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ABSTRACT

In this work, we present a priori error estimates of finite element approximations of the solution for the equilibrium
equation of an axially loaded Ramberg-Osgood bar. The existence and uniqueness of the solution to the associated
nonlinear two point boundary value problem is established and used as a foundation for the finite element analysis.
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1. Introduction

The following Ramberg-Osgood stress strain equation
£(x)= o (x)+Blo(x)]"” o(x), (1.1)

is accepted as the model for the material’s constitutive
equation in the stress analysis for a variety of industrial
metals. Numerous data exist in literature that supports the
use of (1.1) to represent the stress-strain relationship for
aluminum and several other steel alloys exhibiting elas-
tic-plastic behavior (see, for example, [1-4] and the ref-
erences therein). In Equation (1.1), g(x) represents the
axial strain, O'(x) represents the axial stress, 0 <x <L,
q > 2 represents the material hardening index (where
g =2 describes the linear elastic material), the constants
A, B and g are determined from the experimental values
for the parameters E, oy, ¢, &,, and ¢, by the formula

q-2
A=t pooooa| L| go1+—1020
E ln(

%y o,/o,)

(1.2)

where E is the Young’s modulus, o, &, are the ma-
terial’s yield stress and strain, o,, &, are the ultimate
stress and the ultimate strain, and L >0 stands for the
length of the solid bar.

We observe that Equation (1.1) splits the strain into
two parts: an elastic strain part with coefficient 4 and a
nonlinear part with coefficient B. The linear part domi-
nates for o <o, while the nonlinear part dominates for
oc>0,.In many industrial applications, e.g., in light-
weight ship deck titanium structures, welding-induced
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plastic zones play important roles in determining the
structures’ integrity (see [5,6]).

Figure 1 compares the stress-strain curves for Hooke’s
law, the double modulus, and Ramberg-Osgood law us-
ing material measured data. Among these models, the
Ramberg-Osgood model appears to represent the mate-
rial’s behavior the best.

Table 1 gives experimental values of the material con-
stants for some commonly used metals in industries.

Although (1.1) is widely used in industries for finite
element analysis, no solvability and uniqueness or error
analysis has been given in literature even for the follow-
ing one-dimensional boundary value problem:

diT(x)—c(x)u(x)ff(x):O, O0<x<L,
dudix) = AO'()C)-i-B|O'(x)|‘F2 O'(x), (1.3)

u(0)=0,u’'(L)=p

where c¢(x)> Osatisfies ¢ e L”(0,L) and
f(x)eL’(0,L). For simplicity, we consider only one
boundary condition. Other Dirichlet type boundary con-
ditions can be treated similarly.

Wg also consider the case when ¢(x)u(x) is replaced
by > ku(x;)6(x—x;), where §(x—x;) is Dirac im-
pulsé&'functions, and %, stands for concentrated elastic
support constantat 0<x, <L, for i=1,---,N.

In Section 2, we develop a week formulation of (1.3)
subject to the given boundary condition and prove exis-
tence and uniqueness of the solution by using the theory
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Four different Stress/Strain models, compared with measured data
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Figure 1. Ramburg-Osgood curves.

Table 1. Constants for Ramburg-Osgood materials.

Material A B qg—1
Inconel 718 3.33e—05 4.42¢-71 32.00
5083 Aluminum 9.80e—05 2.50e—23 13.11
6061T6 Aluminum 1.00e—04 1.35e—58 34.44
304 Stainless Steel 3.57e-05 3.44e-13 6.32
304 L StainlessSteel 3.57e-05 2.24e-15 7.36

of perturbed convex variational problems in Sobolev
spaces (see [7] for details.) We also prove that the solu-
tion is bounded in certain Sobolev norms. In Section 3,
we derive an error estimates for the semi-discrete error
between the week solution and the Galerkin’s finite ele-
ment solution of (1.3) for the standard conformal finite
elements. The results of this section are based on the re-
sults in Section 2. We believe that the results established
in these sections are novel and preliminary.

2. Existence and Uniqueness of Solutions
Let W""(0,L) and W,"”(0,L) be the standard Sobo-

Copyright © 2013 SciRes.

lev spaces, where p = 4 Define

qg-1
#(o)= Ao-+B’|o-|q_2 o,where 4>0,B>0, and g > 2.
Observe that the mapping ¢(o)is one-to-one; how-
ever, its inverse cannot be written explicitly.
Since ¢ =u', Equation (1.3) can be rewritten as:

do(x)
dx

+c(x)u(x):f(x), 0O<x<L 22)

o=¢"'(u'), u(0)=0,u'(L)=p
Define the following space of admissible functions as
V={uew" (0,L)u(0)=0u'(L)=A}.  (2.3)

The weak formulation of (2.2) can then be written as
Problem I: Find u €V , such that

O C—

L 1
¢! (uw)v'dr+ [cuvdx = [ fidx Vv eW)” (0,L). (2.4)
0 0

Let us define the operator:
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L L
a(u,v) = J.¢’1 (u')v'dx+fcuvdx, (2.5)
0 0
for u,veV .Then, a(u,v) satisfies the following prop-
erty:
L L
a(u,u) = J(Iﬁ'l (u')t/dx+jcu2dx
0
L
“ [ (u’)[A¢ )+ Bl () g (u')}dx
0

Bl ) o

+jcu2dx > T[A|¢_] (u

= A||¢'l ()], - (u')"; ,forueV.
(2.6)
Also, by the definition of ¢, we have
il =g )+ Bl g7 ()]
<dlg (u),, +BH|¢’1 ()’ 2.7)

<Al @), + Ble Wl

Lemma 2.1 For given positive constants A4,B,q,L,
there exists a constant C independent of the solutions
u(x) eV of the BVP (1.3) such that

2
o7 () " <cC.
Proof: For a solution u(x)eV , we can write:

19
v=u—u,, whereu, €V is a fixed function, so that
veW,”(0,L), and since:

T¢—1 (u’)v’dx+j'cuvdx = .Ifﬁ/dx , we get:
0 0 0

a(u,u):

L
¢ (u")u'dx +Icu2dx
0

St~ ot~

L L

Sudx = fir, dx+ [ cuu,dx (2.8)
0 0

L

+I¢’1 (u’)u; dx

0
Also, by (2.6) and (2.8), we have:
-1 2
Alo™ @)
<71 IIHbIIU el (11 +llew )

o
<C+GC,u

2.9)

N sl

e ()
where G =/l s+ €2 =(If1s +llew o). and

.,
G =il -

||Lp 9’
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By the Sobolev inequality, we have (see e.g. [8,9]):
||u|| S C||u'|| L« » and therefore:

Blg (), <G +Clul, +Cle (),
Also, since by definition of ¢,

ol =48 ) Bl )7 ()]
<¢ ()], H|¢fl W)
<l @), +Bl” (I, -

we have
o ()}, <G Gl @), +Clo @}, @10

where C_’i,i =1,2,3 are positive constants. From (2.10),
we conclude that [|¢™' (u )” , is bounded and that there
exists a constant C such that |\¢'1 (u')|Lq <C, as u(x)
varies over the solution set of (1.3) in V. Therefore, the
result of the lemma is follows.

Theorem 2.1 For a given felL’(0,L),g>2,4>0
& B> 0, problem (I) has a unique solution u €U .

Proof:

The uniqueness follows from the following argument.
Let u, and u, be two solutions of (2.4). Then (since

c(x)=0):
0= [(¢7 () =07 (u)) (1~ )

=¢"'(u), o, =¢"(u;)and
-2 -2
(|0] |q o, —|0'2|q o, )(0'1 -0, ) 20,
which is well-known [10,11].
Therefore, o, =0, and u, =u,, and this establishes
the uniqueness of the solution of (2.4).

For existence, we consider the variational formulation
of (2.4) and define the total potential energy by:

J(u)= %U@L oedx + I()L cuzde —IOL fudx

since o

:%UOLW' (u')u'dx-i—j(fcuzdx}—jjfudx
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Let ¢(1)=
J(u) = %[IOL¢(u')dx+IOL cuzdx]—joL fudx.

Also we have: (p'(t):lqu(z) o]

Letting 7= g¢(y (1)) =4y (t +B|y |q y(1).
Then y=¢"(t) andJ

1=y (1)+(g-1)B[y["" ¥ (1)
Therefore, we get

%¢’1 (¢)t,then J(u) can be written as:

(67 (1)] =v'(1)= L and

A+(q—1)B|y|q 2’

1

co'(t):;{y(r) o ’BM“
- %[qu ()47 (1)]=4"(2).

Now the first variation of J can be expressed as:

digJ(u+£v)g_ { v +cuv]dx J.fvdx
:JL.[ v +cuv]dx J.fvdx
0
However:

"(1)

1 2 (¢-1)(q-2)By|"" »'
20 4+(q=0BD" (v (g1 ]
1 2 (¢-1)(a-2)B""
2 [A+ 1)B|y" ] [A+(q 1)B|y|q2J
_i[AratanEbt”]

2[A+( DB

We rewrite the total energy function as
J(u) =F (u)+F2 (u)—F(u) , where

1, , 15
”):Ejo go(u )dx, Fz(u)=5‘[cu2dx , and

(u)= ILf (x)u(x)dx. Then weak formulation (2.4) is

equivalent to Min J (u).

Since ¢"()€0, F:¥ — R is convex , and since
cel”(0,L), F,:V—>R is weekly sequentlally con-
tinuous (since {un} converges weekly in ¥ implies
that {u,} converges strongly in L’(0,L).) Also (2.6)
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and (2.7) imply the coercivity of J(u) , see, e.g., [9-11 ].
Therefore, J (u) satisfies the conditions of the theorem
of 42.7, pp. 225-226, in [9], and the existence of a weak
solution follows.

We now consider the second case when the term

N
c(x)u(x) isreplaced by > ku(x,)s(x—x,).
i1

:lik. [u(x):|2 and we only
2 P i i

need show that it is weakly sequentially continuous.
Suppose that {u,} converges weekly in ¥, then for a
vew ™ (0 L)

In this case, F,(u)

lim (vuk+vuk )dx = I viu'+vu)dx

k—o
and 1imj v, dx = J “yuds . Therefore, since
k=090 0
x)dx = L)L Vi (x)dx,

where

We have

L

dx=jo viu'(x)dx
=J iu'(x)dx:u(xl.)
lim , (uk)—llmZk [, ()]
:;k[ [u(x[)]z =Fz(u)

Therefore, Theorem 2.1 holds with the same condi-
tions for the case when c(x)u(x) is replaced by

’ik’.u(x[)é(x—x[) .

11m u, (x;)

k—o

= hmj Vi (x

3. Finite Element Error Estimates

Let ¥, =S;(0,L)cw"(0,L) be a standard conformal
finite element space of order &k (See [12-15]) satisfying
the interpolation property:

||v—Hhv||1’p < C(v) W v ew'r (O,L), 3.1

where C is a positive constant depending only on v
and L, II,v is the finite element interpolation of v,
k is the polynomial degree for the interpolation shape
functions, and % the mesh size, ||v I1 v|| the W' (0,
L) norm.

The corresponding finite element Galerkin’s finite
element approximation problem for (2.1) is:
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Problem II:
Find u, e¥, ={,e S} (0,L)|v,(0)=4,v;(L)= B},
such that
L L L
[ (uy ) vidx + [w,v,dwvydx = [ fi,dx, (3.2)
0

0 0
Vv, eV, ={v, €85 (0,L)]v, (0)=0,v; (L) =0}.

Theorem 3.1 Problem II has a unique solution.

Proof: The proof is similar to the proof of Theorem
2.1.

Lemma 3.1

For given positive constants 4, B,q, L, there exists a
constant C independent of the solutions u, €V, of
Problem II such that ||¢’l (u, )"Lq <C.

Proof:

The proof is similar to that of Lemma 2.1.

To derive finite element error estimates, let u de-
notes the exact solution of Problem I and u, the finite
element solution of Problem II.

Then

a(uu—u,)—a(u,,u—u,)

= a(u,u—Hhu)—a(uh,u—Hhu)

(¢ ()= () (' =TT, ) dx

ot—~

. (3.3)
+_[c(u—uh)(u—Hhu)dx
<|e ()97 (1)
+||c(u—uh)

Let o=¢"'(u'), and o=¢"'(u'),. Also

’ i
ol =T,

19 "M - Hhu"Lp

a(u,u—uh)—a(uh,u—uh)

(34
As aresult of (3.3) and (3.4), we get:
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2 2
2 ool

"c(u —uh)
<)o @)

u'—(Hhu)'

3.5)

19

¥4

et o, |

By Lemma 2.1, Lemma 3.1, and (3.4), we get the
following error estimates:

Je (=) +lo =l
< (=11, + 11,0, ) (3.6)
<Ch*

Therefore, by (3.6), we have established the following
convergence and error estimate yesult.

Theorem 2.3 For c(x)=> k&(x—x;), k>0, or
any c¢(x)>0,let u and wu, Be the unique solutions of
Problems I and II, respectively, then

lo =02 <Ch ., and lim|u’~u;],, =0,
andif c(x)>¢, forsome ¢,>0,or
N
c(x)=2 kS(x
i=1
ol +lo-oul, <CH?. and timb—s,, =0,

in which o=¢"'(u') and o, =¢"'(u;) stand for the
stresses.

Note that o stands for the stress corresponding to
the strain &=u".

-x,),k, >0, then

4. Conclusion

In this work, we establish existence and uniqueness of
the solution u of (2.4) in the Sobolev space U and its
finite element solution u, in a general finite element
space S| (0,L) with elastic support for a class of load
functions /. We derive convergence and error estimates
for the semi-discrete error e, (x)=u(x)-u, (x).
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