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Abstract 
 
This paper presents the fractional-order dynamics of the double pendulum by means of fractional-order 
modeling. Equations of motion have been derived for cases with and without external forcing. Generalized 
force terms have been obtained for five different cases of forcing. Both integer and fractional-order analysis 
have been carried out. Phase diagrams have been plotted to visualize the effect of fractional order approach. 
The originality of this work arises from the fact that the double pendulum has been modeled with the frac-
tional dynamics approach. The governing equations of motion of the system have been obtained through 
fractional variational principles. 
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1. Introduction 
 
The double pendulum is a system made of a simple pen-
dulum attached to the end of another simple pendulum, 
displaying rich dynamic behavior (Figure 1). The mo-
tion of a double pendulum becomes chaotic above a cer-
tain energy level. It has attracted the attention of many 
researchers due to its complex behavior, including chao-
tic behavior. A close inspection at a simple mechanical 
system such as the double pendulum exhibits a remarka-
ble variety of motions. By examining its dynamics with 
and without an external force, the system gives the re-
searcher essential ideas of linearity and non-linearity, in- 
cluding chaos. Some important properties and constants 
which can be measured in systems characterized as “pen- 
dulum type systems” are gravitational constant, viscosity, 
attraction of charged particles and time. Besides, some of 
the classical, chaotic and quantum dynamics concepts, 
such as period, frequency, resonance, conservation of en- 
ergy, conservation of angular momentum, forcing, har-
monic motion, dissipation, damping, linearization assum- 
ption, Fourier spectra, bifurcation, period doubling, non- 
linearity, chaotic behavior, phase diagrams, Poincare 
maps, fractal structures, the Lorentz attractor, quantum 
pendulum, duality, probability amplitude, uncertainty 
and the discrete energy spectrum, can all be easily de-
fined through the dynamics of a pendulum. The preced-

ing reasons are quite enough to make the pendulum dy-
namics attractive. 

Advances in high capacity computer technology and 
non-linear dynamics turn the attention of scientists and 
engineers to fractional variational principles, due to their 
various applications in many fields of science and engi-
neering, including dynamics, fluid flow, rheology, diffu-
sion phenomena, electromagnetic theory, electrical net-
works and probability. Application of fractional-order 
dynamics in these fields can be found in open literature, 
however the trend seems that hardly any field in science 
or engineering has remained untouched by the fractional 
approach. 
 

 
Figure 1. The double pendulum. 
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The double pendulum has attracted the interest of 
many researchers due to its remarkable dynamics as a 
prominent example of transition to chaos, despite its sim- 
ple structure. The characteristics of its motion change 
signifycantly as its energy level increases. The forces in 
the double pendulum system have been computed in [1] 
and periodic, quasi-periodic and chaotic orbits have been 
identified. Existence of irregular vibrations and both pe-
riodic and chaotic trajectories of a mathematical double 
pendulum system is proven in [2]. Stabilization of a 
double pendulum with an elastic motor shaft in inverted 
position is achieved experimentally in [3]. The nonlinear 
response of a three degree of freedom vibratory system 
with a double pendulum in the neighborhood of internal 
and external resonances is investigated. It is stated that 
one mode of vibration may excite or damp another in 
such systems, and there may appear chaotic vibrations 
along with different kinds of periodic vibrations in [4]. 
The analogy between a double pendulum and an oscil-
lating electrical system is established in [5] and the chao-
tic regime of the circuit is studied. The numerical analy-
sis of chaos in [6] confirms the passing of the system 
from regular low-energy motion into chaos as energy is 
increased, by making use of bifurcation diagrams, Poin-
care sections and Lyapunov exponents. 

Fractional calculus extends differentiation and integra-
tion from integer-order space into fractional space. Frac-
tional-order modeling describes various physical pheno-
mena such as viscoelasticity, diffusion, polarization or 
electromagnetic waves. Fractional dynamics has gained 
increasing popularity by researchers over the years. In 
the case of oscillatory problems or the dynamics of a 
pendulum, what is generally done is that systems are 
modeled using classical integer-order approach, and then 
some of the integer-order differential terms are replaced 
by fractional-order differentials, instead of modeling the 
system directly and completely using fractional approach. 
For example, in [7] the damping term of the Duffing eq-
uation is replaced by a fractional derivative, and then the 
chaotic dynamics of the system has been examined. 
Likewise, Duffing’s equation is cast into a set of first- 
order differential equations in [8], and then the conven-
tional derivative expressions are replaced by fractional 
derivatives. In the same manner, classical time deriva-
tives in the state space equations of the Van der Pol os-
cillator are replaced by fractional ones in [9]. Fractional 
damping has also been applied to a pendulum system in 
[10]. 

In this study, the dynamics of the double pendulum 
has been modeled using fractional dynamics approach. In 
order to show the similarities and differences between 
the solution sets, both classical and fractional modeling 
approaches are applied to the double pendulum problem. 

Classical integer-order and fractional-order modeling of 
the double pendulum are carried out under five different 
forcing conditions and three sets of initial conditions. 
Generalized forces have been obtained for each case of 
forcing, which are horizontal, vertical, and axial forcing 
at the tip of the second arm, vertical forcing through the 
center of gravity of the second arm, and the generalized 
case of forcing. Effects of fractional order modeling on 
the dynamics of the double pendulum are observed and 
presented visually through trajectory diagrams and phase 
diagrams in Section 7. 

The organization of this paper is as follows. Equations 
of motion of the free, integer-order double pendulum are 
derived in Section 2. Fractional calculus is introduced 
and equations of motion are derived through fractional 
principles in Section 3. Generalized force terms related 
to each case of forcing are derived in Section 4. Terms 
derived in Sections 2-4 are combined to give the global 
equations of motion in Section 5. Initial conditions used 
in the calculations are given in Section 6. Diagrams and 
results are given in Sections 7 and 8. 
 
2. Double Pendulum and the Equations of 

Motion 
 
Equations of motion of the double pendulum can be de-
rived using Lagrange’s equation 

. i
i

i

d L L
Q

dt qq

    
   

            (1) 

where L T V  is defined as the Lagrangian of the 
system, T is the kinetic energy, and V is the potential 
energy of the system. The motion of the double pendu-
lum has two generalized coordinates, 1  and 2 , as 
seen in Figure 1, resulting in two equations of motion 
pertaining to the dynamics of the double pendulum. 

It should be noticed that the generalized force 0iQ   
when there is no external forcing function. The Lagran-
gian of the double pendulum in terms of the generalized 
coordinates 1  and 2  is 

 

 

. . . . .
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 
 

 (2) 

where 1m  and 2m  are the masses of the pendulum 
bobs located at points 1O  and 2O , respectively, 1l  is 
the distance 1OO , 2l  is the distance 1 2O O , 1l  and 2l  
are inextensible elements and g is the gravitational acce-
leration. Substituting Equation (2) into Equation (1) 
yields the equations of motion of the double pendulum. 



E. ANLI  ET  AL. 
 

Copyright © 2010 SciRes.                                                                                ENG 

937

.. ..
2

11 2 1 2 1 2 2 2 1

.
2

2 1 2 2 2 1 1 2 1 1 1

( ) cos( )

sin( ) ( ) sin( )

m m l m l l

m l l m m g l Q

   

   

   

   
  (3) 

.. ..
2

22 2 2 1 2 1 2 1

.
2

2 1 2 1 2 1 2 2 2 2

cos( )

sin( ) sin( )

m l m l l

m l l m g l Q

   

   

  

  
   (4) 

where 1Q  and 2Q  are the generalized forces which 
will have nonzero values in the case of external forcing 
and vanish otherwise. 
 
3. Fractional Calculus and Derivation of the 

Fractional Terms 
 
Fractional calculus refers to generalization of derivatives 
and integrals into fractional, non-integer orders. The ad-
vantage of fractional calculus over classical integer-order 
calculus is that fractional-order derivatives describe the 
memory of a dynamical system. Interestingly, in relati-
vistic mechanics, the motion of material objects is not 
always in three dimensions, it rather depends on restraint 
conditions. Researchers have extended integer space into 
fractional space as the dimension of space plays an im-
portant role in areas such as quantum field theory and 
Casimir effect. Even more interestingly, the dimension of 
the real world was measured experimentally and found to 
be 3 ± 10-6. This is in accordance with general relativity 
that gravitational fields are curvatures in space-time, 
instead of being entities in a flat space-time [11]. 

There are several definitions of fractional derivatives, 
like Grünwald-Letkinov, Riemann-Liouville or Caputo 
formulations [12]. Right and left Riemann-Liouville frac- 
tional derivatives are [13], respectively 

( ) ,
n

nd
D y t I for t a

dt
    

 
        (5) 

( ) ,
n

nd
D y t I for t b

dt
     

 
       (6) 

where  , fulfilling the condition 0 1  , is the frac-
tional order, 1n n    and nI  terms are the Rie-
mann-Liouville fractional integrals. It should be noted 
that replacing   with 1 gives classical integer-order 
derivatives. 

Riemann-Liouville fractional integrals are given as 
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where  is the gamma function. For a Lagrangian func-

tion defined as ( , , )a t t bL t D q D q   [11] where a tD q  

and t bD q  denote the right and left fractional integrals 

of order   and  , respectively, and q  denotes the 

generalized coordinates, the Euler-Lagrange equations of 
motion for the unforced system are 
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(9) 
By definition, the Lagrangian is evidently obtained in 

terms of integer-order derivatives. Thus, it would be log-
ical to substitute 1   and 1  . Moreover, the La-

grangian depends only on a tD q  or t bD q , due to the 

fact that the double pendulum is a continuous system and 
the right and left derivatives are equal to each other. 
Therefore, the fractional equations of motion in the case 
of external forcing are 
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        (10) 

It should be noticed that the right hand side of Equa-
tion (9) is zero since the iQ  term vanishes in unforced 
systems. The last term on the left side of Equation (10) is 
the consequence of fractional-order modeling. These 
additional terms associated with Equations (3) and (4) 
are written explicitly as 
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It is evident that replacing   with 1 in Equation (10) 
yields the Lagrangian equations of motion in integer 
space. This is due to the fact that that replacing   with 
1 in definitions 5 and 6 yield integer-order derivatives. 
 
4. Non-Conservative Forces and Derivation 

of the Generalized Forces 
 
The following five cases of non-conservative forcing 
conditions have been assumed in this study. 

1) Horizontal forcing: A periodic force of cosA t  
has been applied to 2O  horizontally, as seen in 
Figure 2. 

2) Vertical forcing: A periodic force of cosA t  has 
been applied to 2O  vertically, as seen in Figure 3. 
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3) Axial forcing: A periodic force of cosA t  has 
been applied to 2O  along the axis 1 2O O , as seen in 
Figure 4. 

4) Vertical forcing through the center of gravity of 

1 2O O : A periodic force of cosA t  has been ap-
plied to the center of gravity of 1 2O O  vertically, as 
seen in Figure 5. Since the arms are assumed to be 
homogenous, the point of application is the mid-
point of 1 2O O . 

5) General forcing: A periodic force of cosA t , 
making an angle   with the vertical, has been ap-
plied to 2O , as seen in Figure 6. 

 

Figure 2. Case a—horizontal forcing. 
 

 
 
 
 

Figure 3. Case b—vertical forcing. 

 
 

 
Figure 4.Case c—axial forcing. 

  

Figure 5. Case d—vertical forcing through the center of 
gravity of 1 2O O . 

 
   
 
 

Figure 6. Case e—general forcing. 

Generalized forces have been obtained using the rela-
tion 

1

n
i

k i
i k

r
Q F

q




              (13) 

where kQ  is the generalized force associated with the 
thk  equation of motion, iF  is the applied force, ir  is the 

position of the point of application and kq  is the genera- 
lized coordinate. Apparently, no generalized forces ap-
pear in the equations of free motion and the right hand 
sides of Equation (10) vanish. In matrix notation, the 
above relation can be given as 

T
qQ r F                    (14) 

Generalized forces related to each of the forcing con-
ditions given above were found as the following. 
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Thus, the generalized forces are 

1 1 1cos cosQ A t l             (15) 

2 2 2cos cosQ A t l             (16) 

UCase bU Point of application is the same as in case a, 
and the applied force is 
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Thus, the generalized forces are 
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UCase cU Point of application is the same as in cases a 
and b, and the applied force is 

2

2

cos sin

cos cos

A t
F

A t

 
 

 
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 

 

Thus, the generalized forces are 

1 1 2 1cos sin( )Q A t l            (19) 

2 0Q                  (20) 

UCase dU Point of application is the midpoint of 1 2O O , 
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Applied force is the same as in case b. Thus, the gene-
ralized forces are 

1 1 1cos sinQ A t l           (21) 

2
2 2cos sin
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l
Q A t          (22) 

UCase eU Point of application is the same as in cases a, b 
and c, and the applied force is 
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Thus, the generalized forces are 

1 1 1cos sin( )Q A t l            (23) 

2 2 2cos sin( )Q A t l            (24) 

It should be observed that the generalized force terms 
in cases a, b and c (horizontal, vertical and axial forcing, 
respectively) can be derived from the generalized force 
term of case e. Replacing   in Equations (23,24) with 

/ 2 yields Equations (15,16); replacing   with 0 
yields Equations (17,18); and replacing   with 2  
yields Equations (19,20). These are the results obtained 
by incorporating horizontal, vertical and axial forcing 
functions into the equations, respectively.  

The generalized force terms 15-24 derived in this sec-
tion constitute the right hand sides of the equations of 
motion of the forced double pendulum. 1Q  term repre- 
sents the right hand side of the first equation of motion, 
which had been derived by differentiating the Lagrangian 
(2) with respect to 1  and its derivative, and likewise, 

2Q term represents the right hand side of the second equ-
ation of motion, which had been derived by differentiat-
ing the Lagrangian (2) with respect to 2  and its deriv-
ative. Apparently, both 1Q  and 2Q  will be equal to 
zero when there is no forcing function. 
 
5. Equations of Motion 
 
Equations describing the dynamics of the unforced dou- 

ble pendulum were derived in Section 2. Fractional terms 
related to fractional-order modeling of the system were 
defined in section 3. Generalized forces pertaining to 
each of the five forcing conditions were derived in Sec-
tion 4. The complete set of equations describing the mo-
tion of the double pendulum thus become 
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

 (26) 
Left hand sides of the equations comprise of the terms 

in Equations (3,4,11,12). The terms containing   indi-
cate the additional terms resulting from the fraction-
al-order model, as given in Equations (11,12). Right 
hand sides denote the generalized force terms resulting 
from the forcing functions. There is a specific set of val-
ues for 1Q  and 2Q  for each case of forcing, given by 
Equations (15-24). 
 
6. Initial Conditions and Numerical Values 
 
In this study, three different sets of initial conditions 
were considered. Each equation of motion was solved for 
each set of these initial conditions, which are 
set 1 

' '
1 2 1 2(0) 1, (0) 2, (0) 0, (0) 0        

set 2 
' '

1 2 1 2(0) 1, (0) 1, (0) 0, (0) 0         

set 3 
' '

1 2 1 2(0) 0, (0) 0, (0) 0, (0) 0        

where the angles are measured in radians. Sets 1 and 2 
correspond to the case where the pendulum bob has an 
initial displacement from equilibrium position but no 
initial velocity while set 3 corresponds to the case where 
the pendulum bob has no initial displacement and no 
initial velocity. It should be noticed that the last set of 
initial conditions yields no motion in the unforced case 
and cases b, c, and d. These cases are vertical forcing, 
axial forcing and vertical forcing through the center of 
gravity of 1 2O O , respectively. This is because 

1(0) 0,   2 (0) 0  is a stable equilibrium point. Table 
1 shows the cases considered in this study and the sets of 
boundary conditions utilized for each. Selected results 
will be presented in the following section. 

1 2 1 kgm m  , 1 2 1 ml l   and 29.81m / sg   in 
this study.  
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7. Results 
 
A quick inspection of Table 1 reveals the cases ex-
amined in this study. The double pendulum has been 
modeled with and without external forcing, using both 
integer and fractional order modeling. It is stated above 
that the double pendulum cannot start its motion under 
null initial conditions in the unforced case and in cases of 
vertical forcing, axial forcing and forcing through the 
center of gravity of 1O O , not only when it is modeled 

with the integer-order approach, but also the fractional 
approach. Equations modeling the dynamics of all the 
other cases have been solved and their phase diagrams 
have been plotted. Blank phase diagrams were obtained 
for the cases where the double pendulum was not sup-
posed to move, which verifies the calculations. The ef-
fect of the fractional variable 2  is observed. As   
approaches 1, the results approach those obtained by 
integer-order modeling. This can be observed in the fol-
lowing figures in Table 2. 

 

Table 1. Cases solved in this study. 

Loading type Modeling   Initial conditions 

Free integer  sets 1 and 2 

Free fractional 0.4, 0.7, 0.9 sets 1 and 2 

horizontal forcing integer  sets 1, 2 and 3 

horizontal forcing fractional 0.4, 0.7, 0.9 sets 1, 2 and 3 

vertical forcing integer  sets 1 and 2 
vertical forcing fractional 0.4, 0.7, 0.9 sets 1 and 2 

axial forcing integer  sets 1 and 2 
axial forcing fractional 0.4, 0.7, 0.9 sets 1 and 2 

vertical forcing through cg of 1 2O O  integer  sets 1 and 2 

vertical forcing through cg of 1 2O O  fractional 0.4, 0.7, 0.9 sets 1 and 2 

general forcing integer  sets 1, 2 and 3 
general forcing fractional 0.4, 0.7, 0.9 sets 1, 2 and 3 

 
Table 2. Phase diagrams and trajectory diagrams. 
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In addition, this study can be used as a source for 
modeling pendulum-type structures in fractional space, 
since the governing equations are derived using a step by 
step procedure and the differences between integer mod-
eling and fractional-order modeling are outlined. Physi-
cally possible initial conditions are applied in both mod-
eling approaches and the results are presented graphical-
ly. 
 
8. Discussion 
 
Integer and fractional-order modeling of the double 
pendulum are done under various forcing conditions and 
three different sets of initial conditions. Three different 
values have been used for the fractional order  . It was 
observed that as   approaches 1, phase diagrams con-
verge to those obtained by integer-order modeling. How- 
ever, experiments should be conducted to obtain more 
realistic results about whether fractional-order models 
are more accurate than integer-order models. 
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