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ABSTRACT 

This article proposes a simplified way to solve solid mechanic problems in micropolar elasticity using the solution 
found in the classic theory of elasticity as a starting point. In this study, an analysis of the linear isotropic micropolar 
elasticity is conducted based on the properties imposed on the micropolar medium by the constitutive and equilibrium 
equations. To ascertain how the micropolar medium responses deviate from Hooke’s theory of elasticity, different 
loading conditions were classified. Three cases have been found so far: the rotational couple response, the quasi-classic 
equilibrium of momentum response and the general case. This study is the first in a series planned to explore the use of 
commercial packages of finite element in order to solve micropolar elasticity problems. 
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1. Introduction 

There are a number of elasticity theories which are based 
on the assumption that a solid is a continuous medium 
[1]. One such theory is the classic elasticity theory based 
on Hooke’s law and is the one on which most of the 
commonly used materials in engineering are based. This 
theory assumes that each point on the continuum pos- 
sesses three degrees of freedom or displacements in three 
orthogonal directions. Some special materials with no 
symmetry in their microstructure cannot be properly 
modelled using the classic theory, because they present 
additional mechanisms which oppose to deformation. 
That is the case in some cellular structures such as bones, 
wood and special materials like liquid crystal elastomers. 
In the case of human bones, several factors affect the 
mechanical response among which are age, gender and 
density. Because of these factors there is a wide range in 
the variation among the mechanical properties of this 
solid [2] and alternative elasticity theories should be used 
to model them properly. Microcontinuum theories are 
one such alternative. 

These theories posit that each point of a continuous 
medium exhibits more than three degrees of freedom. On 

a prefatory note these theories consider that additional 
degrees of freedom have to be considered from the direc- 
tors which are understood to be the orientations of the 
medium points. The microcontinuum theories can be 
classified as: 1) micropolar elasticity that assumes rigid 
medium points that can rotate; 2) microstretch elasticity 
that assumes breathing directors; and 3) micromorphic 
elasticity that assumes fully deformable directors [3]. 

The theory of micromorphic elasticity states that all 
the points in a solid have three displacements uk. It also 
states that solids have nine other independent degrees- 
of-freedom that are accounted in a 3 × 3 matrix contain- 
ing the so-called director’s components xkK. Considering 
the simplest case in microcontinuum elasticity, the mi- 
cropolar elasticity theory there are only three additional 
degrees of freedom namely the microrotations of the di- 
rectors k.  

To date, most of the microcontinuous studies have 
been based on the theory of micropolar elasticity, which 
has been applied to granular composites [4] or to cellular 
and porous materials [5]. Alternatively, the theories of 
microstretch and micromorphic elasticity have been ap- 
plied to liquid crystal and liquid crystal elastomers [6,7]. 
The liquid crystal elastomers have attracted a great deal 
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of attention, because of their remarkable damping prop- 
erties [8]. 

There have been a number of studies done on micropo- 
lar elasticity [8-10]; however, most of them are focused 
on mathematical solutions to the equilibrium equations in 
particular cases. The work developed to date is sufficient 
for purposes of identification, but when the objective of 
the work is for purposes of prediction, particularly for 
engineering design, the studies may not be sufficient 
mainly because they are not clear about the conditions 
under which the assumptions are still valid. There are 
doubts about some of the static results obtained which as- 
sume that for a particular case, the displacements ob- 
tained from the classic elasticity theory are valid for mi- 
cropolar linear isotropic solids. The assumption is that 
these displacements obey an equilibrium of momentum 
equation similar to those obtained from the theory of 
elasticity. It is necessary, however, to investigate under 
what conditions this assumption is valid. There are other 
assumptions which may not be valid as well, as in the 
case of pure bending, the macrorotation and microrota- 
tion are considered to be of the same magnitude (rota- 
tional coupled case). 

This paper analyses the conditions which the mi- 
cropolar constitutive and equilibrium equations impose 
on the theoretical micropolar solid and it is intended, 
from an engineering point of view, to enhance the pre- 
dictability of the behaviour of the micropolar solid, so 
that a design can be feasible. 

A micropolar solid is understood to be a solid in which 
the microstucture is regarded as rigid non-symmetric 
particles in the elastic medium. Only Cartesian coordi- 
nates are used here. In the first section, the equations that 
conform to the linear isotropic micropolar elastic theory 
are presented. In the second section, the conditions under 
which a micropolar solid behaves as a case of rotational 
coupled are considered. In the third section, the focus is 
on the determination of the condition that does not con- 
form to the rotational coupled behaviour. This latter is 
still a classical-type equilibrium of momentum equation 
and, therefore, a displacement field similar to the classi- 
cal elasticity, can be assumed. The final section presents 
a methodology to solve iteratively all other loading con- 
ditions that do not fall under the cases considered in the 
previous sections; however it is still an exact solution. 

2. Micropolar Elasticity Theory Review 

This section concentrates on the Linear Isotropic Mi- 
cropolar Elasticity Theory and presents the equations that 
are used in the remaining part of the paper. Fundamentals 
of this theory can be found in [3]. Micropolar theory is 
based on two constitutive equations, two equilibrium 
equations and two compatibility equations. Each of the 

medium points possesses six degrees-of-freedom: three 
displacements ux, uy, uz and three microrotations x, y 
and z. 

The constitutive equations are, 

 kl rr kl kl lkt                   (1) 

, ,kl r r kl k l l km ,                  (2) 

in which the comma indicates the usual partial derivative 
and the repeated sub-indices imply a summation. These 
equations define six constitutive parameters λ, μ, κ α, β 
and γ that are needed to guarantee positive internal en- 
ergy. This restriction imposes the following conditions, 

0 3 2 0 2 0

0 3

0

     
  

   

     
  

   
      (3) 

The microstrain tensor εkl that appears in Equations (1) 
and (2) is defined as, 

ln ,kl k n l ku                 (4) 

As can be observed from Equation (4), the microstrain 
tensor possesses an antisymmetric component due to the 
microrotations of the medium points. 

The local equilibrium equations are: 
The equilibrium of momentum, 

   
   

, 0    in V

    in S

lk l k k

lk l n k

t f u

t n t

  




        (5) 

and the equilibrium of the moment of momentum, 

   

   
, 0    in V

    in S

lk l kmn mn k k

lk l n k

m t l j

m n m

    




    (6) 

this case, V is the volume of the micropolar medium and 
S is the boundary of the micropolar medium. 

Microrotation and displacements can also be pre- 
scribed. In Equation (6) lk represents induced microcou- 
ples per unity of mass and j is the microinertia, which is a 
constant for the linear theory. The compatibility equa- 
tions are, 

, . , , 0ik j jk i ikn n j jkn n i              (7) 

and, 

 ln , , , , 0klr k n m i kli n i m             (8) 

3. Rotational Coupled Case in a Micropolar  
Elastic Solid 

Assuming that the displacement field in the medium can 
be expressed by polynomial functions, the macrorota- 
tions (Rj) depend on the displacement field described by 
the following equation: 
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,

1

2j jkl l kR   u                (9) 

and therefore the macrorotations can also be expressed 
through polynomial functions. Using this equation in 
Equation (4), the microstrain tensor can be expressed as a 
function of the rotations, 

 lnkl kl k n ne R               (10) 

For simplicity, consider that there are no microcouples 
lj. Substituting Equations (1) and (2) into (5) and (6), 
respectively, and using Equation (9) the equation of mo- 
ment of momentum for the static case, can be rewritten 
as, 

  , ,

1

2j j k kjR     

    j kk        (11) 

In this section the rotational coupled case is revised. 
The revision considers the convenient condition, from a 
mathematical point of view, that the macrorotations and 
microrotations are of the same magnitude, i.e., 

j jR                     (12) 

Once this has been established it is possible to deduce 
that the conditions under Equation (12) are true. Accord- 
ing to the Equation (11), the macrorotations are a func- 
tion of the microrotations and their second order deriva- 
tives, as for example k,kj. If according to the boundary 
conditions, the displacement field can be expressed as a 
polynomial function of less than a second degree of the 
coordinates, all the second order derivatives are zero; 
therefore, Equation (11) reduces to Equation (12). Sev- 
eral static cases already reported indicate that simple 
tension, torsion and bending [11] fell into this case, and 
only the Equation (5) is needed to solve the displacement 
field. 

As a consequence of Equation (12), Equation (10) is 
now, simply, 

kl kle                   (13) 

The symmetric strain tensor kl  is obtained from the 
Green stretch tensor. The antisymmetric part of Equation 
(10) disappears.  

e

An extreme example of the rotational coupled case is 
when a micropolar beam is under pure bending [10], 
which undertakes a macrorotation given by, 

j kR ax                   (14) 

Substitution of Equation (14) in Equation (11) gives, 

j kax                    (15) 

It should be clarified that there is no intention, at this 
point, to give a particular example of particular condi- 
tions. Rather, the intention is to consider the general re- 
sults obtained from the constitutive equations. The ex- 

amples given through references are provided only to 
demonstrate that there are particular cases that fall into 
the polynomial case considered in this work. 

The antisymmetric part of the microstrain from Equa- 
tion (10) is not considered; therefore, Equation (5) reads, 

 , 2kk j kj ke e   , 0              (16) 

Considering, 

2c

                    (17) 

Equation (17) is similar to the classical elasticity equilib- 
rium equation, 

, ,2kk j c kj ke e 0                (18) 

and therefore it can be assumed that there are identical 
fields of deformation for both classic elasticity and mi- 
cropolar (for the case of the rotational coupled) theories. 
As the anti-symmetric part of the strains is zero (equation 
12), the macrorotation does not contribute to the resis- 
tance of stresses produced by external forces (Equation 
(1)). The microrotations on the other hand do produce 
resistance against external moments or microcouples 
applied to the body (Equation (2)). 

It can be concluded that a necessary condition of a mi- 
cropolar solid, to respond as a rotational coupled case, is 
that the macro-rotation has to be a first-degree polyno- 
mial function of one of the coordinates xj or a constant. 
This implies that the static cases of simple tension (mac- 
ro-rotation is zero) and pure beam bending (a first order 
function) all fall into this category. 

Quasi-Classic Equilibrium of Momentum  

The rotational coupled case has an advantageous circum- 
stance because in this situation the same deformation 
assumptions used in the classical elasticity analysis can 
also be assumed in the analogue cases for the micropolar 
elasticity. This is possible because the equation of equi- 
librium of momentum resembles that of the classical 
elasticity theory; however, this is not the unique case in 
which it may happen.  

Equation (5) can be expressed as function of the sym- 
metric and antisymmetric strain tensors as follows, 

   
 

, , ,

, ,

2

0

kk j kj k kjl l k l k

ljk k l k l

e e R

R

,    

 

    

   
     (19) 

For clarity, concentrated forces are eliminated in 
Equation (19). Note that the classical equilibrium equa- 
tions appears once more if, 

, , ,l k l k k l k lR R ,               (20) 

By the use of Equation (11), Equation (21) can be ob- 
tained, 

Copyright © 2013 SciRes.                                                                                 WJM 



J. A. V. FEIJOO  ET  AL. 248 

 
 

, ,

, ,

j jlk l jjk

j jkl k jjl

   

   

 

  
            (21) 

which can be simplified as, 

,l jjk k jjl,                 (22) 

This equation holds for any field of displacements that 
produces a macrorotation with a polynomial function of a 
third degree or lower because third and higher order de- 
rivatives become zero. An example of this is a Ti- 
moshenko beam with two simple supports bearing con- 
centrated force. The displacement field in the classical 
elasticity theory (Hooke’s Law) consists of polynomials 
of a maximum degree of three. A similar field can be 
assumed for the micropolar medium. With the Ti- 
moshenko beam the flexural moment is considered to be 
a function of the first order of the axe 1 which coincides 
with the largest dimension of the beam along the neutral 
axe. It can be written, 

 3 0 1 0M x V x M   

The stress can be obtained from the well known equa- 
tion, 

 1
11 2

3

M x
x

I
   

Here the axe 2 is oriented in the direction of the loads. 
The displacement in the x1 direction is, 

20
1 1 2

3

1

2

V
u x x M

EI
   
 

0 2x  

which implies a macrorotation of, 

20
3 1

3

1

2

V
R x

EI
 
 

0M

             (23) 

which gives a macrorotation expressed by a second de- 
gree polinomial function. In a general approach, if the 
macrorotation can be expressed as a second degree pol- 
ynomial, 

2
j iR ax                 (24) 

the moment of momentum Equation (11) is, 

 2 2
, ,

1

2i i k kj j kkax ax C    

          (25) 

where, the microrotation is assumed to be, 

2
j iax C    

Because there is no other possible second degree term 
in Equation (25). Here, C is a constant that must balance 
the second term of the left hand side of Equation (25), 

2C a  

therefore, 

2 2j iax a                (26) 

The substitution of Equation (26) in Equation (19) 
gives, 

 

   
, ,2

1
0 0 2 2 0

2

kk j kj k

ijl ijk i i

e e

ax ax

  



 

        
 

then, by the use of Equation (17), 

, , 0kk j c kj ke e                (27) 

which is analogous to the classical elasticity equation of 
equilibrium. Therefore, the same assumptions can be 
considered for the micropolar medium. 

Because of the restriction on space, more details on 
this beam are not included in this paper; however, if fur- 
ther information is needed it can be found elsewhere. 

If the microrotation is a function of time  ,l k t , as in 
the case of wave propagation, the microinertia has to be 
considered (Equation (6)). The condition for holding 
Equation (20) is restricted to, 

,l k k l,                  (28) 

Another case where Equation (27) can also be applied 
is when there is a constant microcouple per unit of vol- 
ume, as observed by analysing Equation (11). A constant 
microcouple does not produce strains. No excitation of 
the micropolar body appears either in the equilibrium 
equation of momentum (Equation (27)) or in the bound- 
ary conditions (5b) and (6b). The microcouple is equili- 
brated only by the microrotation 

Analogous to the classic elasticity theory, Eringen [9] 
considers the case of micropolar elasticity for plane 
strain, in which the displacements possess the following 
restrictions, 

 1 2

0

0 ,z

z z

f x x 

 

  

  

  


         (29) 

The condition stated by Equation (22) is reduced to, 

, 0z                     (30) 

This implies that both sides of (21) are zero and, if so 
represents the rotational coupled case. 

If the quasi-classic equilibrium equation is valid, then 
the deformations are analogous to those obtained by the 
classical elasticity theory; however, when the macro and 
microrotations are not coupled, then the microrotations 
are opposed to the external loads by producing micro- 
couples and/or shear stress, as the antisymmetric part of 
the strains is no longer zero, see Equation (4). 

4. The General Linear Isotropic Micropolar  
Elastic Solid in Static Conditions 

The advantage of the cases treated in the previous sec- 
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tions is that the proposed solution for a particular case 
can be extrapolated directly from the deformation field, 
which itself can be obtained from the classical elasticity 
theory. In the general case, the following considerations 
can be taken to solve the problems which are not consid- 
ered in the previous cases. Referring back to Equation 
(11) and bringing back into this equation the induced 
microcouples per unit of mass, let’s split both the macro- 
rotation and microrotation into two terms. Then Equation 
(11) is now, 

  , ,

1

2

j j j j

k kj j kk j

R R

2
I

 

    


     

      

      (31) 

Because this is a linear differential equation, by the 
use of the superposition principle, Equation (31) can be 
split into two equations as follows, 

2j jR jl



                (32) 

and, 

  , ,

1

2j j k kjR     


        j kk      (33) 

Considering Equation (32), the equilibrium of mo- 
mentum given by Equation (19) is now, 

 , , ,2 22kk j kj k kjl j k ljk k je e l       ,l     (34) 

A displacement vector ju  is obtained. Observe that if 
there are any microcouples per unit of mass, this equa- 
tion becomes the quasi-static equilibrium (Equation (18)) 
because the microcouples participate as field forces just 
as gravity does. From Equation (11), the macrorotation 

jR  can be obtained. Then, j  is obtained with Equa- 
tion (32).  

Thereafter, if the microrotations j  possess a non- 
zero second order derivative, the Equation (33) can be 
substituted in Equation (19) thus obtaining, 

   
 

, , ,

, ,

2kk j kj k ljk k kjl j kkl

klj j jkl k jjl

e e      

   

    
    

, 
 

Equation (33) produces other sets of displacements 

ju  from which it is possible to calculate the microrota- 
tions jR . The term j  is now obtained using Equation 
(31). 

If j  has a non-zero second derivative in respect to 
the other two coordinates, then the process is repeated to 
obtain a new set of rotations, e.g. jR  and j , up to the 
point in which the corresponding second order derivative 
of the microrotation term is zero. The total displacement 
macrorotation and microrotation are, 

a)

b)

j j j j

j j j j

R R R R

   

     

     




           (35) 

and, 

j j j ju u u u                   (36) 

Now that the proposed methodology has been illus- 
trated the discussion of some examples on the general 
linear isotropic micropolar elastic solids are presented. 

5. Examples or the General Linear Isotropic  
Micropolar Elastic Solids 

5.1. Clamped Beam with a Free End and a  
Microcouple per Unit of Volume 

Suppose that a micropolar solid of dimensions u0, v0 and 
w0, ( 0 0 , v0) is clamped at the end at x = 0 and that 
there is a free end at x = u0, as shown in Figure 1. Then, 
because of the magnetic or electric field, a non uniform 
microcouple per unit of volume is induced in accordance 
with, 

w u

3
zl Ax                   (37) 

No other external forces are applied different from the 
reaction at x = 0. By the use of Equation (34) one may 
start considering, 

2z z zR l



    

3

2z zR A



    x  

Under this first approximation, Equation (19) is now, 

 

 

 

, ,

2
, ,

, ,

a) 2 0

3
b) 2

2
c) 2 0

k kx k xk

kk y ky k

k kz k zk

e e

e e

e e

  

  

  

  

   

  

Ax        (38) 

The unique equation with non trivial solution is (38b). 
As the microcouple is only a function of x, it is as- 
summed that all the displacements are a function only of 
x. This implies that a non-normal stress is present in this 
equation and it can be reduced to, 
 

 

Figure 1. The micropolar solid is prevented from rigid dis- 
placement and then a distributed couple per unit of mass is 
applied. 
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  2
,

3
2

2xy xe A
    x  

Considering that any displacement depends only on 
the direction x, the previous equation is reduced to, 

  , , 23
2

2 2
y x xu

Ax
     

The unique nonzero displacement depends on x, 

 
2

,

3

2y xx

A
u


 




x               (39) 

The displacement field in this first iteration is, 

 
40, ,0

4 2

A
u


 

     
x


            (40) 

The macrorotation zR  is now, 

 
3

2 2z

A
R


 

 


x               (41) 

Using Equation (32) 

 
3

2z Ax
 

  
 


            (42) 

Equation (33) then gives, 

 
 2

3

2j jR A
  


  


   


x         (43) 

Equation (19) is now, 

 

   
 

 

, ,

, ,

, ,

a) 2 0

3
b) 2

2

c) 2 0

k kx k xk

kk y ky k

k kz k zk

e e

e e

e e

  

  
A   

  

  

  


  



  

    (44) 

The displacement is now, 

 
 

2
2

3
0, ,0

2 2
u A

  


  

     
  

x        (45) 

The macrorotation  is, zR"

 
 2

3

2 2
zR

  
Ax

  


 


           (46) 

  

The total macrorotation zR  is (adding Equations (41) 
and (46)), 

 
 
 

3
2

3

2 2 2 2
z

A
R x

  
Ax

    


 

 
     (47) 

Equations (40) and (45) give the displacement, 

 
 
 

4 2
2

3 2 3

4 2 4 2
y

A
u x

   
    


 

 
Ax     (48) 

Equations (43) and (47) give, 

  
 22

3 4 5

2 2
z Ax

    
 

  

 
 


         (49) 

Adding Equations (42) and (49), 

 
  

 
3

2

4 5
3

2 2 2z Ax A
    

x   
     

 
 

 
  (50) 

As derivatives in Equation (32) become zero after the 
third iteration, no further iterations are needed. In this 
analysis ekk = 0, so there is no normal stress as there is 
when external flexural moments are applied (Figure 2). 
As the displacement uy is a function only of x, only shear 
stresses are present and each produces a sliding cross 
section (Figures 3 and 4). Observe that this microcouple 
per unit of volume does not produce any reaction force in 
the clamped end, as no displacement is produced at x = 0. 
This can be seen using Equation (4) together with Equa-
tion (1), from which is obtained, 

   

 
 

  
 

3 3

2
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2 2
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3

2 22 2

yxt x Ax
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  
   

      
 

    

 
     

   
  
  

 

However there is a moment, Mz, because of the pres- 
ence of the microcorotation zx. The use of Equation (50) 
gives, 

 
  

 
2

, 2

4 5
3 3

2 2 2z x Ax A
      

     
 

 
 

  

The micromoment mzx is obtained from Equation (2), 
 

 

Figure 2. The moment Mxz is applied through the distribu- 
tion of σxx on the boundary s-s'. 
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Figure 3. Concentrated microcouple per unit of volume 
produce only shear strain. 
 

 

Figure 4. Deformation of the micropolar body under a cu- 
bic distributed couple per unit of volume. 
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that when evaluated in x=0, the following is obtained, 

  
 20

4 5
3

2 2zx x
m A

   
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 



 

From the previous equation the total moment Mz can 
be obtained by integrating, 

  
 
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2
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z
z
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finally obtaining, 
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4 5
3

2 2zM A w
   


  
 




 

5.2. Double Clamped Beam with a Concentrated  
Force 

The case of a doubled clamped beam (see Figure 5) is 
analyzed using the same assumptions considered in [10]. 
As noted before, the starting point of the analysis is the 
traditional elasticity theory, then, if the Euler-Bernoulli 
equation is used in the analysis, the shear force, the mo- 
ment, the angular deflexion and the vertical displacement 
are as follows, 
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0 1 1

1 1
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
  
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
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     (51) 

where Em is the equivalent to the Young modulus, 

  
 
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2 2
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m
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t
E

    
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  
 

 
 

 

 

Figure 5. Double clamped beam with symmetric transverse 
area. 
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This equation, similar to that of the classic elasticity 
th

 x, 
th

eory, can be obtained from the matrix Equation (1) 
when inverted for deformations, see references [8,9]. 

Given a specific cut around any cross section in
ere is a moment M(x) that has to be equilibrated by the 

moment produced by the normal forces around the z-axis 
and the moment produced by the microcouples mxz dis- 
tributed all around the face x. Therefore, 

     , d , d
x x

x xz x
A A

M x x y y A m x y  A

As in the Euler Bernoulli beam, the normal stress is a 
lin

  

ear function of y, 

 0xx x y                (52) 

d     2
0 d ,

x x

x xz x
A A

M x x y A m x y    A    (53) 

In order to consider the application of Equation (2), 
and assuming that z zR   , which is valid as a first ap- 
proach,  

     , ,, ,xz z x z xm x y x y R x y     ,

The integration of this equation gives, 

     0 , , d
x

z z x x
A

M x x I R x y      A

The macrorotation is given by, 

     , ,1
,

2z

v x y u x y
R x y

x y

  
   

  
 

because the unique displacement is in the x direction 

u(x,y), then    ,1 u x y 
,

2zR x y
y

    
 

  

and the integrals end to be, 

     2

0

,
d

2
x

z x
A

u y x
M x x I

y x




 
   A     (54) 

Considered in the classic treatment of bending (trans- 
ve

in

rse areas Ax remains without deformation). The dis- 
placement u(y,x) can be obtained from the bending angle 
θ(x) as shown in Figure 6. 

Taking into account the geometrical parameters shown 
 Figure 1, it can be established that 

 ,u x yx 
y




                (55) 

Therefore, 

 ,u x y y

x 


 


 

 

 u  

  
y  

x

  

 

Figure 6. The displacement u is function of the bending 
angle. 
 

   0

,
x

u x y y


 


               (57) 

The stress is then obtained as, 

xx m xxE                   (58) 

Using Equation (56), the stresses are then obtained as, 

 
 

,
xx m mE E

x x



  


        (59) 

From Equation (52), 

u x y y

   0
mE

x
x




                 (60) 

and with the use of Equations (57) and (60), Equation (54) 
is now,  
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2
m z

m z

E I
M x

xE k




 
   

 
 

where kz is the well known radii of gyration.  
The radii of curvature is, 

 
 
1

m z

M x

E I x 
               (61) 

where φ is, 

2
1

2 m zE k


 

  


 


            (62) 

Using Equations (52) and (60), 
              (56) 

The displacement u(x,y) is then, 
   

,
z

M x
x y y

I



               (63) 
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and the integration of Equation (61) gives, 

   0 0m z

M
E I

1 x x  
  

     
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From Equation (55), 
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x
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x x    
 

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The substitution of (65) in (64) gives, 
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x

E I x M
0
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The displacement u(x,y) is then in acc
Equation (57),  

ordance with 
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x
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
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0

The macrorotation can be rewritten as,  
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Now, equation (19) is valid, when  
; therefore,    ,  ,z zR x y x y 

   1
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Substituting Equation (67) in Equation (11),  
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1
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Considering Equation (67), 

 

   2

, 2z xx 2

1 x
x

x


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
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
 

Using the Equation (66) and the basic concepts of 
mechanics of materials, 
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1

2z xx 2m z m z

M x V x
x

E I



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x E I

Equation (68) can then be written as, 
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4z z

mE I z
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
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or, 

       
4z z

m z

V x
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E I


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For the particular case of concentrated forces, as in the 
present example, all the derivatives of V(x) are zero; 
therefore there is no possibility for any other derivatives. 
Th

 

e microrotation is then,  

         1

2 4z z
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V x
x x x x

E I
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   


        (70) 

The microcouple (moment per unit of volume exerted 
by the microstructure) is given by Equation (2), 

,zx z xm   

when Equation (70) is used, 

 
2zx

x
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x

 
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
 

That in turn produces Equation (54). 
Equation (51) is now modified, to clude φ,  in
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
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     (71) 

These are the equations that solve the case of the hy- 
perstatic micropolar beam. The last two Equations (71) 
can now be assembled into a matrix equation, which 
w

 

   

hen inverted, 
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gives the usual response to the classic elasticity theory. 
Observe that φ is not involved. 

2

1 1 3 2 1
a a

V F
L L
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1 1
a a

M FL
L L

       
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If a is the half of the beam, 

1 12 8

F FL
V M   
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The maximum vertical displacement is found when θ(x) 
= 0, from Equation (71), 

 22
1

10
2 2

F x aV x 
  M x  
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2

21
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2 2

a
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2
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Fa
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V F V FV F

 
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 
 



That gives x = L/2 when a = L/2. The micropolar effect 
does not alter the localization of the maximum forma- 
tion. It affects only the value of the maximum displace- 
ment. For the case a = L/2 one has, 

de

3

max 192 m z

FL
v

E I
   

6. Conclusions 

The objective of this paper is to prese t a simple way to 
solve the micropolar isotropic material strength for engi-

s. The proposed solution, which is
se of this kind of medium to external

rimental work is required to verify the results
ob

his strain field is a particular case of fl
w

olar elas-
tic

ddition, the physical interpretation is much 

si

en solve microstretch cases and 
fin

Methods for Study of Cosserat 
Elastic Solids and Other Generalized Elastic Continua,” 
In: H. Muhlhau  
with Micro-Str k, 1995, pp. 1-22. 

n
 
 
 

siv

neering application
related to the respon
loads, can be obtained by an iterative process that starts 
from a deformation field similar to the classic elasticity 
theory.  

The two cases which were presented here demonstrate 
that this iterative process leads to a consistent solution of 
the constitutive micropolar isotropic equations; however, 
some expe  

tained.  
In the clamped beam with a free end and a microcou- 

ple per unit of volume case, the mathematical solution is 
a strain field which is not observed in the classic elastic- 
ity theory; t exion 

here only shear strains exist. This occurs because the 
beam cross sectional planes do not rotate but slide over 
one another. The displacement causes macrorotations to 
equilibrate the microrotations which are in opposition to 
the distributed microcople per unit of volume. 

The solution of the double clamped beam with a con- 
centrated force case represents a double clamped beam 
with a concentrated force. It can be considered an exten- 
tion of the Euler-Bernoulli beam to the microp  

ity. The beam shows to be stiffer than this clasic elas- 
ticity counterpart. This is because of the oppositon of the 
microrotations to the bending moment at each transversal 
section.  

Departing from a solution well known in the equiva- 
lent case in the classical elasticity, it is quite easier to 
obtain the solution to the response of the micropolar me- 
dium. In a

mpler. 
This approach may open the possibility of a strength- 

ening of material science for microcontinuum media, 
through an iterative process to start solving classic, then 
micropolar elasticity, th

ally obtain the micromorphic elasticity solutions. Fu- 
ture articles are focused on experimented data on one 
hand and on the other hand to expand this kind of analy- 
sis to microstrech elasticity 
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xi = coordinates in the i direction  
Em = micropolar Young modulus  
σo= proportional constant 
 = microrotation 
= bending angle 
Ii = second moment of inertia around i  
ij =Dirac Delta 
tRL = stress 

 = constitutive parameter  
erl = symmetric strain tensor 
rl = symmetric strain tensor 
mrl = micromoments pro unit of area  
ui = displacement in i direction  
 = density 
fk = force per unit of mass 
ni = unitary vector in the i direction  
Ri = macrorotation 
lk = microcouple per unit of mass 
j = microinertia 

 
 

Symbology 

M = bending moment 
V = shear force 


