( ),ω θ ′  of electro-disintegration on different nuclei 
( )27 58 198, Al, i, Au . The kinematics of the experi- 
ments is borrowed from [20]. 

Analysing the calculated ( ),regσ ω θ ′  (solid line) and 
( )0 ,σ ω θ ′  (dashed line; plane wave approximation), we 

can observe some peculiarities of identification of Cou- 
onances in the spectra of inelastically scattered 

electrons in the framework of nuclear shell model. For 
example, an conclude that the Coulomb resonances 
may be registered in all considered cases. But careful and 
painstaking measurements in the kinematics region in-

σ
12 C N

lomb res

o

ter

width ν

esting for us were not presented in [20]. Note also that 
in the case of i we have a large number of 
Coulomb, centrifugal, and incipient (with large half- 

1 2l NLγ →
the theoreti

≈ ÷  MeV) [27] resonances. In this case 
 of the full resonance picture of 

cross-section ( ),regσ ω θ ′  beco
cal analys

 

Figure 2. Regularized cross-section σreg(ω, θ') of inelastic 
scattering of electrons on the nuclei 12C, 27Al, 56Fe, 198Au 
versus the transmitted energy ω. The initial energy of the 
scattered electrons is ε = 2020 MeV, the angle of scattering 
is θ' = 15˚. 

 

 

is
 complex. 

sections 

mes more
 presented Finally at the Figure 3 are calculated cross- 

( )0,regσ ω θ ′  for different nuclei (A1, Mg, Ca, 
Ni) and for the different kinematics: the initial energies 
of scattered electrons 779.5;500;545;500ε =  MeV and 
the angles of scattering θ ′  = 50.1˚; 60˚; 45˚; 60˚. The 
results of calculations presented on Figure 3, in general, 
do not contradict to the conclusions based on analysis of 
results presented at Figures 1 and 2. We can, however, 
state a fact that qualitative and quantitative comparisons 
of theoretical calculations and experimental data and  

Figure 3. The cross-sections σreg(ω, θ') of inelastic scattering 
of high-energy electrons on nuclei 27Al, 24Mg, 40Ca, 58Ni as a 
functions of the initial energy of scattered electrons ε and 
angle of scattering θ'. Kinematics of scattering agrees with 
kinematics of experiments [9,15,22]:  MeV, θ' = 
50.1˚ (Al), ε = 500 MeV, θ' = 60˚ (Mg MeV, ε = 
545 (Ca). The parameters of Woods-Saxon potential are: Al: 
V0p,0n = 63.5; 54.0 (MeV); Mg: V0p,0n = 68.674; 60.1 (MeV); 
Ca: V0p,0n = 53.9; 42.352 (MeV); Ni: V0p,0n = 62.85; 49.342 
(MeV). 

= 779.5ε
,Ni); ε = 545 
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moreover the conclusions from such comparison are im- 
possible at the moment. The reason is that experimental 
data and theoretical investigations are practically absent 
for the declared above range of transmitted energies. 

6. Quasielastic Peaks and Orthogonality of 
Wave Functions 

The interpretation of inelastic scattering of high-energy 
electrons and the reaction )  considered 
here in the frames of nu l, despite of 
simplicity, remains self-consistent quantum-mechanical 
problem in the theory of nuclei. The main reason and 
decisive argument for this statement is such well-known 
property as the mutual orthogonality of the wave func- 
tions [7] of discrete and continuous, including the quasi- 
discrete, spectra. Notice that the term “orthogonal func- 
tions” in aspect of interpretation of processes of elec- 
tro-disintegration of nuclei by the high-energy electrons 
was unambiguously used in [7]. In addition to stated in [7] 
one may note that it is very difficult to imagine quan- 
tum-mechanical theory of quantum transitions as well as 
based on it theory of inelastic scattering withou m- 

 

( )(, 1A e e p A′ −
clear shell mode

t co
plete orthogonal basis of wave functions of investigated 
quantum-mechanical system. We emphasize also that the 
conclusions below are based only on the postulates of the 
nuclear shell model and may be used for the investigation 
of different aspects of this model. 

In order to illustrate the role of orthogonality of wave 
functions in the theory of electro-disintegration of nuclei, 
let us consider the process of small-angle (θ' = 15˚) and 
very small-angle scattering (quasi-real photons phenome- 

non: 1
mωθ
εε

′
′

  ). Let us now calculate the cross- 

sections ( ),
1

σ ω θ θ′ ′  of inelastic scattering of high-  
12 al 

at the dominant position in the 

iables, 

energy electrons on nucleus C for two values of initi
energy of electrons, ε = 500 MeV and ε = 2020 MeV. 

First, let us remind th
expression for the exclusive cross section belongs to two 
functions of kinematical var )  (Equation 
(13))) and ( ),x lG ν q K  (Equation (14))). It is more than 
appropriate mention here that the latter one is determined 
by overlap integral:  

( ) ( ) ( ) ( )( )

( ,P ′k k

( )* 3, exp dx lm x x lm
x

I iν νψ φ−

−∞
= q K r qr r rK . 

Taking into consideration the formula cited above, in 
an early stage of our analysis let us suppose that 0=q . 
Therefore, ( )exp 1i =qr . Then, due to the orthogonality 
condition of the wave functions of discrete and continu-  

ous spectra, ( )
0

, 0x lm xI ν =
=

q
q K . It should be noted that  

this case ( )0=q  is unacceptable. If 0=q  then ine- 
lastic (and elastic) scattering is impossible. 

Second, let us now suppose that 1R−=q . In this case 

( )exp 1iqR ≈  ( R  is the radius of the nucleus) and 
( )3 2 , 1x lm xR I ν

− q K . This latter case ( )0≠q  is 
possible. In this case the losses of momentum and energy 
of the scattered electron must be minimal. If the value of 
transmitted energy ω  is fixed then the minimal value of 
transmitted momentum takes place at the minimum angle 
of scattering ( 0θ ′ = , quasi-real photons). As this is the 
case, ω≈q . And, as a rule, the inequality  

2 2

1
ω −q

 takes place as well [25,27]. 
2 

The minim e of the energy necessary for the 
 of r

ω

excitation esonances is practically defined 


al va

 Coul
lu
omb 

ω  

by the minimal excitation energy of the lowest Coulomb 
resonance, pNL x lE νε+ , where x lνε  is the proton en- 
ergy in the highest filled nuclear shell. Hence, the ine- 
quality 1R−q  may be satisfied with reasonable ac- 
curacy. The numerical estimates for t tigated nu- 
clei lead to the fo g result: 

he inves
llowin 1

min
0.05Fm−≈q . So, it 

is natural that the inequality 1R−q , in turn, leads to 
the inequality ( )3 2 , 1R I− q K , which has already 
been ment

x lν

g ou

f in

is ph

m x

ioned. 
Thus, restrictin rselves only with the analysis of 

ph
ease o

ction o e

d small scattering a
hat th

because the p

enomenon of orthogonality of wave functions of dis- 
crete and continuous spectra, we may predict decr f 
the cross-se lastic scattering of high-energy 
electrons. This decrease takes place at small transmitted 
energies ω an ngles ( )1θ ′  of elec- 
trons. Note t enomenon is cau ecreasing 
of distorted momentum distribution )x lG ν . In the 
case of plane-wave approximation this state

sed by d
( ) ( ,d q K

ment is wrong 
lane wave ( )exp iKr  is essentially nonor- 

function of bounded e 
proton in the considered kinematical region. 

Let us recall that the expression for the cross-section 
( ),σ ω θ ′  has dimensionless factor ( ),P ′k k  that, as it 

well known [25,27], is large in the mentioned above 
region. Just the function ( ),P ′k k  due to nonorthogo- 
nality of ( )exp i

thogonal to the w  of thave state

Kr  and ( )x lmνϕ r  will lead to unac- 
ceptabl  values of cross-section in plane-y huge wave ap- 
proximation. A  to draw an 
unambiguous concl ficance of 
ta of

ulations

rons

ri (NL = 12
sually ob

ctions calculated in 
fi ly exceed  calculated 

with taking into account of in knocked-  

nd just this factor allows us
usion concerning the signi

king into account of orthogonality  wave functions of 
discrete and continuous spectra. 

The phenomenon of orthogonality of wave functions 
in our calc represented on Figure 4, where 
plotted the cross-sections ( ),σ ω θ ′  of inelastic scatter- 
ing of elect  on nucleus 12C. The parameters of 
Woods-Saxon potential were chosen in such way that the 
Coulomb (NL = 20, 12) and cent fugal ) reso- 
nances have relatively large vi served half-width. 

The cross-se the plane-wave ap- 
proximation signi ) ( )

 is 

cant ( ,dσ ω θ ′
teraction of the 
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Figure 4. The cross-sections σ(ω, θ') of inelastic scattering of electrons on the nucleus 12C versus the transmitted energy ω. 
The parameters of the Woods-Saxon potential: V0p = 53.7 MeV, V0n = 51.0 MeV; the initial energies of the electrons: ε = 500 

MeV (a, b); ε = 2020 MeV (c); the angles of scattering are: θ' = 15˚ (a); [ ]−′
′

93 10
mω
εε

θ = ×   (b, c). 
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out nucleon in the final state, see Figure 4. Note that 
after some doubts and speculations the reader cannot 
disturb himself and fear of unusual units (Gb, Tb) that 
appear at the Figure 4. These units will be usual and 
natural units in the near future. 

The plane-wave cross-sections have huge, nonphysical 
magnitudes in the region of the quasi-elastic peak. This 
fact is a convincing proof of the necessity of taking into 
account the interaction of the knocked-out nucleon with 
the residual nucleus in the final state. 

7. Coulomb Resonances, Quasi-Real Photons 
and χ-Experiments 

In this section we will attempt to interpret some new 
aspects of experiments on investigation of exclusive cross- 
sections [10,15,23] basing on the results above. These 
new cross-sections  

( )
6d

d d d dmissE
E

σχ
ε

=
′ ′Ω Ω

       (37) 

depend on the energy lost in processes of scatter- 
ing and re-scattering inelastically scattered elec- 
tron and the knocked-ou gh-energy proton in the initial 
and final states. In su eriments one fixes the cases 
of simultaneous regi of scattered electron with the 
energy and knoc  proton with the energy
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periment e lost energy :  

. The s of esented 
weak nce pl

e nucle
mum

convenient interpretation of the minimal lost energy is 
is the binding energy at the upper 

s 

missE  
 of the 

t hi
ch exp

stration 
ked-out

his take
ally th

 plot
 resona

us 12

 at E
40  M

0
miss

rk of n

ε ′  
0  

ine ex

,23]
the case of t

har
 mum a

( )s

in th

 E  
sily 

in 
e, in 

( )miss  
ooth 

ost 

( 10E ≈
determ
ε ε ′= +
[10, 15

have a s
maxi-

misχ
With

missE
( )  pr

For exam
nction 

MeV and a sm
same tim
. 

ode

missE E+
 have 

h
p maxi

t E
0 <E E≈ ∀
e 

 missEχ
nature. 

 the fu
17  

 At the 
MeV  

clear shell m

C

miss

eV.
17E ≈

u

Eχ

e,  

l the m

≈
miss ≈

miss

framewo

11
h

missE ε= , 
filled shell 

If E

11 > 0hε  
of nucleu

h

12 C . 
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or several p
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he 
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ena a  in
with t residual nucleus

h
miss miss lE E νεΔ = −  

knocked-out proton
in strong interaction [15,16] of the 
 with the residual nucleus in the finite 

state. Note that in this case we suppose that the probabil- 
ity of inelastic re-scattering of the weakly interacting 
high-energy electron on nucleons of the residual nucleus 
or another nucleus of the target is negligible. 

Let us suppose that one of the protons of an upper 
shell of the nucleus receives the energy  after 
an act of collision with a high-energ  This 
proton with the energy 

ω ε ε ′= −
y electron.

h
p lE νω ε= −  

scattering on
ords, the knoc

t the part of acqu
ttering 

s. The knockin
ent, for instan
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cleons, etc. Let u
ering of knocki
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interacting proton spen
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other A atomic nucleu g-
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the processes of re-scatt
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ntially 

peri- 
ter- 
χ - 

anoma- 
used 

experiments [10,15,2 proceed from 
lously large values of th oss
by quasi-real photons (

We noticed above that in the analyzed experiments the 
coincidence of two particles was recorded. These parti- 
cles are: the inelastically scattered electron  and 
knocking-out (it is very desirable that just by t  elec- 
tron) proton Using simple empirical concept  one 
can state that ocking-out of proton from some eus 

unamb usly testify that the scattere
e inside r in the immediate vicinity) of th nu- 

s. It is n ifficult estimate the length mean 
path of istic electron inside of leus 
ing th oss-section of excitation of b re-
ce in s  by electrons with t rgy 

As a sult of the estimate we can assert 
 hi erg  in the pro llision 
leus re or after of knocko oton 
te t b resonance is (or 

another) nucleus with large probability. 
Previously developed theory [12,25,27] of Coulomb 

resonances and presented above estimates based on the 
calculated data of cross-sections of excitation of Cou- 
lomb resonances stimulate us to state such hypothesis in 
contrary to primordially widespread opinion: the lost 
energy in experiments [10,15,23] is the energy 
that is u  for the excitation of discrete, quasi-discrete 
and continuous spectra of investigated nucleus but namely 

3]. Let us 
e scattering cr

0′ = , “0-0”

the 
-sections ca

 - scattering). θ

k ′
his
ion

 nucl
d electron 

is 
 of 

nuc
om

e ene

 of pr
 th

K . 
 kn

iguo
 (o
ot d
relativ

e cr
nucleu

MeV. 
gh-en
 12 C
he C

12 C  
resid
cleu
free 
know
sonan
ε =
that su
with
may

λ
 this 
Coul

h

cess of co
ut
 in

 12 C
re

y electron
befo
om

779  
ch

 nuc
 exci

 
oul 12NL =

may be interpreted as the result of 
nomena listed below. These phenom- 
teraction of the knocked-out proton 

 1A −  in the final state [15,16], 
which is accompanied by excitation of this nucleus; the 
knocking-out of protons out of deeper filled nuclear 
shells; losses of energy of the scattered electron in initial 
state; accidental coincidences that are caused by the 
existence of intensive background of protons, the source 
of which is [25] the scattering of high-energy electrons 
caused by quasi-real photons; the dispersion of the initial 
energies of scattered electrons in the incident beams; etc. 

At the initial stage of investigations it is reasonable to 
look for the cause of additional energy losses  

missE  
sed

 

Copyright © 2013 SciRes.                                                                                 OJM 



A. A. PASICHNYI, O. A. PRYGODIUK 100 

by the high-energy electrons. Note that in this case the 
main role belongs to quasi-real photons ( 0θ ′ = , “0-0” - 
scattering). 

In connection with the hypothesis prese ove we 

nces quasi-real 

cei rmation. 

ent [15] where the i usive cross- 
section  of electro-disintegratio
12C by hi  ( MeV) el
tigated. T measurem rely the 

ed n
ditiona

elimi- 
nary estimate of t sed aux

e e  = 100
get contai

22 nucleon  are 
protons. The Table 3 contains calculat sections 
of

1p-shell of this nuc
 MeV) electrons e the 

C mb reso

nted ab

 and 

ncl
n of nu

ectr
 is me

 cross-

 that excit

should say the following. Let us suppose for a while that 
the results presented in Tables 1-5 are unknown. In this 
case the hypothesis stated above is, at least, a striking 
and very glaring example of absurdity, irresponsibility, 
and nonsense. 

The origin of the hypothesis stated above is in results 
of works [12,25,27] and in above-presented calculations 
of the cross-sections of the excitation of Coulomb reso- 
nances. In other words, the hypothesis mentioned above 
is undoubtedly based on the processes that are introduced 
to our theory by the Coulomb resona
photons. It is worth noting that the experiment can verify 
or refute this hypothesis, but in both cases we will re- 

ve equally important info
In order to confirm or to refute the hypothesis pre- 

sented above, we suggest the modification of experi- 
ments [10,15,23] already mentioned above. Consider, for 
instance, the experim

( )missEχ
gh-energy
he 

cleus 
ons is inves- 779.5ε =  

ent of 
tende

( )Eχ miss

first stage of slightly ex d experiment. The final stage 
of suggested experiment is practically the same. The 
physicist must measure the cross-section ( )missEχ  in 
slightly changed configuration. 

The important but practically negligible and easily im- 
plement  modification of presented configuration is i  
ad l auxiliary carbonic target installed at the very 
entry of spectrometer of scattered electrons. For pr

hickness of suppo iliary carbonic 
target we may use the following speculations. Let we 
have 1 cm2 of target of th talon density (D  
mg/cm2). This carbonic tar ns 100 × 10−3/(1.66 
× 10−24) ≈ 6 × 10 s. A half of these nucleons

ed
 excitation of Coulomb resonances of the nucleus 12C. 

According to this Table, each of four protons of the 
leus is an impermeable shield for the 

high-energy ( 700ε ≈
oulo nce na [ ]21NL =  of the investigate

f this shield is 24 220 20 10 cmb −= × . 
Thus the total impermeable shield of 1 cm2 of our etalon 
target will be 24 22 2 220 10 2 10 cm 0.4 cm−× × × ≈ . The 
obtained result testifies t out 40%  of electrons 
moving through the target and having the direction of 
movement unchanged will have the energy less by 17  
MeV than in the incident beam. Thus, according to the 
calculations, the density D of our additional target must 
be 2240 260 mg/cmD ≈ − . 

If the hypothesis about the origin of energy losses  

shifted to the right along the axis missE  by the value 
17missEΔ ≈  MeV. Note that the simplest version of 

d nu- 
cleus. The are

 cross-section he only difference be- 
 the two cros  is that the latter will be 

 instance, 
by varying the th

ion of ine- 
la

nces and 

ativistic me

arized 

he

di- i

 h
resolutio

al state
f high energy 

a o

hat ab

missE  in our measurements is valid then in the modified 
configuration we must obtain practically the same picture 
of the missE . T( )χ

s-sectionstween

modification of experiment [15], which was proposed 
above, may be diversified and complicated, for

ickness of the additional target on the 
entry slit of the electron/proton spectrometer or by choos- 
ing another sort of nuclei for the additional target. At the 
moment, a more detailed analysis of such variations is, at 
least, premature. 

Finally, we can conclude that the investigat
stic scattering of high-energy electrons and, particularly, 

the experimental study of Coulomb resona quasi- 
real photons is of general theoretical importance, espe- 
cially, for quantum nonrel chanics. 

8. Conclusions 

The main results of present paper can be summ and 
briefly stated in the following way:  
• Coulomb resonances are the direct theoretical pro- 

longation of the nuclear shell structure to the conti- 
nuous spectrum region. In the framework of the one- 
particle(!) theory of Coulomb resonances one can 
readily explain many features of such well-known 
phenomenon as dipole (quadrupol, octopol,...) giant 
resonance. It is a real possibility to interpret the phe- 
nomenon of dipole giant resonance as real experi- 
mental confirmation of existence of the Coulomb re-
sonances in the atomic nuclei. The brief theory of 
Coulomb resonances and calculated quasi-discrete 
spectra of some atomic nuclei are presented in Sec- 
tions 2 and 3. 

• The regularized cross sections calculated in this paper 
convince of the theoretical possibility of direct mani- 
festation of Coulomb resonances in the spectra of in-
elastically scattered high energy electrons. T  pre- 
sented calculations allow us to suggest the best kine- 
matic con tions for observation of such manifesta- 
tion: 
nitial energies of high energy electrons, ε ≈ 300 - 500 

MeV; - electron scattering angles, 10 25θ ′ ≈ −  degrees. 
The necessary condition for such manifestation is sub- 

stantially painstaking measurement of cross sections of 
inelastic scattering of igh energy electrons with high 

n in the region of transmitted energy, 5 MeV ≤ 
ω ≤ 60 MeV (Section 3). 
• To emphasize the significance of the wave functions 

orthogonality (both initial and fin s of nuclei) 
one may investigate the scattering o
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electrons at very small angles 1θ ′  (Section 4). 
• The main kinematic peculiarity of virtual quasi-real 

photons is the approximate equality of their quasi- 
momentum q and energy ω : 2 2q ω≈ . This ap- 
proximate equality determines the effective capability 
of qu eal photons for knocking-out of protons of 
high nuclear shells into quasi-discrete states of nuclei. 
In other words, quasi-real photons excite Coulomb 
resonances of atomic nuclei with high efficiency. The 
cross sections of such exciting processe  result in 
huge, alm

asi-r

an
ost tremendous val  be equal to 

dgements 

. 

s c
hat mayues t

hundreds and thousands of barns depending on the 
initial value of energy ε  of scattering electrons. Such 
processes can be discovered in experiments proposed 
in this paper (Section 5). 
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Appendix 

A. Calculation of the Electro-Disintegration 
Cross Sections and Testing of Numerical  
Programs 

The accurate calculation of the cross sections of inelastic 
electron scattering is connected with the accurate calcu- 
lation of the overlap integrals (18), which are the most 
important components of Equation (8). That problem 
will be investigated in detail below. Note that the inte- 
grand in Equation (18) is the product of the exponent 

( )exp iqr , the bound-state wave function ( )x lmνϕ r  and 
±the wave function of continuous spectrum ( )ψ K r . For 

the Woods-Saxon potential, the wave function of the 
bound state ( )x lmνϕ r  is well known [6]. This function 
an be written as  c

( ) ( ) ( ) ( ) ( )

( )2 2

0

;

d 1.

x l
x lm x l lm r x l lm r

x l x l

Z r
R r Y A Y

r

A Z r r

ν
ν ν ν

ν ν

ϕ

∞

= ≡

=

r n n
 (A1) 

The form and the content of the expressions presented 
bove for  and  together with the 
quiremen e cros ations are of 

igh precision predetermine the choice of the integration 
ethod in Equation (18). 
To calculate the overlap integral (18), we use the well- 

nown plane-wave expansion [31,32]: 

a ( )x lmνϕ r
t that th

( ) ( )ψ −
K r

s-section calculre
h
m

k

( ) ( ) ( )2 2 2
2

2 2 2 2 2
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*
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l m l

i i j qr Y Y
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qqr n n n
q

 

(A2) 

After putting Equations (22), (A1), and (A2), into 
quation (18), we present in the follow- 

orm: 
E  ( ), .x lm xI ν q K  
ing f

( ) ( ) ( )
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( ) ( )
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I i
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 (A3) 

here w

( ) ( ) ( ) ( )
1 2 1 2

2

0

, dl l l Kl l x l ;A q K R r j qr R r r rν ν

∞
=    (A4) 

nd a ( )2 2 1 1l m lm l m  are the Clebsh-Gordon [31,32] coef- 
cients. 
The overlap integral is presented in Equation (A3) in 

ector form, that is to say, Equation (A3) is valid in any 
rbitrarily chosen reference frame. We can take advan- 

fi

v
a

tage of this freedom of choice and simplify Equation 
(A3). With this purpose, we recall that 

( )
0

2 1

4πz m

l
mY lδ += =n n e          (A5) 

If we superpose vector ze  with vector q  or K  
then, according to Equation (A5), the summa

 

tion in 
Equation (A3) is essentially simplified. 

We restrict ourselves to the case of ze q  and make 
use of well-known [32] properties of the Clebsh-Gordon 
coefficients. After that, the overlap integral takes the 
form 

( ) ( ) ( )

( )( ) ( )( )
( ) ( ) ( )

1

1 0 0 1

1
, 4π 2 1 1
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l j l jl
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(A6) 

Notwithstanding the achieved facilitation, the overlap 
integral (A6) remains a very complicated expression in 
the form of a twofold series, the convergence of which 
depends essentially on the kinematic parameters. It is 
well known [33] that the computer programming of such 
problems is always associated with a risk to receive an 
erroneous result because of “natural” errors, which easily 
and freely “penetrate” into initial formula and programs. 
To avoid such errors, we propose a few tests [8], which 
substantially raise the level of trust to the obtained results. 
Note that it is the plane-wave approximation that pro- 
vides useful and invaluable aid at this stage of investiga- 
tions. Note also that the tests proposed below retain their 
validity in the case of relativistic models as well. 

Let us recall that the distorted momentum distributions 
turn into plane-wave ones if we substitute  

r . After that substitution the plane- 
 can be calculated with two differ- 

rst method is to perform the limit 
 (18) → Equation(A6), using the 

. According to Equation 

( ) ( )exp iψ →K r K
wave overlap integral
ent methods. The fi
transition of Equation
substitution ( )KlR r
(A6), we obtain: 
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here 
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d method is to calculate of the overlap 
ion (A7) in another way:  

The secon
integral Equat
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(A10) 

( ) ( )

( ) ( )( ) ( ) ( )

3

2

0

e d

4π d ,

i
x lm

l l
m l lq Ki Y s j sr R r r r

ν

ν

ϕ−

−∞
∞

−

= 

= × 

q K r r r
  (A11) 

where = −s q K , =s s . 
Note that the succession of operations Equations 

11) can be continued. All one ha  is to 
remember that the plane-wave momentum di ution 
Equation (15) is proportional to the sum  

(

(A10), (A s to do
strib

) 20 0 , ,
m l

l x lm
m l

S I ν

=

=−
=  q K . In this case one can as well as x  

to recall a well-known equality [32]:  
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It is useful to note that for a large number 1l  
( )1 20l ≥  the strong inequality  

( )

x lν

(( ))2
1 1 1 2 Axl l r MV r+   takes place in the region 

at
 for  we 

have the approx ality h 
is of high acc refor the
conditions of convergence of the plane-wave approxima- 
tion series and those of the series with distorted ov
in

stablishe
o values of the plane-wave overlap integral 

calculated with the two different methods. This means 
that we have obtained a confirmation of reliable conver- 
gence of both series Equation (A7) and Equation (18). 
Note that in this way we can, at the same time, verify the 
convergence of expansions of the plane wave in te
spherical functions [Equation (25)] and the distorted 
wave function [Equation (A2)] in the investigated kin- 
ematical region. 

 calculating the overlap integrals (one after an- 
other) by two different (Equations (A8) and (A11)) meth- 
ods and comparing the former and the latter resu
have established the following. 

r small energ

≤ E ≤ 50 MeV, medium nuclei) it is relatively easy to 
achieve agreement between the plane-wave cross sec- 
tions calculated by the two mentioned above methods 
with an accuracy of significant figures in man- 
tissa. Note that with osed comparison we achieve 
also a reliable ck of Equations (A3) and 

 check also uracy of such special-func- 
tio

)
the accuracy of calcu
[the parameters of
gration step, the n  
(A

resul

rounds for the following assertions: 
• The probability of errors and inaccuracies in our 

programmes and transformations of formulas in the 
investigated kinematic region is insignificant. 

• The convergence of series in Equations (A3) and (A6
with empirically chosen boundaries of summation
over quantum numbers  is quite sat- 
isfactory for the investigate  of ele

of 
omic nucleus ( )r R≤ . It is evident that when the 

mentioned inequality takes place then 1 > 20l
( )Kr , whic

 that 
imate equ

uracy. The
( )

1 1Kl lR r j≈
e, we can affirm  

erlap 
tegrals are identical. 
Let us assume that we have e d the agreement 

between tw

rms of 

After

lts, we 

Fo ies of the knocked-on protons (1 MeV 

(A8); we

 14 10÷  
 the prop

 accuracy che
 the acc

lations 
he calcul
ber of ite

n subroutines as ( ) ( ), l
l mj x P x , coefficients of Clebsh- 

Gordon, as well as the accuracy of direct integration me-
thods in the overlap integrals, etc. When the transmit- ted 
energy ω and, consequently, the energy E of the 
knocked-out protons increase ( Eω ≈, 300 450 MeV÷ , 

r invar
proce

 in the sum in Equation
ults coin-

unde
 t ation 

um ms

iable conditions 
ss such as inte- 

7), etc. do not change] decreases: the two res  
cide only with an accuracy of 6 5÷  significant figures 
in mantissa. 

The good agreement between two ts obtained 
with two different methods with high accuracy and in a 
wide interval of variation of the kinematic parameters 
gives g

) 
 

ctro- 
1 2,l l  ( )1 2, 50l l ≤

d kinematics
disintegration of medium and heavy nuclei. 

Let us consider one more test, which also essentially 
raises the reliability of the calculated numerical values of 
the nucleus electro-disintegration cross sections. In this 
case we test the process of solution of the radial 
Schrödinger equation [Equation (24)] and the process of 
tailoring of the solutions ( ) ( )

 

KlR r−  at the point r b≈ . 
To do this test, we should implement the special case of 

( ) ( )0 > 0AxV r E= ∀  in the subroutine solving the ra- 
dial Schrödinger Equation (24). One way to do this is to 
put 0 0xV =  and 1 0Z − =  for the potentials ( )WSV r  
and ( )CV r ) correspondingly. In this case, if the pro- 
gram is correct, we must finally realize the conversions: 

( ) ( )Kl lR r j Kr= ; ( ) ( ) e
0

ir
V r

−Ψ ==Ax

Kr
K . Hence, the  

cide
plane-wave momentum distribution calculated so must 
coin  with two distributions [Equations (A3) and (A7)] 
calculated by the traditional methods mentioned above. 
In our tests we obtained agreement of all distributions 
with an accuracy of 12 6÷  significant figures in man- 
tissa in diverse re of ki atic parameters. 

Therefore, we o suppose that the cross 
sections of nuclea

gions nem
have a right t
r electro-disintegration in the approxi- 

mation of distorted waves are calculated in our computer 
program with sufficient accuracy. 
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We have considered two tests that substantially raise
the reliability of final results of our computer program.
Let us suppose that we deal with large mass numbe

 
 

r A  
and large energy of the knocked-on proton. It
structive to mention about one more mathematical trick 
[8], which in this case improves the convergence of se- 
ries appearing in calculations of the distorted momentum 
distributions. One can represent the overlap integral Eq-
uation (11) in the following form: 

dν 


 (A12) 

Finally, 

ν

ϕ




(A13) 

We calculate the first term of Equation (A13) with a  

e in Equation (A6) but with 
su

ou  ap

method as rational as possible, for instance, like in Equa- 
tions (A3)-(A11). As to the second term, we calculate it 
with the help of series lik

E   is in- bstantially improved convergence. For this purpose, 
one needs to perform the following substitution in Equa- 
tion (A6):  

[ ]−

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

* 3

*

, exp

exp exp

x lm x x lmi

i i

ν ψ ϕ

ψ

−

−∞

−

=  

= − − + − 

K

K

q K r qr r r

r Kr Kr

( ) ( )

( ) ( ) ( ) ( )
1 2 1 2

1 1 2

2

0

, ,

d .

l l l l l l

Kl l l x l

A q K A q K

R r j Kr j qr R r r r

ν ν

ν

∞

→

 = −  
 

This method gives a possibility to extend essentially 
the possibilities of numerical simulation of electro-dis- 
integration processes of heavy nuclei for large trans- 
ferred energies ω. Note that all the tests described above 
have been taken into acc nt, proved and implemented 
practically as early as in paper [7]. It is a cause for regret 
that all these tests do not were published so far elsewhere.

I

( ) ( ) 3exp d .x lmi νϕ

−∞

⋅   qr r r

( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )

3

* 3

, exp d

exp exp d

x lm x x lm

x lm

I i

i i

ν

ν

ϕ

ψ

−∞

−

−∞

= − 

 + − −   K

q K q K r r r

r Kr qr r r

 


