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ABSTRACT

Various aspects of the influence of the quasi-real photons and the Coulomb resonances on the formation of the cross-
section of inelastic scattering of high energy electrons on atomic nuclei are investigated. E,,;, is the energy that disap-

pears in the processes of knocking-on of protons in the reactions 4(e,e’p)(A—1). A new hypothesis that interprets the

origin of the energy losses is proposed. Specific experiments that can confirm or refute this hypothesis are proposed as

well. The “regularized” cross-sections of electro-disintegration of nuclei by high-energy electrons (O_reg (@, 6")) are

calculated in the framework of the nuclear shell model. It is shown that for the experimental verification of the exis-
tence of Coulomb resonances, it is necessary to investigate the (e,e”) processes at relatively small angles of scattering.
The peculiarities of numerical methods that are crucial in the investigation of inelastic scattering of high-energy elec-
trons on nuclei in the framework of the nuclear shell model are analyzed in this work as well. The cross-sections of the
scattering of high-energy electrons on the angle 6 =0 are calculated. It is shown that the orthogonality of the wave
functions of a knocked-on proton in the initial and final states plays an important role in the interpretation of this proc-

€SS.

Keywords: Coulomb Resonance; Quasi-Real Photon; Inelastic Scattering; High-Energy Electron;
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1. Introduction: The Electro-Disintegration
of Atomic Nuclei by High-Energy
Electrons

Due to the relative weakness of the electromagnetic and
weak interactions of electrons, positrons, muons and neu-
trinos with nuclei, the structure investigation of atomic
nuclei in the processes of elastic and inelastic scattering
of these particles on nuclei [1-27] provides the most re-
liable information on various aspects of the structure of
atomic nuclei. The above statement is based on the rela-
tively high reliability of the information about the prop-
erties of electromagnetic and weak interactions, as well
as the relatively high accuracy of the perturbation theory,
in the framework of which (impulse approximation) we
interpret the inelastic scattering of high-energy leptons
by nuclei. The technical perfection reached at the mo-
ment in forming the monoenergetic high-energy elec-
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trons beams, as well as in registering these particles in
nuclear experiment, played a decisive role in the choice
of particles-projectiles as means of external influence on
the atomic nucleus for studying the structure and proper-
ties of nuclei: they were certainly the high-energy elec-
trons.

It is important to note that the structure of nuclei is in-
vestigated in this paper in the framework of the nuclear
shell model (LS-coupling, independent particles). In the
framework of this nuclear shell model, we will study and
interpret the features of such unusual phenomena as the
Coulomb resonances and the quasi-real photons in the
aspect of their influence on the dynamics of electro-dis-
integration of nuclei. In other words, the aim of this pa-
per is the investigation of possibilities of visualization
and identification of Coulomb resonances in experimen-
tal studies of nuclear electro-disintegration.
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It must be emphasized that the Coulomb resonances
are the something more than merely the Coulomb reso-
nances. First, the Coulomb resonances present a practi-
cally essential part of the quantum-mechanical theory of
quasi-discrete spectrum in non-relativistic quantum me-
chanics [12,25,27]. Second, the Coulomb resonances are,
first and foremost, a natural extension of the nuclear shell
model to the continuous spectrum region [12,25,27]. Third,
it is the Coulomb resonances that will provide additional
and very useful insight into our understanding of gigantic
dipole resonance phenomenon in the framework of the
shell model [12,25,27], etc. Finally, the reader may re-
member [12,25,27] that at this stage the Coulomb reso-
nances and the quasi-real photons are investigated exclu-
sively poorly. However, in both theory of inelastic high-
energy electron scattering and theory of atomic nuclei,
the Coulomb resonances and the quasi-real photons are
phenomena that can manifest itself in many phenomena
and experiments of nuclear physics [12,25,27].

We suppose that the study of the reactions of proton
knockout A(e,e’p)(4—1) and neutron knockout
A(e,e'n)(A-1) from various atomic nuclei presents a
particular interest just in the framework of the nuclear
shell model. From this point on, we shall assume that the
process of inelastic scattering of a high-energy electron at
a nucleus is accompanied by transfer of energy w=¢£-¢’
(w>0;& and & are the initial and final energies of
the scattered electron), and momentum ¢ =k—k" to the
nucleus. k and k' are the electron momenta before
and after the act of inelastic collision of the electron and
the nucleus. We also suppose that the process of inelastic
collision of the electron with the nucleus in the investi-
gated region of the kinematic variables w, g is caused
mainly by a collision of the scattered electron with a
single nucleon of the nucleus.

As a result of this collision, one of the nucleons of
the atomic nucleus, having received the required energy
@ in this act, overcomes the action of attractive nuclear
forces and flies out from the atomic nucleus A with mo-
mentum K=K (x=p and x=n in the cases of
knocking out of a proton and a neutron, respectively) and
energy E=E : |K |=\2ME, .

Note that according to the conservation laws of mo-
mentum and energy, the exact expression for the distri-
bution of the transferred electron energy @ between the
nucleus A—1 and the knocked-out nucleon has the fol-
lowing form (here and in the following A=c=1 [28]):

2
_1
wo=w,,+ a + 4 =w

xvi 2AM 2]\7}7 = vl

+T 4T, ) 1)

The new quantities appearing in Equation (1) are as
follows: w,, is the energy required for ejection of nu-
cleons from the xvi-shell of an infinitely heavy nucleus
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(the separation energy of the nuclear xv/-nucleon); 7, is
the energy of motion of the center of mass of the target
nucleus A after its collision with the scattering electron;
L is the energy of relative motion of the knocked-
A-1

out proton and the residual nucleus 4—1; M , = TM

is the reduced mass of the proton.
We point out that Equation (1) could be written in the
following form as well:

2

K off
o=——--+w?, 2
oM wl @

P

where the effective separation energy w?, is defined by
the following apparent formula:

2 2
I | K-q

wé=w — -
2AM  24°M, AM,

xvli™ "Vxvi

3

It is important to point out that, according to Equation
(3), the effective separation energy ch’zfl of the xvI-
nucleon depends somewhat on the kinematics of experi-
ment. In the limit case of 4 >1 we have:

K2

2M’
The effective separation energy w?, in the approxi-
mation (4> 1,M,=M) will be identified in the fu-
ture numerical calculations with the binding energy of
the nucleon £, in the nuclear shell. There is a good
reason to believe that the calculations of the cross sec-
tions of nuclear electro-disintegration of heavy, medium
and even light nuclei, which are performed in this ap-
proximation, will be quite acceptable for preliminary
conclusions.

A nucleon knocked out from a nucleus moves in the
average field ¥, (r) of this nucleus in both the bound
state and the state of continuous spectrum. In the shell
model the knocked-out nucleon dynamics in the bound
state is presented by the wave functions ¥ (r) =g, (r)
calculated in average field V, (r); here v=1,2,3,--
is the radial quantum number; / = 0(s), 1(p), 2(d), 3(f), -
is the orbital quantum number. It is reasonable to calcu-
late the continuous spectrum wave functions
w(r)=yy (r) in the same average field ¥, (r) In this
case the bound state wave functions Y (r)=g,,, (r)
and the continuous spectrum wave functions
w(r)=yy (r) are orthogonal to each other.

Note that the wave functions of the discrete (E <0)
and continuous (E>0) spectra are solutions of the
Sturm-Liouville problem based on the non-relativistic
single-particle Schrédinger equation:

T =F

(p.4-1) P Weff = val . (4)

xvi

eff

[_%Mm (r)}y(r) =E¥(r). (5
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The bound state solutions of Equation (5) must satisfy
the following integrability conditions:

r2+5|‘l’(r)

|2

—0,0>0; (6)
in the latter case, the condition (6) must be replaced by
following condition:

+iKr

_>emr+f(”1<) P

r— o0

O]

One can recall that the vector K appearing in Equation
(7) is the wave vector of the knocked-out nucleon:
K =|K|=~2ME.

2. The Cross Sections of the Nucleus
Electro-Disintegration

In this paper we restrict ourselves to those processes in
which the knockout of protons and neutrons from the
nuclei is associated with relatively small transfers of
energy @ and momentum |q| from the scattered elec-

. [
trons to the atomic nucleus 4: —<1; i<<1;
M M

X

< 1; In the present approximation the interaction of

a relativistic electron with a non-point nucleon of the
nucleus can be quite accurately described the quasi-rela-
tivistic Hamiltonian of McVoy-Van Hove [1,2], which
takes into account empirically the electromagnetic struc-
ture of the knocking-out non-point nucleon in the form of
relativistic corrections. After carrying out simple calcula-
tions (perturbation theory, the impulse approximation),
the cross section o, (k,k’,K) of knocking out of an
x -nucleon from the xv/-shell of the nucleus 4 by an
inelastically scattered ultra-relativistic electron is pre-
sented in the following factorized expression [5,7,21,25]:

, o do,
KK = Goacian
=e'N,,F’ (qf, ) MK xP(k,k')S (k.k',K)G,,(q.K),

k2
®)

where e is the proton charge, N, is the number of
x -nucleons in the nuclear xv/ -shell,

¢'=6, 0=6;, 6,=0, 9'=¢, =0, @y =T, )
V. :1.795xp -1916,,, (10)

F(q))=F(q;) =(1+0.055(Fm)2 0 )72; (11)
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S, (k,k',K)

2(1-2
=L, 0, 1+ 2 L) ( 27/*) (e€’+kk")
2| M 4M

K? +4(kK)(K'K 12
_iK(gk’+e'k)+q” ( > ) )H( )
M 2M
4[] +(q2)
+ —
g 4M*

is a dimensionless, positive definite and continuous
( S, (k&' K)|~ 12‘ function of the vector arguments
k,k’,K . It is in this function that the structural features
of the interaction of the scattered relativistic electron and
the knocked-out nucleon in the quasi-relativistic Hamil-
tonian of McVoy-Van Hove are reflected. Two essen-
tially different functions appearing in Equation (8), which
depend on kinematic variables of the process of the elec-
tro-disintegration of nuclei,

T
q;)
and
1
va (q: K) = —3)(
' (21+1)(2n) "
’gl I(V/l((‘)* (r)exp(iqr) @, (l'))d3r ’

exert most comprehensive and determinative [25,27] in-
fluence on the interpretation of various aspects of the
processes electro-disintegration of nuclei. The function
G,,(q.K) depending on the kinematic parameters ¢
and K defines the distorted momentum distribution of
nucleons in the xv/-shell of the atomic nucleus. It is
G, (¢q,K) that contains the most complete information
about the dynamics of the nucleon in the nucleus force
field v, (r): @, (r) appearing in Equation (14) are
the wave function of the nucleon in the bound state;

l//;) (r) is the wave function of the nucleon in the state

of continuous spectrum.

If we take into account the influence of the nuclear
field on the motion of the knocked-on nucleon in the
final state, the factorization of expression (8) for the cross
section o, (k,k’,K) is approximate. The factorized
expression (8) becomes exact only in the plane-wave
approximation, which is valid when the energy of the
knocking-out protons is quite large. In this case
wi) (r)=exp(ikr) , and G, (g, K) transforms into
G!,(q-K), which determines the momentum distribu-

xvi
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tion of the nucleons in the xv/-shell:

1
G (q-K)=———
xvi (q ) (21+1)(27E)} (15)

2

m=[
. ,El/ ‘valm (x)exp (i (q—K) x) d’x

Here and below the exclusive and inclusive cross sec-
tions of the nucleus electro-disintegration calculated in
the plane-wave approximation will be labeled, if neces-
sary, in the graphs, tables and formulas by the symbol 0,
and the similar values calculated with taking into account
the interaction of the knocked-out nucleon in the final
state will be labeled by the symbol d. Formula (8) speci-
fies the initial exclusive cross section of electro-disinte-
gration of the atomic nucleus. Experimental verification
of (8) requires fairly laborious experiments in which both
the inelastically scattered electron and the knocked-out
proton are simultaneously registered or identified. At the
moment, a large number of less laborious experiments
are realized. In these experiments one investigates the
energy distributions of inelastically scattered electrons at
certain scattering angles and initial energies of the scat-
tered electrons.

There are carefully developed methodologies taking
into account the inelastically scattered electrons that have
lost their energy in a variety of quantum-electro-dy-
namical [28,30] processes such as bremsstrahlung, birth
of electron-positron pairs, etc. If we subtract these elec-
trons from other scattered ones, we obtain the inclusive
cross section o(@,0’) of inelastic scattering of high-
energy electrons in the process of collisions of ultra-
relativistic electrons and nuclei:

O-(a)’ 6,) = Z‘;O-xvl ((l), 0,) = Z:l]\']xvlo-)z:vl (C(), 9,)’ (16)

where N _, is the number of x-nucleons in xv/-nuclear
shell, o, (®6) and o, (06)=0,(.6)/N,,

are the complete and specific knock-out cross sections of
a x-nucleon from the xv/-shell of the atomic nucleus,
respectively. The summation in Equation (9) is applied to
all, fully or partially, filled shells of the investigated
nucleus, and o, (®,8") is calculated in 0- and d-ap-
proximations by direct numerical integration of the
differential cross section (8) over the total solid angle
Q=Q, of propagation of the knocked-out nucleons:

d30_xvl
de’dQy’

Studying the reaction A(e,e’n)(A—-1), we can extract
realistic information about the structure of atomic nuclei
in the framework of an investigated model by comparing
the calculated and measured exclusive (8) and inclusive
(17), (17) differential cross sections of the electro-disin-

tegration of nuclei. If we restrict ourselves to the nuclear
shell model then the calculations of these cross sections

O-xvl (a)’ 9’) = - go-xw (k’k,’K)dQK (17)
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are associated with labor-intensive computing of the over-
lap integrals:

Lom (‘I: KX) = <KX ‘e(iqr)
3 (18)

= v, (n)[exp(iar)]o,,,,,, (r)dr

xvlm>

These integrals determine the distorted momentum
distributions (Equation (14)) of nucleons in the filled
xvl-shells of atomic nuclei. The deductions and conclu-
sions of this paper depend strongly on the numerical
values of the calculated electro-disintegration cross sec-
tions of various nuclei. Because of this, the reliability and
correctness [33] of applied numerical methods of the
electro-disintegration cross-section calculation will be dis-
cussed in Appendix A in detail.

Note that the electro-disintegration processes of nuclei
are relatively easy interpreted in the approximation pre-
sented below by the quantum-electro-dynamical Feyn-
man diagram of second order.

If we suppose that the range of nuclear forces is re-
stricted then we can assert that the wave function of the
knocked-out (E>0) nucleon [29] has the asymptotic
form given by Equation (7). The condition (7) mentioned
above once more affirms that the knocked-out nucleon
moving in the region of the residual nucleus (4-1)
scatter itself elastically on this one.

Diag. 1

These processes of the nucleus electro-disintegration
are presented on the above Feynman diagram. On this
diagram, we can distinguish the initial electron with 4-
momentum k =k, , which acquires the status of a scat-
tered electron (k' = k;) after emission of a virtual pho-
ton. The virtual photon ¢ is absorbed by one of the
nucleons of the target nucleus and provokes the ejection
of this nucleon from the nucleus. The knocked-out nu-
cleon interacts with the residual nucleus in the final state.
This interaction is presented on the diagram by a hypo-
thetical exchange meson with 4-momentum .

In this paper we estimate the dependence of the so-
called y-sections (see Equation (35)) of nuclear electro-
disintegration from the processes represented below by
the sum of Feynman diagrams of higher order:
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() (b)

In these diagrams we see new additional participants
of the more comprehensive theoretical interpretation of

the inelastic scattering of high-energy electrons on nuclei.

First and foremost, it is a quasi-real (qo = qoﬂ) virtual
photon [25], which is absorbed by a proton of the nucleus
A and provokes the transition of this proton in the qua-
si-discrete state K, of the nucleus 4 or A-1. The
knocked-out protons K, and K, interact in the final
state with the residual nucleus. This interaction is shown
schematically in the diagrams by 4-momenta of n=m,
of hypothetical mesons. The knocked-out nucleons ex-
change by such a meson with the daughter nucleus 4 — 2.
The Feynman diagrams (diag.2a, diag.2b) describe the
processes of the two-proton knockout from the atomic
nucleus, which are predicted by the nuclear shell model.
As we will see later, these processes are also capable to
provide a non-trivial impact on the results of experimen-
tal studies of reactions A(e,ep)(A-1).

It is well known that 4-vertex quantum-electro-dy-
namical processes (diag.2a, diag.2b) in general case (if
we substitute g, = ¢’ #¢,,q #q, in diag.2a, diag.2b)
are weakly visible against the backgrounds of the 2-
vertex processes (diag.1). It is useful to remind once
again that 4-vertex quantum-electro-dynamical processes
(diag.2a, diag.2b) become apparent only in the case when
in both diagrams (diag.2a and diag.2b) and in, at least,
one of two left vertex of each diagram the electron emits
a quasi-real photon ¢, (6 =0, “0-0"-scattering). It is
the quasi-real photon ¢, that, as we will see subse-
quently, is capable to excite with high probability the
Coulomb resonance in the atomic nucleus.

It is necessary to note that the nucleon knocked out
from the nucleus A can participate in the processes of
inelastic scattering on the residual (4—1) nucleus. For
example, this nucleon can spend a part of its energy for
the excitation of the discrete state of the residual nucleus.
Colliding with another nucleon of the residual nucleus,
the knocked-out nucleon is capable to increase the num-
ber of knocked-out nucleons. Taking into account the
process of inelastic scattering of the knocked-out nucleon
on the residual nucleus can essentially complicate the
interpretation of the electro-disintegration processes in
the coincidence experiments.

Copyright © 2013 SciRes.

3. Quasi-Discrete Spectra of Atomic Nuclei

Let us calculate the cross sections (8) and (16) of the
knockout of a nucleon (reactions A(e,e’p)(A-1)). In
the nuclear shell model (LS-coupling) we approximate
the potential ¥, (r) by a sum of two terms:

Vi (r)=Vys (r)+6,Vc(r). The first term Vg (r) is
the short-range Woods-Saxon potential:

V,, O(b-—
Vs (r) == Vo o 0ax (b-r) ,
r—R r—R
1+exp( j l+exp(] (19)
a a
(V()Ax EVOX > O)’
where:
G(x)=(1—5yo)—x+|x|+l5vo (20)
’ 2x 2

is the Heaviside unit function; b = 7, /4+20a; Vous
a and R=v, x4 are parameters of the Woods-
Saxon potential.

The second term &, V. (r) is the long-range Cou-
lomb potential:

VC(r)

{(Z_l)ez (3— a j@(R—r)+—(Z_l)ez®(r—R) .

R
1)

The wave functions of continuous spectrum can be
obtained in the form of the following series:

ly=c0 my=l

Vil (r)=4n 2 3 iR ()Y, (1), (n). 22)

L=0m==1
Zy, (1)
r

L= my=l J (i)
=4n > X llAK,]
L=0m ==
The radial functions Z, (r)= 4, Z,, (r),(VE>0). in
the half-open space 0<r <o in our model are always
real and bounded solutions of the radial Schrodinger
wave equation with the real potential ¥, (r):
d’z 1(1+1
—ﬂz(r) 1+ . )}Zﬂ (r)=0. (24)
dr r

Yl::ll (nr)Yllm] (nK) (23)

+ Zm(E— V.. (r)) -

It is useful to remind [31] that the asymptotic behavior
of the wave functions of continuous spectrum (7) de-
termines the asymptotic behavior of the radial functions

Z, (r):
AI(g,)ZK, (r) Y(r<b);

Sk (& (P)+i(P))= (81 ()=, (P))) 25
2i

20(r)-

Y(r=b;p=Kr)
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Here: g,(p) and f,(p) (p=Kr) in Equation (25)
are the well-known [34,35] Coulomb functions

(VC (r) #* 0) :

g (P)=G(n.p). f;(p)=F (n.p), (26)

(Z—l)ez\/% (27)

is the Coulomb parameter. If V. (r)=0, then
g (p)==pn,(p) =1limy~G, (17 );
11(p)=pj,(p)=limyoF, (7. p),

where

n

where n,(p) and j,(p) are the Neumann and Bessel
spherical functions.

Tailoring [12,25,27] the solutions (25) of Equation (24)
at the point » =5, we find the coefficients
A = A0 (E):

AD(B)=[wt, (E)+iwk, (B)] . (@8)

r=>b ’
(29)

r=>b
(30)
Simple mathematical analysis of the amplitude expres-
sion A,(_) (E) in Equation (28) [12] leads to the follow-
ing conclusions. One can determine the energies of the
Coulomb resonances E =E,,, from the condition [12]

€2))
Zy (1) G, (1.p)
r=>b r=>b
and the half-width y,,, from the equality [12]
-1
7, d(W(L;Z (E))
=i (B) = (32)

E=F,,

Direct mathematical analysis of the expression (28) for
the amplitude A!”) (E) of the separate radial compo-
nent Ry, (r) reveals [12,25,27] the cause of the abrupt
increase of the magnitude of the cross section o(@,8’)
in the vicinity of the proton resonance energy E=E,,, .
We recall that the equalities (31) and (32) are true in the
case when the strong inequality

Copyright © 2013 SciRes.

G <n,p)+[_dGL ;Z»mj dr, (n.p) CEZ’P)]

is valid. When the energy E=E,,, of Coulomb reso-
nance approaches the Coulomb barrier height

>>> F! (n,p)+[

E 2 3 , the mentioned strong inequality re-

laxes to a more delicate inequality:

2 2

dG, (n,p dr, (n,p

GL2 (n’p) + L ( ) L ( ) .
dp dp

In that case the Coulomb resonances acquire the status of
incipient resonances. Such Coulomb resonances become
apparent when one calculates spectra of inelastically
scattered electrons. In this case the peaks of resonances
have moderate heights and rather large half-widths y,, .

As an example of application of Equations (24)-(32),
we present the calculated main characteristics (the ener-
gies E,; , the half-widths %,,. and the wave function
amplitudes |ANLx| ) of quasi-discrete levels of some
atomic nuclei in Table 1. It is important to keep in mind
that these characteristics can depend essentially [12,27]
on the parameters of the Woods-Saxon potential. Notice
that the parameters ry and a of the Woods-Saxon poten-
tial in the calculations of this article are kept invariable:
7y =124 Fmand a=0.55 Fm. This simplification does
not influence the conclusions of this paper.

Note also that the analysis of the quasi-discrete spectra
(jj-coupling) of the light, medium and heavy nuclei per-
mits to affirm that the nucleus quasi-discrete spectrum is
the natural extension of the nuclear shell structure to the
continuous spectrum region. For this reason, the experi-
mental and theoretical investigations of quasi-discrete
spectra properties in A(e,e’p)(A—1) -knockout reac-
tions of protons are, at the same time, investigations of
the nuclear shell model.

> F} (n,p)+£

4. The Cross-Sections of Excitation of
Coulomb Resonances

It is well known [12,13,19,25,27] that theoretical inves-
tigations of the inelastic scattering of high-energy elec-
trons predict the resonance structure of inclusive (Equa-
tion (9)) cross-sections as functions of transmitted energy
® (w<50 MeV) in the framework of the nuclear shell
model. The dynamic characteristics (height, half-width)
of resonance peaks substantially changed due to the small
variations of the parameters of Woods-Saxon potential.
For instance, the maximum values of o(®,_,,,,0") and
the half-widths 7,,_,,, of resonance cross-sections

0 (@, -0 canundergo enormous quantitative
changes. Such huge variations of characteristics of reso-
nance peaks undoubtedly require additional investiga-
tions of this phenomenon.
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Table 1. The principal physical characteristics of the quasi-discrete spectra of some atomic nuclei.

91

NL X Enpe ‘Am VNLx NL X Enp. ‘A.W.A VNLx
*Fe; V.0 = (63.3;50.55) MeV *Ni; V., =(62.0;49.3415) MeV
14 N 1.36x107 3.82x10° 3.05%10™ 13 n 2.02x107 1.67x107 6.06x107"
14 1.36x10” 6.85x10* 1.07x10™ 14 p 5.97x10" 7.15x10° 6.33x10™"
2 P 2.78 15.43 1.48x107 15 p 3.35 10.76 0.47
Y; V0, =(54.13;41.734) MeV Sy ¥, =(63.3;50.55) MeV
14 P 8.83x10° 3.27x10™ 3.51x107 23 p 2.26 6.0932x10’ 1.06x107
22 N 4.40x107 31.58 3.15x107 31 p 3.96 2.6415x10' 5.09x107
2 P 3.48 22.43 8.17x107 16 p 7.20 2.4490x10° 1.82x10°
30 P 3.99 4.12 1.60x10 17 n 11.48 5.96 3.34x10"
15 P 10.31 11.18 9.52x10™ 17 p 17.64 9.98 1.60x10"
YAl V., =(63.5;54.0) MeV “Ca; V., =(53.9;42352) MeV
13 P 0.455 9.17x10° 3.3172x10° 13 n 5.27x10°7 3.79x10° 1.76x10™"
13 N 0.748 31.20 3.2143%10° 13 p 6.06x10°7 3.93x10" 2.02x10™™
21 P 0.802 22.63 3.0319x10” 21 p 1.56 1.77x10' 7.54%x107
5P V., = (57.48;47.4125) MeV A ¥, =(57.48;47.4125) MeV
17 N 8.17x10° 9.71x10" 3.57x107 17 - - - -
23 P 2.70x107 5.75%10" 1.31x10™” 23 p 6.72x10" 3.09%10" 2.28x10™"
16 P 1.98 1.30x10° 3.22x107" 17 n 1.39 1.88x10° 1.25x10°
31 P 2.39 4.36x10° 1.66x10™" 16 p 2.86 6.82x10° 1.41x10™"
24 P 7.74 77.53 1.16x10™ 31 p 2.99 1.90x10° 9.65x10”
18 N 8.30 17.37 3.38x107 24 p 8.49 3.67x10' 5.35x10°
32 P 9.83 5.00 2.12x10™ 18 n 9.81 11.14 8.78x107
17 P 10.06 3.71x10 8.92x10° 17 p 11.14 1.73x10° 431x10™
18 P 18.53 22.39 3.23x107 18 p 19.79 15.88 6.67x107

Note that in this case the location of peaks w=a,, ,,,
remains [25,27] practically unchanged. Note once again
that, for example, the microscopical modifications (<107
MeV) of depth V;, of Woods-Saxon potential can lead
to an increase of the Coulomb resonance peak
(0(@,_y,.0")) of order of 10'°-10*" times and a
corresponding decrease of the half-width of this reso-
nance of order of 107" —107% times. In this connec-
tion it is necessary to investigate the influence of varia-
tions of the nuclear shell potential parameters on the
theoretically predicted measurable values of cross-sec-
tions of excitations of Coulomb and centrifugal reso-
nances.

It is worth noting that the absence of inter-compensa-
tive relation between the increase of height of any peak
and the decrease of its half-width would mean the exis-
tence of almost insurmountable difficulties in the inter-
pretation of processes of nuclei electro-disintegration in
the framework of the nuclear shell model. However, we
will see that a correlation of high order between the in-
crease (decrease) of the height of Coulomb resonance
and the “adequate” decrease (increase) of the half-width

Copyright © 2013 SciRes.

of this resonance does exist in the cross section given by
Equation(16) [27]. Indeed, the predicted values of the
resonance cross sections o (@,,_,y,,60") (which are meas-
ured in experiment) practically do not depend on the
height and half-width of Coulomb resonances, as we will
see below.

Let us consider an example of the influence of so-
called quasi-real photons [25,27] on the scattering of
high energy electrons on nuclei. Let us recall that the
quasi-real photons are the result of such collision of a
high energy electron and a nucleus when the direction of
movement of the electron is practically unchanged after

k K
|k| ek The energy w
transmitted at such a frontal collision and the value of the
transmitted momentum |q| = |k —k'| (the energy and mo-
mentum of the quasi-real photon ¢ =g, on the Feyn-
man diagrams (the diag.2a and diag.2b)) are approxi-
mately equal. Let us recall also [25,27] that the cross
section o(w,0’) as a function of the electron scattering
angle @ have a sharp maximum at the point 8 =0,

it (8"=0, “0-0” - scattering):
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especially in the region where transmitted energy @ is
not large (@< &”). Moreover, our theory confirms [25,
27] that it is the quasi-real photons that gives the main
contribution to the knockout of the protons in the reac-
tion A(e,ep)(A—1) in the investigated kinematic re-
gion. Scattering of electrons to large angles is barely no-
ticeable in the proton knock-out mentioned above.

The theoretical interpretation of the inclusive cross-
section o(®,8") as a function of w allows us to
confirm that at arbitrary electron scattering angle 6’
(0<@ <7) and for some values of transmitted energy
®=a, ,,, one can see sharp and high (10°* b/MeV/sr
and more) peaks on the plots of o(®,8"). The half-
width 7,,_,,, of such peaks may be abnormally small
(107" MeV and less). These peaks correspond to the
excitation of so-called Coulomb (x=p) and centrifu-
gal (x=n) resonances in atomic nuclei. Note that the
excitation energy of the resonances is equal to the sum of
the binding energy of the nucleon ¢, in the nuclear
xvl -shell and the energy of the Coulomb (centrifugal)
resonance E,y; i @y = |[Egn|F Epyy -

Taking into account properties of the function
0., (®,6") and properties of the inelastic electron scat-
tering with w=@®,,,,, and 6 =0, one can conclude
that the integral

@y +6E96 2n

6rvl—>pNL = vaz XO':,‘;_)NL = J I ja(a),e’)da)dQ’

P
©,~8E 0 0

"(33)
SE>yy,,

determines the lower limit of the complete (O';V,_) pNL)
and specific (O'ZC,H pNL) cross-sections of excitation of
the pNL-Coulomb resonance of the investigated atomic
nucleus quite accurately. The upper limit of integration
over the angle, ' =6, <1, appearing in Equation (33)
is a small quantity. As a rule, we restrict ourselves to the

T . L .
value of 6, = % during the numerical integration.

The total cross-section of excitation of the Coulomb
NL -resonance o,, isequal to the sum

Oy = Zlo-pvl—>NL (34)
v

In the case of low Coulomb NL-resonances this cross-
section is defined mainly by the only term corresponding
to the dipole transition: N, =v,, L=[+1.

For instance, let us consider the process of inelastic
scattering of electrons with the energy £ =500 MeV on
the nucleus *’Ca. The results for specific cross-sections
o, of excitation of the Coulomb resonances of the
nucleus *°Ca with the quantum numbers NL=13,21
are presented in Table 2. The protons are knocked out
from different occupied shells (v/=10,11,12,20) of

this nucleus. The dominant position in the excitation of
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Table 2. The theoretical predictions of specific cross-sec-
tions o, _,, and energies @, _, of excitation of pNL-
Coulomb resonances with quantum numbers VL = 13.21 in

the nucleus “*Ca. The initial energy of the inelastically
scattered electrons is ¢ = 500 MeV. The half-widths of that

resonances are ¥, = 1.964 x 107 MeV and Y, =751

x 107 MeV. The depth parameter of the Woods-Saxon
potential is V', = 53.9020 MeV.

vl o, .,.b o), ., MeV o ,.b o, , , MeV
10 2.288x10° 33.59 8.414x10° 35.54
11 1.265x107" 23.59 9.12x107 25.31
12 15.19 12.20 2.19 13.96
20 7.55x10° 9.57 17.98 11.29

Coulomb resonances belongs to the dipole transitions:
[12] - [13],[20] > [21] , as follows from the results
given in Table 2.

In this case we assume that the radial quantum num-
bers are equal to each other: v, = N, . One can see that
the excitation of Coulomb resonances caused by the
quadrupole ([11] = [13]), octupole ([10]—[13]), etc.
transitions is very difficult for observation against the
background of dipole ones. We would like to mention,
for example, that oy 5 > Ojy for the chosen
parameters of the model. At the same time, it is possible
that the above inequality may be strongly weakened or
even violated for arbitrary 8" ~1.

Let us assume that the radial quantum numbers are not
equal now: v, # N, (usually, N, =v,+1). In this case
the magnitude of o,,,,, is significantly smaller as
compared with the case of v, =N, .

The effect considered above may be a starting point
for the interpretation of the phenomenon of gigantic di-
pole resonance in the framework of the nuclear shell
model. Thus, the investigation of the inelastic scattering
of high-energy electrons in the region where the trans-
mitted energy is not large can be used for studying the
phenomenon of gigantic dipole resonance. It is interest-
ing to note that the above results have to some extent
general character and common quantum nature.

These results do not depend on the choice of the nu-
clear target and the energy of the scattered ultra-relativ-
istic electrons. For instance, let us consider the excitation
of the Coulomb resonance with the quantum numbers
[NL] = [12] in the nucleus '>C when a proton is knocked
out from one of two filled shells ([Vl] =[10],[1 1]) The
initial energy of the scattered electrons is & =2020
MeV. It follows from the data of Table 3 that the excita-
tion cross-section 0Oy, 1, substantially exceeds the
cross-section Oy .- Let us note that the cross -
sections of exitation of Coulomb resonances as well as
the role of quasi-real photons increase significantly with
an increase of the initial energee &£ of the scattered
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Table 3. Main physical characteristics (energies E’,, maximum amplitudes ‘A;lz

, half-widths 7;,,) of the Coulomb

resonance NL = 12, specific cross-sections o,, ,, and energies @, ,, of excitation of the Coulomb resonance NL = [12] in

the nucleus C versus the depth Vip of the Woods-Saxon potential. The initial energy of the inelastically scattered electrons is

£=2020 MeV.
E,,,MeV 4, Voo » MeV o, b O .,,b o, , MeV Vop/MeV
0.0062 6.85x10" 6.36x107 540.4 2.705 16.71 61.412
0.182 750.8 2.818x10° 539.98 2.654 16.48 60.5
2.090 5.23 0.169 570.2 2.52 15.24 56.0

electrons [25,27]. We note also that the phenomenon of
the anomalous increase of the scattering cross-section
caused by quasi-real photons with an increase of the
initial energy of the electron beam may have significant
influence on the results of investigation of various as-
pects of nuclear structure. For instance, the results of
experimental measurements of different cross-sections of
inelastic electron scattering can essentially depend on the
target thickness.

As an additional illustration of the above statements, in
the Table 4 we present the calculated values of specific
cross-sections of the Coulomb resonances excitation in
the heavy nucleus '"*Au for two initial energies of scat-
tered electrons: ¢ = 2020 MeV and ¢ = 3365 MeV. The
results of Table 4 do not require additional comments.

We would like to attract attention the fact that the
inclusive cross-sections o (@,6’) have the form of
sharp resonance peaks at certain values of the transmitted
energy @=a),_,,, - Note that the theoretically predicted

enormous heights and insignificantly small half-widths

-

of O'(a)vHNL,H') give no possibility to determine di-
rectly the shape of the Coulomb resonances in experi-
ment. That is why we can determine only integral char-
acteristics of the Coulomb resonances, such as the cross-
sections 0, ,y, of excitation of these resonances, in
the physical experiment.

Let us recall once again [25,27] that the physical cha-
racteristics (the half-widths p,,, and the amplitudes
(|ANLP|) of the wave functions) of Coulomb resonances
can undergo essential changes. For example, the sharp
decrease of y,,, and the equally drastic increase of
ANLP| ) is possible even at negligible changes of parame-
ters of nuclear shell model potential. This uncertainty
raises the question whether the cross-sections of excita-
tion of Coulomb resonances undergo essential changes
too. Table 5 gives an answer to this question.

In Table 5 we present the calculated functional de-
pendence of the most important specific cross-sections
O,y Of excitation of resonances of nucleus “Ca.
These cross-sections are interpreted as functions of the
half-width of Coulomb resonances, which varies with the
change of the depth V;, of the Woods-Saxon potential.

Note that the specific cross-sections mentioned above are

Copyright © 2013 SciRes.

caused by the dipole transitions [12]—[13], [20] —[21]
which, in turn, are caused by quasi-real photons in ine-
lastic scattering of ultra-relativistic electrons on the nu-
cleus *Ca.

The results presented in the Table 5 do not require
extensive comments as well. The specific cross-sections
of the Coulomb resonance excitation o, , ,, and the
excitation energies «),,,, are practically invariant
when the half-widths and the amplitudes of the wave
function of Coulomb resonances change substantially.
This result is very important. It essentially increases the
chances of success for the nuclear shell model in the
interpretation of inelastic electron scattering experiments
aimed at studying the nuclear structure.

5. The Inclusive Cross-Sections ¢ (w,6’)
and the Coulomb Resonances

One of the top-priority tasks of this paper is to study the
manifestation of Coulomb and centrifugal resonances in
experiments on inelastic scattering of high-energy elec-
trons. In particular, it is of interest to investigate the pos-
sibilities to disclose and identify Coulomb and centrifu-
gal resonances in the spectra of high-energy electrons
inelastically scattered on various atomic nuclei.

Comparing the Coulomb resonances and the quasi-
elastic peaks, one can state that the half-widths of the
theoretically calculated peaks of Coulomb and centrifu-
gal resonances are, as a rule, considerably less than the
half-widths of the calculated quasi-elastic peaks. At the
same time, the height of a Coulomb resonance peak is
significantly larger than the height of a quasi-elastic peak.
For convenience, such peaks of o(®,6") should be
“cut off” on the plots of o(@,d’) versus transmitted
energy . For this reason, we lose clarity and important
information about the observability of Coulomb reso-
nances in the measured spectra of inelastically scattered
electrons. Taking the logarithm of that function adds very
little information since the microscopical half-width of a
Coulomb resonance can hardly be represented on the
plot.

In order to investigate the possibility of detection of
Coulomb resonances in physical experiment, one should
recall that the cross-section o (@,6’) at the arbitrary
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Table 4. Specific cross-sections
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| of excitation of the pNL-Coulomb resonances with the quantum numbers VL in the

nucleus '**Au. The initial energies of the inelastically scattered electrons are ¢ = 2020 MeV and ¢ = 3595 MeV. The parameters
of the Woods-Saxon potential are V', = 51.13 MeV and V;, = 41.734 MeV.

£=2020 MeV
NL — 23 16 31 24 17 18
vi O, s b O, s> b Olls b Ol s b O b Ol b
10 2.42x107 1.28x10° 1.97%x107 1.89x10° 3.73x10°° 1.45%x10™
11 2.57x10™ 6.04x107 3.67x10™ 2.41x10 5.97x10° 4.28x107
12 1.20 2.91x107 3.00x10™ 2.29x10™ 2.12x10™" 7.32x107
20 9.82x107 8.81x10™ 1.88 4.54x107 8.49x10° 1.42x107
13 3.82 1.31x10™ 3.10x10™ 7.22x10" 6.50x107 2.62%107
21 4.08 1.03x10° 5.71 1.16x10™ 1.20x10™ 3.59%107
14 453 6.73 3.19x107 4.49 2.21x10™ 1.49%107
22 498.0 1.04x107 108.3 5.39 7.41x107 7.67x107
30 1.81x107 3.60x107" 596.3 1.23x10° 2.10x10° 9.15x10°
15 2.02x10™ 665.5 5.22x107 43.53 8.89 3.57x10™
£=3595 MeV
10 0.077 4.07x10° 6.27x107 6.02x107 1.19x10° 4.66x10™
11 0.817 1.92x10™* 1.17 7.68x107 1.91x10° 1.37x107*
12 3.81 9.22x107 9.52x10™ 7.27%x10™ 6.75x10™ 2.34x107
20 0.311 2.79x107 5.95 1.44x10 2.70x107" 4.53x107
13 12.1 4.15x10™ 9.81x10™ 2.29 2.06x10 8.36x10°
21 12.9 3.25x10° 18.0 3.69%10™ 3.81x10™ 1.14x107
14 143.0 21.2 1.00x107* 14.2 7.00x10™" 4.75%x107
22 1566.0 3.28x10° 341.1 17.0 2.34x10° 2.43x107
30 5.67x107 1.13x10™" 1876.0 3.87x10° 6.63x107 2.90%x10°
15 0.636 2093.0 1.64x10°° 137.3 28.1 1.13
Table 5. Specific cross-sections o), ,, and energies @,,_,, of excitation of the Coulomb resonances with the quantum

numbers [13,21] in the nucleus “°Ca at inelastic scattering of electrons versus the resonance half-width ¥}, . The initial

energy of the electrons is ¢ =500 MeV. The angle of scattering is 6’ ==0.

or..,b @, ., MeV i, » MeV O sb @, ., » MeV Yo, » MeV Vs / MeV
15.19 12.20 1.116x107* 17.98 11.30 7.41x107 53.9084
15.19 12.20 4.688x107""! 17.98 11.29 7.46x107 53.9050
15.19 12.20 1.964x107" 17.98 11.29 7.51x107° 53.9020
15.20 12.19 2.935x107%% 17.98 11.27 8.46x107 53.8400
15.22 12.18 6.105x107% 17.97 11.48 1.00x1072 53.7500
15.31 12.10 3.392x107" 18.00 11.19 2.41x107 53.2000
15.52 11.87 3.680x107 18.47 10.65 9.22x107? 52.0000
15.60 11.87 2.917x107 18.90 10.64 1.40x107" 51.5000

point (@,6’) is measured experimentally by means

of “averaging”

o(w,6)=

” procedure:

L " e

ZAEX ' QX %7AE.YﬂvV
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(0,0")o(@,0")dodQY;

(335

Here 2AE_ is the spectral width of gap of the scat-
tered electron spectrometer. Note that ¢(@,6’) is the
function that determines the efficiency of registration of
the scattered electrons at various angles of scattering 6’
and energies £ =&£—@ . Hereinafter we suppose that
¢(@,0")=1. Further on in this paper we assume that the
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strong inequality y,, << 2AE_ is true.

It is worth noting that this inequality may be broken in
the case of medium and heavy nuclei in our model. This
circumstance is connected with the existence [27] of the
so-called incipient (0.5MeV <y,, <2MeV) Coulomb
resonances. When they take place, it is quite possible that
the inequality y,,, =2AE_  mentioned above may be
broken and even inverted: y,, =2AE . In the calcu-
lated cross-sections the parameters of Woods-Saxon po-
tential were chosen so that the inequality y,, < 2AE,
was true for the most of investigated cases.

Consequently, the electrons losing their energy @, .,
(0y—AE <@, <@, +AE ) during the excitation of
a Coulomb resonance will be registered as electrons with
the energies in the interval
£—w,—-AE <& <e—w,+AE,. In this case the “regu-
larized” cross-section 0" (®,6") can be theoretically
determined as

! mjAE ([o(@,6')dadQ’. (36)

o (0),9') B 2AE -Q  w-ae O

It is necessary to note that the proposed above regu-
larization practically does not change the functions in the
regions of its smooth variation. In this connection, for
example, we have: o'*" (0,0')=0" (0,6);

" (@,0) = 0" (w,6') for : > 60 MeV.

This “regularized” cross-section has resonant form in
the area of Coulomb resonances and may have values
comparable with the height of the quasi-elastic peak. Our
further conclusions will be done in the assumption that
we have only one isolated Coulomb resonance in the
specified energy interval 2AE . In the following we
suppose that 2AE =1.0 MeV for all experiments with
various kinematics. Under these conditions we get pre-
dictive plots of experimental cross-sections o' (@,6")
of inelastic scattering of high-energy electrons on nuclei.

In the examples presented below we will investigate
relatively large angles (6, =1) of inelastic scattering of
electrons. In this case the virtual photons emitted by
relativistic electrons have relatively large (q2 - > mz)
imaginary masses. This fact manifest itself, first of all, in
reduction and disappearance of the dominant role of di-
pole transitions during the excitation of Coulomb reso-
nances. Dipole, quadrupole, octopole transitions and tran-
sitions of even higher multi-polarity should be taken into
account when one studies the spectra of inelastic large-
angle scattering of high-energy electrons.

Very often the scattering of high-energy electrons is
investigated with a carbon (‘2C) target. This light nucleus
is selected as standard for comparison of the efficiency of
different kinematics in the identification of Coulomb
resonances in the spectra of inelastic scattered electrons
(Figure 1). One can see from the presented plot that,
using the kinematics [15], one cannot observe the Cou-
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Figure 1. The inclusive and “regularized” cross-sections
2 (w, 0') of inelastic scattering of electrons on nuclei 2¢
versus the initial energy of scattered electrons & and the
angle of scattering & . The kinematics of scattering is
selected as in fulfilled experiments [15]: &£ = 500 MeV, ' =
60° (a); £=537 MeV, 0' =37 (b); ¢ =730 MeV, 0'=37°
(©); ¢ = 779.5 MeV, 0' = 50.1° (d). The parameters of
Woods-Saxon potential are: V,,/MeV = 61.412, V,,/MeV =
55.684. Here and hereinafter the solid and the dashed
curves were calculated, respectively, with allowance for the
final-state interaction (regularized cross-sectins, [(14),(36)]),
and in the plane-wave approximation (15).

lomb resonance with quantum numbers NL =12, which
is theoretically predicted by the nuclear shell model, in
the spectra of inelastically scattered electrons. It should
be emphasized that this conclusion is wrong in the case
of other kinematics presented on Figure 1. It is also
pertinent to note that for the disclosure and identification
of the resonances of the nucleus '“C with the quantum
numbers NLx=12p and NLx=12n, it is necessary to
carry out more thorough experimental measurements in
the spectral region of interest, having essentially reduced
the step of the argument Aw.

It is worth noting that the height of the regularized re-
sonance peak on the graphs of ¢ (w,8’) corre-
sponds to the height of the experimentally determined
cross-section if the energy gap width of the recording
device of scattering electrons is, as indicated above,
2AE_ =1 MeV. At the same time, the width of the re-
sonance peak is equal to the theoretically calculated width
of the investigated resonance. It is necessary to empha-
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size that the height of the Coulomb resonance essentially
depends on the width of the energy gap of the recording
device of electrons. If, for instance, the width of the energy
gap of spectrometer is equal to 5 MeV, then the possibil-
ity of manifestation of Coulomb resonances in the spec-
tra of inelastically scattered electrons strongly decreases.

One can conclude from Figure 1 that decreasing the
initial energy ¢ and the angle of scattering 8" of elec-
trons improves the conditions for observation of Cou-
lomb resonances in the spectra of inelastically scattered
electrons. Let us remind that the theoretically predicted
heights of Coulomb and centrifugal resonances are com-
parable with the height of the quasi-elastic peak.

Note that the Woods-Saxon potential depth parameters
(V,, and V;,) giving the highest accuracy were used, as
a rule, in our calculations. The half-width y;, of a Cou-
lomb resonance essentially increases (see Table 3) with a
decrease of the depth of the Woods-Saxon potential. In
this case the theoretically calculated Coulomb resonance
NL =12 is widened so much that its half-width can
considerably exceed the spectral energy gap of the spec-
trometer 2AFE . In this case the height of incipient Cou-
lomb resonance decreases and this resonance can be iden-
tified directly in spectra of inelastically scattered electrons.

Figure 2 shows theoretically calculated regularized
cross-sections " (@,6") of inelastical scattering of
electrons and experimentally measured cross-sections
o(®,0") of electro-disintegration on different nuclei
(nC,27 ALY Nj,"™® Au). The kinematics of the experi-
ments is borrowed from [20].

Analysing the calculated 0™ (@,6") (solid line) and
0’ (®,6’) (dashed line; plane wave approximation), we
can observe some peculiarities of identification of Cou-
lomb resonances in the spectra of inelastically scattered
electrons in the framework of nuclear shell model. For
example, one can conclude that the Coulomb resonances
may be registered in all considered cases. But careful and
painstaking measurements in the kinematics region in-
teresting for us were not presented in [20]. Note also that
in the case of heavy nuclei we have a large number of
Coulomb, centrifugal, and incipient (with large half-
width 7, ,,, =1+2 MeV) [27] resonances. In this case
the theoretical analysis of the full resonance picture of
cross-section ¢’ (@,0") becomes more complex.

Finally at the Figure 3 are presented calculated cross-
sections 0’ (@,6;) for different nuclei (A1, Mg, Ca,
Ni) and for the different kinematics: the initial energies
of scattered electrons & =779.5;500;545;500 MeV and
the angles of scattering 8" = 50.1°; 60°; 45°; 60°. The
results of calculations presented on Figure 3, in general,
do not contradict to the conclusions based on analysis of
results presented at Figures 1 and 2. We can, however,
state a fact that qualitative and quantitative comparisons
of theoretical calculations and experimental data and
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Figure 2. Regularized cross-section ¢"*(w, 0') of inelastic
scattering of electrons on the nuclei 2¢, Y7Al, SFe, %Au
versus the transmitted energy w. The initial energy of the
scattered electrons is ¢ = 2020 MeV, the angle of scattering
is@'=15".
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Figure 3. The cross-sections ¢"*(w, ") of inelastic scattering
of high-energy electrons on nuclei ’Al, **Mg, “’Ca, *Ni as a
functions of the initial energy of scattered electrons ¢ and
angle of scattering 0'. Kinematics of scattering agrees with
kinematics of experiments [9,15,22]: £=779.5 MeV, 0' =
50.1° (Al), ¢ = 500 MeV, 6’ = 60° (Mg,Ni); ¢ = 545 MeV, ¢ =
545 (Ca). The parameters of Woods-Saxon potential are: Al:
Vopon = 63.5; 54.0 (MeV); Mg: Vy, 0, = 68.674; 60.1 (MeV);
Ca: Vi, o0 = 53.9; 42.352 (MeV); Ni: Vi, = 62.85; 49.342
(MeV).
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moreover the conclusions from such comparison are im-
possible at the moment. The reason is that experimental
data and theoretical investigations are practically absent
for the declared above range of transmitted energies.

6. Quasielastic Peaks and Orthogonality of
Wave Functions

The interpretation of inelastic scattering of high-energy
electrons and the reaction A(e,e’p)(4—1) considered
here in the frames of nuclear shell model, despite of
simplicity, remains self-consistent quantum-mechanical
problem in the theory of nuclei. The main reason and
decisive argument for this statement is such well-known
property as the mutual orthogonality of the wave func-
tions [7] of discrete and continuous, including the quasi-
discrete, spectra. Notice that the term “orthogonal func-
tions” in aspect of interpretation of processes of elec-
tro-disintegration of nuclei by the high-energy electrons
was unambiguously used in [7]. In addition to stated in [7]
one may note that it is very difficult to imagine quan-
tum-mechanical theory of quantum transitions as well as
based on it theory of inelastic scattering without com-
plete orthogonal basis of wave functions of investigated
quantum-mechanical system. We emphasize also that the
conclusions below are based only on the postulates of the
nuclear shell model and may be used for the investigation
of different aspects of this model.

In order to illustrate the role of orthogonality of wave
functions in the theory of electro-disintegration of nuclei,
let us consider the process of small-angle (8’ = 15°) and
very small-angle scattering (quasi-real photons phenome-

ma
non: §’<«<— <1). Let us now calculate the cross-
&€

sections o (®,6")

9 <1 of inelastic scattering of high-

energy electrons on nucleus '*C for two values of initial
energy of electrons, ¢ = 500 MeV and ¢ = 2020 MeV.

First, let us remind that the dominant position in the
expression for the exclusive cross section belongs to two
functions of kinematical variables, P(k,k”) (Equation
(13))) and G,,(q,K) (Equation (14))). It is more than
appropriate mention here that the latter one is determined
by overlap integral:

L (0.K,) = [llw'" (r)(exp(igr)) @, (r)&'r .

Taking into consideration the formula cited above, in
an early stage of our analysis let us suppose that |q| =0.
Therefore, exp(igr)=1. Then, due to the orthogonality
condition of the wave functions of discrete and continu-

ous spectra, /., (¢,K, )|q:0 =0. It should be noted that

xvim

this case (|¢|=0) is unacceptable. If |g|=0 then ine-
lastic (and elastic) scattering is impossible.
Second, let us now suppose that |q| =R In this case
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exp(igR)=1 (R is the radius of the nucleus) and
|R_3/2I):vlm (q,Kx)| <1. This latter case (|g|#0) is
possible. In this case the losses of momentum and energy
of the scattered electron must be minimal. If the value of
transmitted energy @ is fixed then the minimal value of
transmitted momentum takes place at the minimum angle
of scattering (@ =0, quasi-real photons). As this is the
case, |q| = @ . And, as a rule, the inequality

2

2 _ 2
(q @ ] <1 takes place as well [25,27].
@

The minimal value of the energy @ necessary for the
excitation of Coulomb resonances is practically defined
by the minimal excitation energy of the lowest Coulomb
resonance, £, +|€,,|, where £, is the proton en-
ergy in the highest filled nuclear shell. Hence, the ine-
quality |q| < R may be satisfied with reasonable ac-
curacy. The numerical estimates for the investigated nu-
clei lead to the following result: |q|min =~0.05Fm™". So, it
is natural that the inequality |q| < R, in turn, leads to
the inequality JR’V T (q,KX)| <1, which has already
been mentioned.

Thus, restricting ourselves only with the analysis of
phenomenon of orthogonality of wave functions of dis-
crete and continuous spectra, we may predict decrease of
the cross-section of inelastic scattering of high-energy
electrons. This decrease takes place at small transmitted
energies  and small scattering angles (6" < 1) of elec-
trons. Note that this phenomenon is caused by decreasing
of distorted momentum distribution Gif,’l) (¢,K). In the
case of plane-wave approximation this statement is wrong
because the plane wave exp(iKr) is essentially nonor-
thogonal to the wave function of bounded state of the
proton in the considered kinematical region.

Let us recall that the expression for the cross-section
o(®,6’) has dimensionless factor P(k,k") that, as it
well known [25,27], is large in the mentioned above
region. Just the function P(k,k") due to nonorthogo-
nality of exp(iKr) and ¢, (r) will lead to unac-
ceptably huge values of cross-section in plane-wave ap-
proximation. And just this factor allows us to draw an
unambiguous conclusion concerning the significance of
taking into account of orthogonality of wave functions of
discrete and continuous spectra.

The phenomenon of orthogonality of wave functions
in our calculations is represented on Figure 4, where
plotted the cross-sections o (@,8’) of inelastic scatter-
ing of electrons on nucleus '*C. The parameters of
Woods-Saxon potential were chosen in such way that the
Coulomb (NL = 20, 12) and centrifugal (NL = 12) reso-
nances have relatively large visually observed half-width.

The cross-sections calculated in the plane-wave ap-
proximation significantly exceed ¢'* (@,6") calculated
with taking into account of interaction of the knocked-
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Figure 4. The cross-sections o(w, 0") of inelastic scattering of electrons on the nucleus '>C versus the transmitted energy o.
The parameters of the Woods-Saxon potential: V, = 53.7 MeV, V,, = 51.0 MeV; the initial energies of the electrons: &£ = 500

22,0
&&

MeV (a, b); ¢ =2020 MeV (c); the angles of scattering are: '=15° (a); 6 =[3x10"°]<
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out nucleon in the final state, see Figure 4. Note that
after some doubts and speculations the reader cannot
disturb himself and fear of unusual units (Gb, Tb) that
appear at the Figure 4. These units will be usual and
natural units in the near future.

The plane-wave cross-sections have huge, nonphysical
magnitudes in the region of the quasi-elastic peak. This
fact is a convincing proof of the necessity of taking into
account the interaction of the knocked-out nucleon with
the residual nucleus in the final state.

7. Coulomb Resonances, Quasi-Real Photons
and y-Experiments

In this section we will attempt to interpret some new
aspects of experiments on investigation of exclusive cross-
sections [10,15,23] basing on the results above. These
new cross-sections

d°c

de’dEdQ’dQ

depend on the energy FE,. . lost in processes of scatter-
ing and re-scattering of the inelastically scattered elec-
tron and the knocked-out high-energy proton in the initial
and final states. In such experiments one fixes the cases
of simultaneous registration of scattered electron with the
energy £ and knocked-out proton with the energy E
(E=100 MeV). As this takes place, we can easily
determine experimentally the lost energy E . :
e=€+E+E,, . The plots of y(E,, ) presented in
[10, 15,23] have weak resonance nature. For example, in
the case of the nucleus “C the function y(E,,,)
have a sharp maximum at E,, =17 MeV and a smooth
maxi-mumat £ . =40 MeV. At the same time,
Z(Emiss ) =0 V|:Emm < Ergiss =17 MeV] .

Within the framework of nuclear shell model the most
convenient interpretation of the minimal lost energy is

s = €N, € >0 is the binding energy at the upper
filled shell of nucleus ">C.

If E, > ¢}, then additional losses of energy
AE,  =E,. —€! may be interpreted as the result of
one or several phenomena listed below. These phenom-
ena are: strong interaction of the knocked-out proton
with the residual nucleus A4—1 in the final state [15,16],
which is accompanied by excitation of this nucleus; the
knocking-out of protons out of deeper filled nuclear
shells; losses of energy of the scattered electron in initial
state; accidental coincidences that are caused by the
existence of intensive background of protons, the source
of which is [25] the scattering of high-energy electrons
caused by quasi-real photons; the dispersion of the initial
energies of scattered electrons in the incident beams; etc.

At the initial stage of investigations it is reasonable to

look for the cause of additional energy losses

Z ( Emiss ) (37)
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h

AE,. —¢,; in strong interaction [15,16] of the
knocked-out proton with the residual nucleus in the finite
state. Note that in this case we suppose that the probabil-
ity of inelastic re-scattering of the weakly interacting
high-energy electron on nucleons of the residual nucleus
or another nucleus of the target is negligible.

Let us suppose that one of the protons of an upper
shell of the nucleus receives the energy w=£—¢" after
an act of collision with a high-energy electron. This
proton with the energy E, = ®—¢€! can participate in
the processes of inelastic scattering on residual (A4-1)
nucleus too. In other words, the knocking-out strongly
interacting proton spent the part of acquired energy in the
processes of inelastic re-scattering on that (A4—1) or
other 4 atomic nucleus. The knocking-out strongly in-
teracting proton may spent, for instance, the part of its
energy for the excitation of residual nucleus or increase
the number of knocking-out nucleons in the processes of
collisions with other nucleons, etc. Let us suppose that
the processes of re-scattering of knocking-out protons in
the finite state play an important role in our investigation.
Then it is evident that these processes can essentially
complicate the interpretation of processes of electro-
disintegration of atomic nuclei in coincidence experi-
ments. We intend to propose another alternative inter-
pretation of origin of additional losses of energy in y -
experiments [10,15,23]. Let us proceed from the anoma-
lously large values of the scattering cross-sections caused
by quasi-real photons (6 =0, “0-0” - scattering).

We noticed above that in the analyzed experiments the
coincidence of two particles was recorded. These parti-
cles are: the inelastically scattered electron &’ and
knocking-out (it is very desirable that just by this elec-
tron) proton K . Using simple empirical conception one
can state that knocking-out of proton from some nucleus
'>C unambiguously testify that the scattered electron
reside inside (or in the immediate vicinity) of this nu-
cleus. It is not difficult estimate the length A of mean
free path of relativistic electron inside of this nucleus
knowing the cross-section of excitation of Coulomb re-
sonance in nucleus '>C by electrons with the energy
£=779 MeV. As a result of the estimate we can assert
that such high-energy electron in the process of collision
with nucleus *C before or after of knockout of proton
may excite the Coulomb resonance NL =12 in this (or
another) nucleus with large probability.

Previously developed theory [12,25,27] of Coulomb
resonances and presented above estimates based on the
calculated data of cross-sections of excitation of Cou-
lomb resonances stimulate us to state such hypothesis in
contrary to primordially widespread opinion: the lost
energy FE,. in experiments [10,15,23] is the energy
that is used for the excitation of discrete, quasi-discrete
and continuous spectra of investigated nucleus but namely

=F

miss
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by the high-energy electrons. Note that in this case the
main role belongs to quasi-real photons (8 =0, “0-0” -
scattering).

In connection with the hypothesis presented above we
should say the following. Let us suppose for a while that
the results presented in Tables 1-5 are unknown. In this
case the hypothesis stated above is, at least, a striking
and very glaring example of absurdity, irresponsibility,
and nonsense.

The origin of the hypothesis stated above is in results
of works [12,25,27] and in above-presented calculations
of the cross-sections of the excitation of Coulomb reso-
nances. In other words, the hypothesis mentioned above
is undoubtedly based on the processes that are introduced
to our theory by the Coulomb resonances and quasi-real
photons. It is worth noting that the experiment can verify
or refute this hypothesis, but in both cases we will re-
ceive equally important information.

In order to confirm or to refute the hypothesis pre-
sented above, we suggest the modification of experi-
ments [10,15,23] already mentioned above. Consider, for
instance, the experiment [15] where the inclusive cross-
section y(E,, ) of electro-disintegration of nucleus
'2C by high-energy (& =779.5 MeV) electrons is inves-
tigated. The measurement of y(E,, ) is merely the
first stage of slightly extended experiment. The final stage
of suggested experiment is practically the same. The
physicist must measure the cross-section y(E,, ) in
slightly changed configuration.

The important but practically negligible and easily im-
plemented modification of presented configuration is in
additional auxiliary carbonic target installed at the very
entry of spectrometer of scattered electrons. For prelimi-
nary estimate of thickness of supposed auxiliary carbonic
target we may use the following speculations. Let we
have 1 cm’® of target of the etalon density (D = 100
mg/cm?). This carbonic target contains 100 x 107°/(1.66
x 1072*) = 6 x 10 nucleons. A half of these nucleons are
protons. The Table 3 contains calculated cross-sections
of excitation of Coulomb resonances of the nucleus "*C.
According to this Table, each of four protons of the
Ip-shell of this nucleus is an impermeable shield for the
high-energy (&£=700 MeV) electrons that excite the
Coulomb resonance [NL =21] of the investigated nu-
cleus. The area of this shield is 20b =20x107* cm®.
Thus the total impermeable shield of 1 cm” of our etalon
target will be 20x107*x2x10” cm” = 0.4 cm” . The
obtained result testifies that about 40% of electrons
moving through the target and having the direction of
movement unchanged will have the energy less by 17
MeV than in the incident beam. Thus, according to the
calculations, the density D of our additional target must
be D =240-260 mg/cm® .

If the hypothesis about the origin of energy losses
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E .. 1n our measurements is valid then in the modified
configuration we must obtain practically the same picture
of the cross-section y(E,,, ). The only difference be-
tween the two cross-sections is that the latter will be
shifted to the right along the axis £, by the value
AE,, =17 MeV. Note that the simplest version of
modification of experiment [15], which was proposed
above, may be diversified and complicated, for instance,
by varying the thickness of the additional target on the
entry slit of the electron/proton spectrometer or by choos-
ing another sort of nuclei for the additional target. At the
moment, a more detailed analysis of such variations is, at
least, premature.

Finally, we can conclude that the investigation of ine-
lastic scattering of high-energy electrons and, particularly,
the experimental study of Coulomb resonances and quasi-
real photons is of general theoretical importance, espe-

cially, for quantum nonrelativistic mechanics.

8. Conclusions

The main results of present paper can be summarized and

briefly stated in the following way:

e Coulomb resonances are the direct theoretical pro-
longation of the nuclear shell structure to the conti-
nuous spectrum region. In the framework of the one-
particle(!) theory of Coulomb resonances one can
readily explain many features of such well-known
phenomenon as dipole (quadrupol, octopol,...) giant
resonance. It is a real possibility to interpret the phe-
nomenon of dipole giant resonance as real experi-
mental confirmation of existence of the Coulomb re-
sonances in the atomic nuclei. The brief theory of
Coulomb resonances and calculated quasi-discrete
spectra of some atomic nuclei are presented in Sec-
tions 2 and 3.

e The regularized cross sections calculated in this paper
convince of the theoretical possibility of direct mani-
festation of Coulomb resonances in the spectra of in-
elastically scattered high energy electrons. The pre-
sented calculations allow us to suggest the best kine-
matic conditions for observation of such manifesta-
tion:

- initial energies of high energy electrons, &£ =~ 300 - 500
MeV;

- electron scattering angles, 8" =10—25 degrees.

The necessary condition for such manifestation is sub-
stantially painstaking measurement of cross sections of
inelastic scattering of high energy electrons with high
resolution in the region of transmitted energy, 5 MeV <
@ < 60 MeV (Section 3).

e To emphasize the significance of the wave functions
orthogonality (both initial and final states of nuclei)
one may investigate the scattering of high energy
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electrons at very small angles 8’ <1 (Section 4).
The main kinematic peculiarity of virtual quasi-real
photons is the approximate equality of their quasi-
momentum ¢ and energy @: ¢° =’ . This ap-
proximate equality determines the effective capability
of quasi-real photons for knocking-out of protons of
high nuclear shells into quasi-discrete states of nuclei.
In other words, quasi-real photons excite Coulomb
resonances of atomic nuclei with high efficiency. The
cross sections of such exciting processes can result in
huge, almost tremendous values that may be equal to
hundreds and thousands of barns depending on the
initial value of energy ¢ of scattering electrons. Such
processes can be discovered in experiments proposed
in this paper (Section 5).
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Appendix

A. Calculation of the Electro-Disintegration
Cross Sections and Testing of Numerical
Programs

The accurate calculation of the cross sections of inelastic
electron scattering is connected with the accurate calcu-
lation of the overlap integrals (18), which are the most
important components of Equation (8). That problem
will be investigated in detail below. Note that the inte-
grand in Equation (18) is the product of the exponent
exp (igr), the bound-state wave function ¢, (r) and
the wave function of continuous spectrum 7 (r). For
the Woods-Saxon potential, the wave function of the
bound state ¢, (r) is well known [6]. This function
can be written as

Axvl Ylm (nr ) 9
g (A1)

P (1) =Ry (r) Y, (m,)

xvl .[val( )dr =1

The form and the content of the expressions presented
above for @, (r) and wi(r) together with the
requirement that the cross-section calculations are of
high precision predetermine the choice of the integration
method in Equation (18).

To calculate the overlap integral (18), we use the well-
known plane-wave expansion [31,32]:

: ly=c0 my=l
elqr :471:22 ZZ:Zilzjlz (qr)Y;ym (nr)lemz (an)’ nq :l
l=0my=-1, |q|
(A2)

After putting Equations (22), (Al), and (A2), into
Equation (18), we present 7, (¢,K,). in the follow-
ing form:

L = my=l ly=co my=l, N
Lo (4.K,)=(4n) ' i (1)
h=0 my=—4h b=0m=—I,
(21, +1)(27+1)
4m (21, +1)

X(12m21m|llml)Allzvl( K)Yl1 ( )Ynlfz (”q)a

(1,010]1,0) (A3)

where

oo

Ay (q,K) = £RK11 (’”)jlz (qr)RM (F)FQd’”; (A4)

and (Lm,Im|l,m,) are the Clebsh-Gordon [31,32] coef-
ficients.

The overlap integral is presented in Equation (A3) in
vector form, that is to say, Equation (A3) is valid in any
arbitrarily chosen reference frame. We can take advan-

Copyright © 2013 SciRes.

tage of this freedom of choice and simplify Equation
(A3). With this purpose, we recall that
1
L), g [P (AS)
4n

If we superpose vector e, with vector ¢ or K
then, according to Equation (AS), the summation in
Equation (A3) is essentially simplified.

We restrict ourselves to the case of e,[q and make
use of well-known [32] properties of the Clebsh-Gordon
coefficients. After that, the overlap integral takes the
form

1] hze 1
[xvlm (q’K.x)=(4ni7 2l+ ) Z Z( ) -~

1,=0 /=0 21 +1
X((8,=1+27)000|,0)x((4, =1+ 2,j) Olm|l,m)
XA, (4. K)Y,! (ng) V:(l, =1, —1+2)) and (e.|q)
(A6)

Notwithstanding the achieved facilitation, the overlap
integral (A6) remains a very complicated expression in
the form of a twofold series, the convergence of which
depends essentially on the kinematic parameters. It is
well known [33] that the computer programming of such
problems is always associated with a risk to receive an
erroneous result because of “natural” errors, which easily
and freely “penetrate” into initial formula and programs.
To avoid such errors, we propose a few tests [8], which
substantially raise the level of trust to the obtained results.
Note that it is the plane-wave approximation that pro-
vides useful and invaluable aid at this stage of investiga-
tions. Note also that the tests proposed below retain their
validity in the case of relativistic models as well.

Let us recall that the distorted momentum distributions
turn into plane-wave ones if we substitute
wi (r) > exp(iKr). After that substitution the plane-
wave overlap integral can be calculated with two differ-
ent methods. The first method is to perform the limit
transition of Equation (18) — Equation(A6), using the
substitution Ry, (r)— j, (Kr). According to Equation
(A6), we obtain:

15, (0. K, ) = (K2 [ |xvim) = ([l e g, (r)d'r
(A7)
(47‘5)2 lli“ m=l = mzz—:lz P (_ ) (2[2 +1)(2]+1)

B=0m =1 =0 my =1 4n (Zl + 1)

(1,010),0) X (LmyIm|Lmy ) 47, (4. K) Y} (mg ) Y2 (n, ),
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(A8)

where
Al(l)lzvl (q,K) = (I)jzl (K’")jzz (qr)RM (”)”zdr- (A9)

The second method is to calculate of the overlap
integral Equation (A7) in another way:

Lo (4. K,) = (K e [xvim) = [l e g, () d'r
(A10)

= [l " p,,,, (r)d’r
- (A11)

=(4n)i'Y) (s(qu) )x {j, (sr)R, (r)r’dr,

where s=q—-K, s :|s| .

Note that the succession of operations Equations
(A10), (A11) can be continued. All one has to do is to
remember that the plane-wave momentum distribution
Equation (15) is proportional to the sum

m=l
SIO = ;l I)(c)vlm (q9K‘c)

to recall a well-known equality [32]:

m=l 2/ +1 .
> |Yni (n)|2 = 2— . After that, the summation over m
n

in S’ can be performed analytically:

2 .
, . In this case one can as well as

m==1

- 2

{(j; (SV))RXV, (r)rdr| .

It is useful to note that for a large number /
(1, 220) the strong inequality
L(L+1)/r7 > |(2MVAX (r))l takes place in the region of
atomic nucleus (r<R). It is evident that when the
mentioned inequality takes place then for /, >20 we
have the approximate equality Ry, (r)= j, (Kr), which
is of high accuracy. Therefore, we can affirm that the
conditions of convergence of the plane-wave approxima-
tion series and those of the series with distorted overlap
integrals are identical.

Let us assume that we have established the agreement
between two values of the plane-wave overlap integral
calculated with the two different methods. This means
that we have obtained a confirmation of reliable conver-
gence of both series Equation (A7) and Equation (18).
Note that in this way we can, at the same time, verify the
convergence of expansions of the plane wave in terms of
spherical functions [Equation (25)] and the distorted
wave function [Equation (A2)] in the investigated kin-
ematical region.

After calculating the overlap integrals (one after an-
other) by two different (Equations (A8) and (A11)) meth-
ods and comparing the former and the latter results, we
have established the following.

For small energies of the knocked-on protons (1 MeV

S0 — (4m) (20 +1)

Copyright © 2013 SciRes.

< E < 50 MeV, medium nuclei) it is relatively easy to
achieve agreement between the plane-wave cross sec-
tions calculated by the two mentioned above methods
with an accuracy of 14+10 significant figures in man-
tissa. Note that with the proposed comparison we achieve
also a reliable accuracy check of Equations (A3) and

(A8); we check also the accuracy of such special-func-

tion subroutines as j, (x), P, (x), coefficients of Clebsh-

Gordon, as well as the accuracy of direct integration me-

thods in the overlap integrals, etc. When the transmit- ted

energy o and, consequently, the energy E of the
knocked-out protons increase (@, E =300+450 MeV),
the accuracy of calculations under invariable conditions

[the parameters of the calculation process such as inte-

gration step, the number of items in the sum in Equation

(A7), etc. do not change] decreases: the two results coin-

cide only with an accuracy of 6+5 significant figures

in mantissa.

The good agreement between two results obtained
with two different methods with high accuracy and in a
wide interval of variation of the kinematic parameters
gives grounds for the following assertions:

e The probability of errors and inaccuracies in our
programmes and transformations of formulas in the
investigated kinematic region is insignificant.

e The convergence of series in Equations (A3) and (A6)
with empirically chosen boundaries of summation
over quantum numbers /,,/, (/,,/, <50) is quite sat-
isfactory for the investigated kinematics of electro-
disintegration of medium and heavy nuclei.

Let us consider one more test, which also essentially
raises the reliability of the calculated numerical values of
the nucleus electro-disintegration cross sections. In this
case we test the process of solution of the radial
Schrédinger equation [Equation (24)] and the process of
tailoring of the solutions RY(r) at the point r=b.
To do this test, we should implement the special case of
V. (r)=0 VY(E>0) in the subroutine solving the ra-
dial Schrodinger Equation (24). One way to do this is to
put ¥, =0 and Z—-1=0 for the potentials ¥ (r)
and V. (r)) correspondingly. In this case, if the pro-
gram is correct, we must finally realize the conversions:

Ry (r)=j, (Kr); ‘I’;{(r)|VA (r)=0 =¢'™ . Hence, the

plane-wave momentum distribution calculated so must
coincide with two distributions [Equations (A3) and (A7)]
calculated by the traditional methods mentioned above.
In our tests we obtained agreement of all distributions
with an accuracy of 12+6 significant figures in man-
tissa in diverse regions of kinematic parameters.

Therefore, we have a right to suppose that the cross
sections of nuclear electro-disintegration in the approxi-
mation of distorted waves are calculated in our computer
program with sufficient accuracy.
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We have considered two tests that substantially raise
the reliability of final results of our computer program.
Let us suppose that we deal with large mass number A4
and large energy E of the knocked-on proton. It is in-
structive to mention about one more mathematical trick
[8], which in this case improves the convergence of se-
ries appearing in calculations of the distorted momentum
distributions. One can represent the overlap integral Eq-
uation (11) in the following form:

Lo (4. K,) = i () [exp (igr) 91, (1) ] 'r
= '[J;{[l//ﬁ;) (r)—exp(—iKr)+exp(—iKr)} (A12)
L exp(iqr) @,,,, (r)]d’r.
Finally,
Ly (4.K,)=[[[exp(i(q=K)r)@,,, (r) |d'r
- (A13)

+E{ |:l//£(_)* (r)—exp (—iKr)} [exp (iqgr) @ (r )] d’r

We calculate the first term of Equation (A13) with a

Copyright © 2013 SciRes.

method as rational as possible, for instance, like in Equa-
tions (A3)-(A11). As to the second term, we calculate it
with the help of series like in Equation (A6) but with
substantially improved convergence. For this purpose,
one needs to perform the following substitution in Equa-
tion (A6):

Alllzvl (‘I»K) - Al[llz]vl ( K)

I L (k)] () Ry ()20

=[[Rq (r)=J

0

This method gives a possibility to extend essentially
the possibilities of numerical simulation of electro-dis-
integration processes of heavy nuclei for large trans-
ferred energies w. Note that all the tests described above
have been taken into account, approved and implemented
practically as early as in paper [7]. It is a cause for regret
that all these tests do not were published so far elsewhere.
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