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ABSTRACT 

When designing modern cellular networks, it is challenging to account for many contradictory criteria and constantly 
changing external conditions of the networks (e.g., traffic). We need to solve multicriteria problems with high-dimen- 
sional vectors of parameters. A prerequisite to solution of these problems is correct determination of the feasible solu- 
tion set, which is directly related to the statement of optimization problem. This is a major challenge in all multicriteria 
engineering optimization problems and represents significant difficulties for the expert. In this paper, we show how to 
define the feasible solution set for cellular network optimal design problems and thus answer the fundamental question 
of where to search for optimal solutions in such problems. We use the Parameter Space Investigation (PSI) method im- 
plemented in the Multicriteria Optimization and Vector Identification (MOVI) software system and apply it to a 
mathematical model of cellular network. In addition to developing methodology for stating and solving the problem of 
multicriteria optimization of cellular network, we have found that 1) defining the feasible solution set is directly related 
to the correct statement of the optimization problem, 2) once the feasible solution set has been determined, the criteria 
convolution can be applied to find the optimal solution in the feasible solution set, 3) it is possible to perform online 
tuning of the cellular network parameters.    
 
Keywords: Feasible Solution Set; Pareto Optimal Solutions; Parameter Space Investigation (PSI) Method; Cellular 

Networks; Multicriteria Problems 

1. Introduction 

One of the distinguishing characteristics of cellular net- 
works is difficulty of their design given a large number 
of contradictory criteria and constantly changing external 
conditions of the networks (e.g., traffic). In addition to 
multiple criteria, we deal with vectors of parameters of 
high dimensionality (hundreds to thousands). Optimal 
design of cellular networks is at the interface of design 
and management problems, and there have hardly been 
any attempts to construct a feasible solution set for prob- 
lems of such type. The feasible solution set is essential 
because it contains a Pareto set of optimal solutions, 
none of which can be improved along all quality criteria 
simultaneously. In addition to the difficulties in deter- 
mining the feasible solution set, choice of the best solu- 
tion from a Pareto set is also non-trivial when this set 
contains a large number of solutions. In some cases, 
these difficulties can be mitigated by applying criteria 
convolution as described below. However, in order to  

apply convolutions correctly, one has to define feasibility 
of obtained solution first, which makes a proper con- 
struction of the feasible solution set the key factor. In this 
work, we consider applying the Pareto Space Investiga- 
tion (PSI) method as an attempt to improve existing 
techniques of network design and management by con-
structing and analyzing the feasible solution set. The goal 
of this paper is to show feasibility and capabilities of the 
PSI method for solving problems of optimal design of 
cellular networks.    

Most existing works on cellular network optimization 
that deal with multi-criteria problems transform them 
into single-objective variant using some scalarization 
techniques [1,2], weighted sum being the most popular 
approach. Melachrinoudis and Rosyidi [3] use simulated 
annealing algorithm to optimize weighted sum of three 
criteria (call quality, demand coverage and total cost) by 
varying location, power and antenna height of base sta- 
tions. Galota et al. [4] choose positions of base stations 
to optimize weighted sum of three criteria (number of 
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supplied demand nodes, ongoing costs, and cost of in- 
tra-cell interference) subject to constraint on construction 
costs. Amaldi et al. [5] aim at maximizing total covered 
traffic and minimizing total installation costs by forming 
weighted sum of these criteria; two-stage Tabu Search 
algorithm is used starting from solution provided by 
randomized greedy procedure. Hurley [6] proposes 
framework based on Simulated Annealing for optimiza- 
tion of objective function that is sum of five criteria 
(coverage, site cost, traffic, interference, and handover). 
Gerdenitsch [7] uses sum of number of served users, 
coverage, and soft handover as objective function for the 
problem of tuning transmit power and antenna downtilt 
using Genetic Algorithm. Zhu and Buot [8] propose heu- 
ristic algorithm for online network optimization based on 
estimating linear model between KPIs (key performance 
indicators) and parameters (expressed in form on sensi- 
tivity matrix) from a-priori simulation results and KPI 
measurements. Weighted sum of five KPIs is used as 
optimization process performance index. The approach 
allows specifying KPI targets.  

In few works ε-constraint technique is utilized: one of 
criteria is selected to be optimized, and others are con- 
verted into constraints [1,2]. One of network optimiza- 
tion problems studied by Siomina [9] is example of such 
approach: total network load (total pilot power) is mini- 
mized subject to coverage constraint. Other approaches 
not based on some form of scalarization (weighted sum 
or ε-constraint) are much less common. Jedidi et al. [10] 
argue that it makes sense to consider cells overlap and 
cells geometry as criteria for real-life network optimiza- 
tion. They aim at finding the whole Pareto front of this 
bi-criteria problem using a version of Multiobjective 
Evolutionary Algorithm. It is well known that such algo- 
rithms are quite effective for two or three criteria prob- 
lems, as higher number of criteria their applicability is an 
open question [11]. To the best of our knowledge, most 
commercial cellular network planning and optimization 
tools are also based on some form of scalarization such 
as weighted sum [12,13].   

2. Problem Formulation 

In this paper, we are concerned with multicriteria opti- 
mization problems arising during planning and operation 
of cellular mobile network. Mobile network provides 
service in area divided into cells, each served by trans- 
ceiver of base station that has several tunable parameters 
affecting network performance like transmit power, an- 
tenna orientation, associated radio frequency, parameters 
of radio resource management algorithms, etc. Typically 
these parameters are configured by experts (possibly with 
the help of network planning and optimization tools) 
during network planning stage and kept fixed for a long 
period of time. Cellular network demand and environ- 

ment are ever changing during day, and such fixed con- 
figuration (usually targeted at peak network load-busy 
hour) can become not well suited for current network 
conditions. It is also possible to change some of cellular 
network parameters online trying to adapt to changing 
conditions. Thus network optimization can be performed 
in offline (with full set of parameters available for con- 
figuration and lots of time for decision making) or online 
(with restricted set of parameters available and limited 
time for decision making) mode. We propose using of 
the Parameter Space Investigation method in both of the 
network optimization modes. 

Reference signal transmit power and antenna electrical 
downtilt are one of the most important parameters that 
have great impact on different network KPIs such as ca- 
pacity and coverage. Moreover, these two parameters can 
be changed remotely and automatically as opposed to 
manual and costly reconfiguration of some other impor- 
tant parameters (such as antenna azimuth or mechanical 
downtilt). This is the motivation for using the above two 
parameters for our study.   

Whole network area is divided into pixels using some 
grid (typical size is 50 m  50 m), each pixel is charac- 
terized by receive power level from each cell in network 
and mean number of users in it. The former aggregates 
into signal propagation maps (one for each cell), and the 
latter into traffic map (traffic maps can be differentiated 
by type of service). Reference signal received power is 
reference signal transmit power times channel gain be- 
tween cell and pixel, influenced by antenna downtilt of 
this cell. Increasing transmit powers of all cells and 
pointing antennas up (corresponds to small downtilt val- 
ues), we increase coverage in network (received power in 
each pixel becomes high enough to connect to the cell 
with strongest signal) but at the same time we increase 
interference between cells, which effectively leads to 
network capacity degradation. Trade-off between these 
objectives is not obvious, and needs to be carefully stud- 
ied. It is hard to say beforehand what KPI values are 
achievable [12-15].   

2.1. System Model 

Let us denote by c = 1, …, С the set of cells serving 
planning area represented by a grid of pixels. Signal 
propagation (averaged in time and frequency) from each 
cell c to each pixel m is characterized by power gain 
gmcAmc, composed of isotropic gain gmc and antenna gain 
Amc. Antenna gain Amc depends on electrical downtilt tc of 
antenna associated with cell c and direction (given by 
azimuth mc and elevation mc angles) between this an- 
tenna and pixel m:    , ,mc c c c mc c c mcA G H t V t  , 
where Gc is cell’s c antenna maximum gain,  ,cH    
and  ,cV    are tabulated functions of horizontal and 
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vertical cell c antenna patterns [14].  
Reference Signal Received Power (RSRP) Rmc from 

cell c in pixel m is calculated as  

mc c mc mcR P g A ,  

where Pc is reference signal transmit power of cell c. 
Each pixel m is associated with cell c with largest re- 

ceived power Rmc among all other cells, for such pixel– 
cell pair m, c we set association indicator amc equal to 1. 
Signals from all other cells interfere with useful signal 
from serving cell. One of the most important link quality 
indicators is Reference Signal Signal-to- Interference and 
Noise Ratio (RSSINR) given by  

2
\{ }

mc
mc

mdd c

R

R






 

,  

where 2  is noise power. 
Each cell has frequency resources (resource blocks in 

LTE) that it allocates between served users. We use defi- 
nition of cell load as long-term average percentage of 
utilized frequency resources [16]. Cell load depends on 
amount of traffic requested by served users and their link 
capacities. We characterize long-term average requested 
traffic in pixel m using Tm—average number of users in 
this pixel requesting some service, and D—bitrate demand 
of this service. Load of cell c required to serve its users is 
estimated as    
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where Wc is bandwidth of frequency resources available 
in cell c. Here we used Shannon formula for link capaci- 
ties.   

2.2. Performance Criteria 

Call Drop and/or Block Rate (CDBR) performance crite- 
rion CDBR is determined by cell loads and number of 
served users as    
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cellular network operator has well-defined targets that 
should be achieved for RSRP-covA, RSRP-covT, and 
CDBR criteria, and additionally we would like to maxi- 
mize/minimize the following criteria shown in Table 1.  

In our examples, we consider network consisting of 50 
cells with 100 variables. Variables are transmit power pc 
and electrical downtilt tc, c = 1, ..., 50. The considered 
network with traffic map is shown in Figure 1. In the  
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Figure 1. Map of cellular network used in examples. Color 
intensity corresponds to traffic map (ranging from blue– 
small number of users, to red–large). Base stations are lo- 
cated at white dots, each having three antennas (one an- 
tenna serves one cell). Short black line segments represent 
horizontal direction of corresponding antennas. Numbers 
are cell indices. Grey lines are cell borders. For example 
cells with indices 10, 11, and 12 are served by transceivers 
of one base station, antenna of cell 10 is directed towards 
East, 11—Northwest, and 12—Southwest. 

Copyright © 2013 SciRes.                                                                                 OJOp 



R. STATNIKOV  ET  AL. 

Copyright © 2013 SciRes.                                                                                 OJOp 

56 

 
Table 1. Criteria names, meaning and objective. 

Criterion Name Meaning Objective 

1 CDBR Call Drop and/or Block Rate min 

2 RSRP-covA Percentage of RSRP (Reference Signal Received Power) covered area max 

3 RSSINR-covA Percentage of RSSINR (Reference Signal Signal-to-Interference and Noise Ratio) covered area max 

4 RSRP-covT Percentage of RSRP covered traffic max 

5 RSSINR-covT Percentage of RSSINR covered traffic max 

6 Mean-SINR Mean SINR (Signal to Interference and Noise Ratio) [dB] max 

7 M-load Mean required cell load min 

 
There also exist particular performance criteria. It is 

desired, all other things being equal, these criteria, de- 
noted by  Φ , 1,.., ,k     take the extreme values. 
For simplicity, we assume that     are to be mini- 
mized.  

first problem (Task 1), 0  pc  40 W, 0˚  tc  10˚ of 
each cell, c = 1, ..., 50. In the second problem (Task 2),  
0  pc  50 W. The ranges of change for the electrical 
downtilt are kept unchanged by 0˚  tc  10˚ of each cell, 
c = 1, ..., 50. Electrical downtilt constraints are deter-
mined by capabilities of antennas serving each cell. 
Transmit power constraints are also due to hardware 
limitations (power amplifier) and electromagnetic radia-
tion regulations.   

The constraints (1) single out a parallelepiped  in the 
r-dimensional design variable space (space of design 
variables).   

In order to avoid situations, in which the expert re- 
gards the values of some criteria as unacceptable, we 
introduce the criteria constraints    

In what follows we will show how to construct the 
feasible solution set for the above set of performance 
criteria.    , 1,.., k      ,  (3) 

3. Construction of the Feasible and Pareto 
Optimal Solution Sets 

where **  is the worst value of the criterion     
to which the expert may agree. The choice of     is 
discussed in what follows.  3.1. Generalized Formulation of Multicriteria 

Optimization Problems The criteria constraints differ from the functional con- 
straints in that the former are determined when solving a 
problem and, as a rule, are repeatedly revised. Hence, 
unlike lC  and lC , reasonable values of   cannot 
be chosen before solving the problem.   

We discuss here a mathematical formulation that can be 
applied to the majority of engineering optimization 
problems [17-23]. In the general case, when designing a 
system, one has to take into account the design variable 
constraints, the functional constraints, and the criteria 
constraints.  

Constraints (1)-(3) define the feasible solution set D. 
If the functions fl() and     are continuous in , 

then the sets G and D are closed.   
Now let us formulate one of the basic problems of 

multicriteria optimization. It is necessary to find such a 
set P  D for which   

The design variable constraints (constraints on the de-
sign variables) have the form: 

   (1) , 1, ,j j j j r       .

,



   min
D

P





    (4) 
The functional constraints on functional dependences 

fl() may be written as follows: 

  (2)   , 1, ,l l lC f C l t    
where         1 2, , ..., k         is the crite- 
rion vector and P is the Pareto optimal set. 

In other words, a point , is called a Pareto op- 
timal point if there exists no point 

0 D 
D   such that 

   0
      for all  = 1, …, k and 
   0

0 0      for at least one   {1, …, k}. A set 
P  D is called the Pareto optimal set iff it consists of 
Pareto optimal points.   

where l and l  are, respectively, the lower and the 
upper admissible values of the quantity fl(). Conditions 
(2) often represent compliance with standard regulatory 
requirements to the system. As a rule, vectors of design 
variables 

r

C C

, 1 2 ,...,     are calculated using uni- 
formly distributed sequences. In the present case, a ran- 
dom number generator was applied because of high di- 
mensionality of the design variable space.  

The Pareto optimal set plays an important role in vec- 
tor optimization problems, because it can be analyzed 
relatively easier than the feasible solution set and be- 
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cause, by definition, the optimal vector always belongs to 
the Pareto optimal set, irrespective of the system of pref- 
erences used by the expert for comparing vectors be- 
longing to the feasible solution set.   

Very often, the experts do not encounter serious diffi- 
culties in analyzing the feasible solution set and the op- 
timal set and in choosing the most preferred solution. 
They have a sufficiently well-defined system of prefer- 
ences. Moreover, the aforementioned sets usually contain 
a small number of elements [17,23].   

3.2. The PSI Method 

To formulate and solve engineering optimization prob- 
lems, the Parameter Space Investigation (PSI) method 
has been developed. According to this method, in the 
process of dialogues with a computer, the expert deter- 
mines the criteria constraints and performs multicriteria 
analysis. The PSI method gives the expert valuable in- 
formation on the advisability of revising various criteria, 
functional, and design variable constraints with the aim 
of improving the basic criteria. The expert sees what 
price one pays for making concessions in various criteria, 
i.e., what one loses and what one gains. In other words, 
the expert corrects initial problem statement while solv- 
ing it, analyses the feasible solution set, and then makes a 
decision. A systematic and comprehensive description of 
the method can be found in [17,21,23].   

After analyzing P (Pareto optimal set), the expert finds 
the most preferred solution 0( )  . Typically, for the 
problems under consideration, experts do not have seri- 
ous difficulties in analyzing the Pareto optimal set and in  

choosing the most preferred solution. Thus, the PSI 
method has proved to be a very convenient and effective 
tool for the expert, primarily because this method can be 
directly used for the statement and solution of the prob- 
lem in an interactive mode. The PSI method is imple- 
mented in the Multicriteria Optimization and Vector 
Identification (MOVI) software system [17].   

It is also worth mentioning that while there are many 
optimization methods, the PSI method more fully ad- 
dresses characteristics of real-world engineering optimi- 
zation problems (e.g., multiple criteria, difficulties in 
determining constraints on design variables, functional 
dependences and criteria) and allows the expert to simul- 
taneously formulate and solve them in an interactive 
mode.   

4. Application of the PSI Method to 
Improving the Network 

The PSI method has been applied to the mathematical 
model of the network described above. Recall that in the 
above two examples, we have 50 cells with 100 variables 
and the number of criteria is seven. As test examples, we 
solve Task 1 and Task 2, that differ in maximum allowed 
transmit power—40 W and 50 W, respectively.  

4.1. Test Tables for Task 1 (40 W)  

As follows from the PSI method, the criteria constraints 
should be determined first. We have constructed the test 
table after 10,000 tests, see Table 2. The list of criteria, 
the best and worst values of criteria are shown in the  

 
Table 2. Fragment of the tеst tables (Criteria that maximized and minimized are denoted with  and , respectively). 

CDBR ↓ RSRPcovA ↑ RSSINRcovA ↑ RSRPcovT ↑ RSSINRcovT ↑ MeanSINR ↑ MeanLoad ↓ 

Best 0.01074 Best 0.97573 Best 0.60156 Best 0.97532 Best 0.62937 Best 0.94030 Best 0.32277

Worst 0.17222 Worst 0.68947 Worst 0.39751 Worst 0.71008 Worst 0.40852 Worst 0.52068 Worst 0.54562

Vector# Value Vector# Value Vector# Value Vector# Value Vector# Value Vector# Value Vector# Value

                     
8839 0.06997 2814 0.89004 166 0.53004 858 0.91019 8986 0.55007 580 0.75007 6293 0.38996

5500 0.06998 9482 0.89004 4437 0.53000 993 0.91015 7222 0.55007 1397 0.75007 3835 0.38996

4806 0.06999 5614 0.89004 8962 0.53000 5693 0.91011 7415 0.55005 5386 0.75007 836 0.38998

7415 0.07000 1259 0.89004 6618 0.53000 6551 0.91010 5896 0.55004 3324 0.75006 129 0.38998

8127 0.07000 9952 0.89000 5982 0.53000 4405 0.91010 2046 0.55002 5346 0.75001 920 0.38999

8556 0.07000 4299 0.89000 3288 0.53000 4575 0.91003 6578 0.55001 2998 0.75000 9311 0.38999

85 0.07000 5142 0.88996 1710 0.52996 7821 0.90999 7436 0.54999 8530 0.74998 5434 0.39000

3377 0.07001 1751 0.88996 347 0.52991 7426 0.90996 6051 0.54999 8804 0.74997 5063 0.39001

5038 0.07001 5985 0.88996 1260 0.52991 2453 0.90994 2943 0.54998 4952 0.74996 7360 0.39002

9599 0.07002 1077 0.88996 7500 0.52991 7408 0.90989 1417 0.54998 6012 0.74994 7427 0.39003

2643 0.07003 4531 0.88991 6774 0.52991 7284 0.90987 8178 0.54997 6711 0.74994 5420 0.39004
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first, second and third rows, respectively. As a result of 
the dialogues of computer with the expert, the criteria 
constraints (0.07000; 0.89000; 0.53000; 0.91003; 0.55001; 
0.75000; 0.38999) have been determined, see Table 2. 
We have obtained 256 feasible solutions, including 50 
Pareto optimal solutions. Since these constraints met the 
expert’s requirements, they have been accounted for in 
all further studies. These constraints were identical in 
Task 2 (50 W), where we have conducted 10,000 tests 
and obtained 2867 feasible solutions, including 95 Pareto 
optimal solutions.    

4.2. Criteria Histograms for Task 1 

Criteria histograms are constructed on the basis of test 
tables and allow us to make a decision based on the ob- 
tained values of the criteria vectors and their significance 
[17,23]. In particular, the histograms allow us to correct 
the initial problem statement and reveal criteria relations. 
Histograms show Pareto optimal vectors for all criteria 
(e.g., see Figure 2). For each criterion, a horizontal line 
is assigned, along which vertical bars are plotted. Each 
bar corresponds to a vector from the Pareto optimal set. 
The location of each bar is defined by a corresponding 
criterion value for this vector. Criterion name as well as 
the worst and best criterion values are displayed to the 
left and to the right of the corresponding horizontal band, 
respectively.   

Figure 2 shows locations of all 50 Pareto optimal 
vectors within obtained constraints on their values. Each 
of 50 solutions is uniquely colored. As can be seen, im- 
proving some criteria leads to deterioration of the others. 
For example, Pareto optimal solution #2544 is the 

best according to the fourth criterion (RSRP- , 
2544
4Φ  = 0.9708) and one of the best according to the 

second criterion (RSRP A, 2544
2Φ  = 0.9535) how- 

ever it is the worst according to the seventh criterion (M- 
2544
7Φ  = 0.3868) and one of the worst according to 

the third (RSSINR-covA 4
3  = 0.5355), fifth 

(RSSINR-covT,  = 0.5533), and sixth (Mean- 
SINR,  = 0.7692) criteria, (see Figure 2). These 
histograms demonstrate complex relationships that exist 
between the criteria. 

covT

-cov

, 
load, 

254Φ
2544
5Φ

2544
6

4.3. Search for Optimal Solutions by 
Optimization of the Criteria Aggregate  

In our case, the biggest challenges for an expert included 
the choice of a preferred solution from the Pareto optimal 
set: there were 50 and 95 Pareto optimal solutions in 
Task 1 and Task 2, respectively. As mentioned above, an 
expert defined an objective function as an aggregate of 
criteria    

7

aggr
1

,i i
i




    

where 1 = 0.2, 2 = –0.2, 3 = –0.1, 4 = –0.2, 5 = –0.1, 
6 = –0.1, and 7 = 0.1. The search for optimal solution 
was performed on the feasible set which is defined by 
constraints on parameters and criteria. For Task 1, the 
minimal value of the criteria aggregate (see [24]) was 
–0.6226, with the vector of criteria (0.0072; 0.9804; 
0.6803; 0.9827; 0.7207; 1.1813; 0.2676). For Task 2, the 
minimal value of the criteria aggregate was –0.6262 with 
the vector of criteria (0.0108; 0.9748; 0.6825; 0.9819; 
0.7275; 1.2209; 0.2612). 

 
 2544

0.0510

CDBR CDBR
0.0664 0.0142

 2544

0.9535

RSRPcovA   RSRPcovA
0.8905 0.9612

 2544

0.5355

RSSINRcovA   RSSINRcovA
0.5323 0.5893

 2544

0.9708

RSRPcovT   RSRPcovT
0.9101 0.9708

 2544

0.5533

RSSINRcovT   RSSINRcovT
0.5504 0.6251

 2544

0.7692

MeanSINR   MeanSINR
0.7510 0.9093

 2544

0.3868

MeanLoad   MeanLoad
0.3868 0.3319

 

Figure 2. Criteria histograms. Location of the vector #2544. See text for details.  
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5. Conclusions 

this work are three-fold. First, defin-

(National Re- 
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may reduce the time required for the analysis. This 
process can be automated. 
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