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ABSTRACT 

This paper is concerned with the valuation of options in jump diffusion models. The partial integro-differential equation 
(PIDE) inherent in the pricing problem is solved by using the Mellin integral transform. The solution is a single integral 
expression independent of the distribution of the jump size. We also derive analytical expressions for the Greeks. The 
results are implemented and compared to other approaches. 
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1. Introduction 

Pure diffusion models are in most cases not flexible 
enough to fit the empirical observations concerning the 
movements of stock prices. Jump diffusions are a natural 
extension of pure diffusions since they are able to ac- 
count for large and sudden changes. This is accomplished 
by adding a second source of uncertainty into the diffu- 
sion dynamics. The second source is discontinuous and 
models the jumps in the underlying asset. Also, pricing 
of options in jump diffusions is consistent with the vola- 
tility smile often observed in financial markets. 

In his seminal paper from 1976 Merton [1] introduced 
a first jump diffusion process for modeling the behavior 
of stock prices. Since his work jump diffusions have be- 
come a very popular tool in modeling equity, foreign 
exchange and commodity markets. Under the assumption 
of log-normally distributed jumps, Merton solved the 
European option pricing problem explicitly in closed- 
form in terms of an infinite series of Black-Scholes 
prices. Other popular pure and non-pure jump diffusion 
processes are those proposed in [2-6] among others. Kou 
[7] proposed a double exponential jump-diffusion model 
where jump sizes are double exponentially distributed. 
The model allows for an analytical pricing of some path- 

dependent options, such as continuously monitored bar-
rier and lookback, and perpetual American options [8]. In 
[9], pricing formulas in Kou’s model for double (single) 
barrier and touch options with time-de- pendent rebates 
are derived applying Laplace transforms. 

In many cases, however, an explicit closed-form 
valuation of options in jump diffusions is not possible 
and one is restricted to numerical procedures. These pro- 
cedures rely on the fact that prices of derivatives in a 
jump diffusion environment satisfy partial integro-dif- 
ferential equations (PIDEs). The methods discretize the 
asset-time domain and use either binomial trees, finite 
difference or finites element methods to solve the PIDEs. 
[10], for instance, uses an explicit multinomial tree based 
approach for the valuation. [11] develop another pricing 
procedure based on a lattice framework. Further recent 
developments concerning the numerical evaluation in- 
clude the articles [12-15]. 

The application of Mellin transforms for the purpose 
of option pricing was firstly introduced in [16] in the 
geometric Brownian motion economy. It was extended to 
the stochastic volatility model of Heston by Frontczak 
(2011) [17]. This paper extends the Mellin integral trans- 
form framework further to the valuation of options in 
jump-diffusion models. It is organized as follows: Chap- 
ter 2 reviews the problem formulation. Chapter 3 pro- 
vides a solution for European derivatives as a single 
integral. Also simple formulas for the Greeks are derived. 
Although our solution is general in the sense that it does 
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not depend on the distribution of the jump size, we 
choose the log-normal jump-diffusion model as an ex- 
plicit example and show that our solutions for plain va- 
nilla and digital puts may be rewritten as infinite series of 
Black-Scholes-Merton prices. Some numerical results are 
presented in Chapter 4. Chapter 5 concludes the paper 
and indicates possible further research projects. 

2. Problem Statement 

Let  be the price of a dividend paying stock at time 
. The dividend is paid continuously at a rate  and is 

proportional to the price of the stock. The evolution of 
the stock is affected by two sources of uncertainty: a 
continuous part modeled as a standard Brownian motion 

 and a discontinuous part modeled as jumps with a 
Poisson arrival process . Therefore, under the 
physical probability  the dynamics of the stock are 
given by 

 S t

 

t q

W t
 N t



 
         

d
d d 1 d

S t
q k t W t Y N t

S t
  


      ,  (2.1) 

with initial value    0 0,S    and where t   

0lim t    is the time instant before . The parameters t
  and   are the instantaneous drift and volatility, 
respectively. The process  N t  is a Poisson process 
with intensity   and 

   
1   with prob.  

d
0   with prob.  1 ,  

dt
N t

dt




  
 

and  is the proportional change in the stock price. 
We also assume that the processes , 

1Y 
 W t  N t  and 

 are independent. For  1 2, ,Y Y 0   the jump diffu- 
sion process in (2.1) becomes a geometric Brownian mo- 
tion as assumed in the Black-Scholes and Merton model. 
In order to guarantee that the discounted process is a 
martingale, we have 

     
0

1 1k E Y Y f Y Y


    d ,       (2.2) 

where  f Y


 is the probability density function of Y  
and E   is the expectation operator. It is well known 
that markets with jump diffusions are not complete. 
Hence, an equivalent martingale measure  is not 
unique. Nevertheless, if we assume that the jump risk is 
diversifiable as has been done in [1] we can consider the 
risk-neutral dynamics of  



S

 
       

d
d d 1 d

S t
r q k t W t Y N t

S t
 


        ,  (2.3) 

where   is replaced by the riskless interest rate r . 
The solution to the process above equals 

   
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Standard arguments show that a European-style de- 
rivative written on  and time t  with price  S

 ,F F S t  must solve the backward in time PIDE: 
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     (2.4) 

for all  0,T   and where subscripts denote partial 
derivatives. For a derivation see [1,18]. The terminal 
value of the derivative equals   , F S T g S , where 
 g   is the payoff function of the contract under con- 

sideration. For a plain vanilla European put with price 
 t,EP S  we have 

    max ,0 ,g S X S T             (2.5) 

where X  is the strike price of the put and  S T  de- 
notes the terminal stock price1. For the jump size distri- 
bution different distributions are commonly used in the 
financial literature. Prominent candidates are among oth- 
ers: 
 Log-normally distributed jumps ([1]): The probability 

density function of Y  is given by 

 
 2

2

ln1

2

2

1
e

2π

Y

f Y
Y










 ,            (2.6) 

where , and > 0Y   and   are constants. 
 Double exponentially distributed jumps ([7]): The 

probability density function of Y  is asymmetric and 
equals 

     
1 21 1

1 21 01 1Y Yf Y p Y q Y    
  < <1 ,     (2.7) 

where , > 0Y 1 > 1 , 2 > 0, , 0p q   with 1p q  . 
The restriction 1 > 1  guarantees that   < .tE S     
 Gamma distributed jumps: In this case  f Y  equals 

 
 

11
e ,

Y

f Y Y 
 





           (2.8) 

where , , > 0Y    and     denotes the gamma func- 
tion. 
 One-sided exponentially distributed jumps2: The 
probability density function  f Y  may be seen as a 
special case of the probability density function of gamma 

1If F  is a digital European put option,    , D ,F S t P S t  the pay-

off function equals    1 1
S XT

g S


  , where  is a prespecified 

level. 

X

2This process was suggested in [19] to incorporate jumps into the sto-
chastic volatility process. 
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distributed jumps with 1  . Therefore 

  1
e .

Y

f Y 




                (2.9) 

The particular choice of the distribution of  is cru- 
cial in order to solve the problem analytically in the 

-domain. The only two models where Y  is as- 
sumed to be continuous and that have been solved ex- 
plicitly in terms of an infinite series are to the best of our 
knowledge the Merton (1976) model and the model of 
Kou (2002). 

Y

 ,S t 

3. Main Results 

The following theorem characterizes the solution to (2.4). 
The functional form of the solution is simple and is ex- 
pressed as a single integral. 

Theorem 3.1 The solution of the PIDE (2.4) is given 
by 

      i

i

1
, e

2π

c H T t

c
F S t S

i
 d ,  

   

 
      (3.1) 

with ,  S S t i ,0 <c y c  
 ,

,  is the imaginary  i

unit,   F T     and where 

       

 

21
1 1

2
,

H r

q G

     

  
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 


    (3.2) 

with 

    .G E Y E Y                   (3.3) 

In particular, for the European put     equals3 

   
1

,
1

X 

 
 






                (3.4) 

Proof: For a locally Lebesgue integrable function 
, the Mellin transform   ,f x x    ,M f x   with 

transformation variable   is defined by the rela- 
tion 

       1

0
, : d .M f x f f x x x 

     

Conversely, if  f   is a continuous, integrable 
function, then the inverse of the Mellin transform is 
given by 

      i1

i

1
d .

2πi

c

c
f x M f f x   

  

 
     

Let    , , , M F S t F t    denote the Mellin trans- 
form of a financial derivative with price  , F S t . Since 
the Mellin transform is a linear integral operator it fol- 
lows that the PIDE from (2.4) can be transformed into a 

homogeneous ordinary differential equation (ODE) of 
the form 

     , ,tF t H F t   0,             (3.5) 

where 

     

 

21
1 1

2

1 .

H r

q k E Y 
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   

   

     

      (3.6) 

The solution to this ODE equals 

      , e ,H T tF t      

with    ,F T    . Recalling that  1k E Y   the 
expression for  H   follows immediately. The final 
expression for the price follows from the inversion theo- 
rem for Mellin transforms.  

The previous theorem gives the analytic solution to 
(2.4) in a general manner, i.e. without specifying the dis- 
tribution of Y . The solution has a simple functional 
form and prices are obtained very quickly using standard 
quadrature routines. It is also flexible to account for dif- 
ferent jump size distributions and types of derivatives by 
specifying  G   and    , respectively, for the con- 
tract under consideration. To give explicit examples, we 
state the expressions for  G   in the four special cases 
for  discussed above: Y
 Log-normally distributed jumps ([1]): Since for each 

real or complex s  we have 

2 21

2e
s ssE Y

 
    ,                (3.7) 

it follows that  
21

21 e 1k E Y
 

     and 
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 Double exponentially distributed jumps ([7]): We 
have 

1 2

1 2

,
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E Y   
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with   20 < Re <  . Therefore  
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2
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1

1
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1
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
        (3.10) 

3For a digital put we have   X 

 


 .  Gamma distributed jumps: In this case  E Y   
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and  1k E Y    1.  From the identity 

     1

0

1
e , Re > 0,Rea bx

a
x dx a a b

b

     > 0  

it follows that 

   
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  


  

 


        (3.11) 

with  0 < Re   . 
 One-sided exponentially distributed jumps: Here 

 1 1k E Y     , and 

   1G  ,               (3.12) 

with  0 < Re < 1 . 
In each of the above cases, the price  ,F S t  can be 

determined easily by a single integration. Another ad- 
vantage of the approach is that hedging parameters, 
commonly known as Greek letters, are easily determined 
analytically. Popular Greeks widely used for risk man-
agement purposes are the delta, the gamma, and the vega 
of a contract4. The results for Greeks are summarized in 
the next proposition. 

Proposition 3.2 Independently of the distribution of 
the jump size Y , the analytical expressions for the delta, 
gamma, and vega can be stated as follows: 
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where  and > 0c  H   is given in Equation (3.2). In 
particular if  ,F S t  is a European plain vanilla put 
option the Greeks are determined as 
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Proof: The expressions follow directly for Theorem 
3.1 since we can differentiate under the integral sign. For 
the Greeks of a plain vanilla put one uses the Equation 
for     from (3.4) and simplifies.  

Similar to the derivative’s price the Greeks are char- 

acterized as a single integral which may be evaluated 
easily. Furthermore, hedge parameters for a range of dif-
ferent types of derivatives may be obtained by specifying 
the functional form for    . 

We complete this section by showing explicitly that 
Equation (3.1) with the special choices of  ,F S t   

 ,EP S t  and log-normally distributed jumps is equiva-
lent to Merton’s infinite series solution for a European 
put. 

Proposition 3.3 If   , E ,F S t P S t  and jumps are 
distributed log-normally with parameters   and  , 

 2,Y LN   , then (3.1) is equivalent to Merton’s 
solution which is formulated as an infinite series of BSM- 
prices: 
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where  * *, , , , , ,BSMP S X r q T t  denotes the European 

put price due to Black, Scholes, and Merton and equals 
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 N x  is the cumulative standard normal distribution 
function and the adjusted parameters are given by  
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We will need the following Lemma. It gives the ana- 
lytical expressions for two specific Mellin transforms. 

Lemma 3.4 Let  p t  be a function of  (time) and 
the functions 

t
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  .  (3.21) 4Others are for instance the theta or the rho. They are determined in the 

same manner as outlined in the text and therefore omitted. 
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Then 

     2
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and 
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Proof: Using the definition of Mellin transforms, we 
have that 
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where  is a log-normally distributed random vari- 
able with mean 0 and variance . The statement 
follows directly from (3.7). Analogously we have for 

)(tS



 2 p t

2 ,f S t  after interchanging summation and integration 
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and the integral can be viewed as the  -th moment of a 
log-normally distributed random variable with mean 

n  and variance 2n . Therefore 
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and the assertion follows.  
Now we are going to prove Proposition 3.3. 
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where 
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Let     1, ,g S t M g t  . Then it follows from 
Equations (3.20) and (3.22) that 
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For  2 ,g S t , we apply the convolution theorem for 
Mellin transforms and (3.21) and (3.23) to get 
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The transformation ez   gives 
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with 
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where  is defined in (3.26). From [20] p. 337, a
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Using this result and simplifying yields after some al- 
gebra 
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One observes that the expression for the summands in 
the Equation for 2 , g S t  is also valid for . Since 0n 
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We arrive at the more compact form 
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Merton’s solution follows now from the identity 
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where  and > 0c     is given in Equation (3.4). 
Since we have been able to derive an analytical expres- 
sion for the inverse Mellin transform of  , g t , con- 
volution allows to write for the European put price 
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The integrals above can be evaluated straightforwardly. 
Standard transformations convert both integrals into 
normal integrals. We get 
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with the temporary quantities 
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Finally, observing that 
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Merton’s solution follows immediately.  
Corollary 3.5 The price of a European digital put 
 ,DP S t  in Merton’s model equals 
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where the modified parameters * *, ,r   and *  are 
defined in Proposition 3.3. 

Proof: We have 
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with  ,g S t  given in (3.33). The evaluation of the in- 
tegral produces the result.  

4. Numerical Results 

This section presents the numerical results from imple- 
menting the analytical solutions derived in this paper. We 
start with options in the log-normal model of Merton 
(1976). The input parameters can be found in Table 1. 

The parameters were found in [12] and are based on a 
calibration using European options on the S&P 500 stock 
index. Prices are determined for three different stock 
price levels (in-, out-, and at-the-money options). The 
solution based on Mellin transforms is given in Theorem 
3.1. The integral is evaluated numerically using Gauss- 
Lobatto quadrature. To get some information about the 
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convergence of the results we truncate the limits of inte-
gration  gradually at ic   i25c  , , i50c  i100c  , 
and  and choose i200c 2c  . We also compute the 
“exact” solution using the infinite series representation 
with . Tables 2 and 3 show the results for the 
log-normal model. 

30n

The next table summarizes the results for a digital put. 
Our first and most important finding is that the frame- 

work proposed in this article is able to produce highly 
accurate prices for both types of derivatives. Even if the 
integration limits are truncated at  the results are 
correct up to the third/fourth position after decimal point 

i50

 
Table 1. Input parameters used for the numerical evalua- 
tion of the integral for European options in Merton’s 
model. 

Input Parameters 

X = 100 λ = 0.10 

r = 0.05 q = 0.00 

σ = 0.15 T − t = 0.25 

μ = −0.90 δ = 0.45 

 
Table 2. Prices of European put options in Merton’s model 
using the infinite series representation with n = 30 and the 
integral solution from Theorem 3.1. 

 S = 90 S = 100 S = 110 

Exact Solution 

n = 30 9.28541807 3.14902574 1.40118588 

Equation (3.1) 

y = 25 9.24635615 3.18309453 1.37553078 

y = 50 9.28542920 3.14905225 1.40120467 

y = 100 9.28541807 3.14902574 1.40118588 

y = 200 9.28541807 3.14902574 1.40118588 

 
Table 3. Prices of European digital put options in Merton’s 
model using the infinite series representation with n = 30 
and the integral solution from Theorem 3.1. 

 S = 90 S = 100 S = 110 

Exact Solution 

n = 30 0.85489802 0.38715332 0.07792321 

Equation (3.1) 

y = 25 0.85108779 0.39006445 0.07835271 

y = 50 0.85491701 0.38716273 0.07791555 

y = 100 0.85489802 0.38715332 0.07792321 

y = 200 0.85489802 0.38715332 0.07792321 

in each of the stock price scenarios. For  the 
prices coincide up to the eighth decimal place and there 
are no noteworthy differences between the two frame- 
works. 

100y 

We conclude the numerical analysis by considering 
put options in Kou’s double exponential model. The 
“exact” solution in form of an infinite series can by 
found in the original article of Kou. The input parameters 
are the same as above except for the jump component: 

1 23.0465, 3.0775    and . Table 4 
shows the results for the double exponential model. 

0.3445p 

Similar to the log-normal model, the numerical appro- 
ximation of the integral solution produces satisfactory 
results. The convergence rate is comparable to the pre- 
vious model. 

In summary, the numerical experiments carried out 
demonstrate that the new framework besides its theoreti- 
cal insights produces prices with a convincing degree of 
precision. The Mellin transform approach must be re- 
garded as a capable alternative to existing methods. 

5. Conclusions 

The purpose of this paper is to explore the valuation of 
options where the underlying follows a jump-diffusion. 
The Mellin integral transform approach was applied to 
solve the homogeneous PIDE analytically. The proposed 
solution has a very compact form as one single integral 
which may be evaluated easily and quickly by quadrature. 
The final pricing formula offers a powerful and flexible 
tool for handling a variety of jump size distributions and 
payoff structures. For log-normally distributed jumps, it 
was shown explicitly that in case plain vanilla puts our 
integral expression equivalent to the infinite series solu- 
tion of BSM-prices. 

The numerical results are convincing and logically 
consistent. They come along with the theoretical findings. 

Future research projects are multifaceted. An exten- 
sion of the proposed approach to American options 
 
Table 4. Prices of European put options in Kou’s model 
using the infinite series representation with n = 30 and the 
integral solution from Theorem 3.1. 

 S = 90 S = 100 S = 110 

Exact Solution 

n = 30 9.43045738 2.73125890 0.55236304 

Equation (3.1) 

y = 25 9.38984781 2.76604378 0.52982866 

y = 50 9.43049005 2.73129034 0.55236644 

y = 100 9.43045738 2.73125890 0.55236304 

y = 200 9.43045738 2.73125890 0.55236304 
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seems to be possible. Also multi-asset options in jump- 
diffusions could be valued within this framework. 
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