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ABSTRACT

This paper is concerned with the valuation of options in jump diffusion models. The partial integro-differential equation
(PIDE) inherent in the pricing problem is solved by using the Mellin integral transform. The solution is a single integral
expression independent of the distribution of the jump size. We also derive analytical expressions for the Greeks. The

results are implemented and compared to other approaches.
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1. Introduction

Pure diffusion models are in most cases not flexible
enough to fit the empirical observations concerning the
movements of stock prices. Jump diffusions are a natural
extension of pure diffusions since they are able to ac-
count for large and sudden changes. This is accomplished
by adding a second source of uncertainty into the diffu-
sion dynamics. The second source is discontinuous and
models the jumps in the underlying asset. Also, pricing
of options in jump diffusions is consistent with the vola-
tility smile often observed in financial markets.

In his seminal paper from 1976 Merton [1] introduced
a first jump diffusion process for modeling the behavior
of stock prices. Since his work jump diffusions have be-
come a very popular tool in modeling equity, foreign
exchange and commodity markets. Under the assumption
of log-normally distributed jumps, Merton solved the
European option pricing problem explicitly in closed-
form in terms of an infinite series of Black-Scholes
prices. Other popular pure and non-pure jump diffusion
processes are those proposed in [2-6] among others. Kou
[7] proposed a double exponential jump-diffusion model
where jump sizes are double exponentially distributed.
The model allows for an analytical pricing of some path-

“This paper is a revised and shortened version of a working paper that
circulated under the title “Option Pricing in Jump Diffusions: A New
Integral-Based Framework for European and American Options”.
Disclaimer: Statements and conclusions made in this article are entirely
those of the author. They do not necessarily reflect the views of
LBBW.
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dependent options, such as continuously monitored bar-
rier and lookback, and perpetual American options [8]. In
[9], pricing formulas in Kou’s model for double (single)
barrier and touch options with time-de- pendent rebates
are derived applying Laplace transforms.

In many cases, however, an explicit closed-form
valuation of options in jump diffusions is not possible
and one is restricted to numerical procedures. These pro-
cedures rely on the fact that prices of derivatives in a
jump diffusion environment satisfy partial integro-dif-
ferential equations (PIDEs). The methods discretize the
asset-time domain and use either binomial trees, finite
difference or finites element methods to solve the PIDEs.
[10], for instance, uses an explicit multinomial tree based
approach for the valuation. [11] develop another pricing
procedure based on a lattice framework. Further recent
developments concerning the numerical evaluation in-
clude the articles [12-15].

The application of Mellin transforms for the purpose
of option pricing was firstly introduced in [16] in the
geometric Brownian motion economy. It was extended to
the stochastic volatility model of Heston by Frontczak
(2011) [17]. This paper extends the Mellin integral trans-
form framework further to the valuation of options in
jump-diffusion models. It is organized as follows: Chap-
ter 2 reviews the problem formulation. Chapter 3 pro-
vides a solution for European derivatives as a single
integral. Also simple formulas for the Greeks are derived.
Although our solution is general in the sense that it does
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not depend on the distribution of the jump size, we
choose the log-normal jump-diffusion model as an ex-
plicit example and show that our solutions for plain va-
nilla and digital puts may be rewritten as infinite series of
Black-Scholes-Merton prices. Some numerical results are
presented in Chapter 4. Chapter 5 concludes the paper
and indicates possible further research projects.

2. Problem Statement

Let S(¢) be the price of a dividend paying stock at time
t . The dividend is paid continuously at a rate ¢ and is
proportional to the price of the stock. The evolution of
the stock is affected by two sources of uncertainty: a
continuous part modeled as a standard Brownian motion
W(t) and a discontinuous part modeled as jumps with a
Poisson arrival process N(t). Therefore, under the
physical probability P the dynamics of the stock are
given by
ds(¢)
S(r)
with initial value S(0)e(0,o0) and where ¢ =
lim.¢ —& 1s the time instant before ¢. The parameters
u and o are the instantaneous drift and volatility,
respectively. The process N(7) is a Poisson process
with intensity A4 and

1 with prob. Adt

dN(t)= .
{0 with prob. (1-Adt),

=(u—q-2k)dt+odw (t)+(Y -1)dN (), (2.1)

and Y —1 is the proportional change in the stock price.
We also assume that the processes W (¢), N(t) and
{Y,,Y,,---} are independent. For A=0 the jump diffu-
sion process in (2.1) becomes a geometric Brownian mo-
tion as assumed in the Black-Scholes and Merton model.
In order to guarantee that the discounted process is a
martingale, we have

k=E[y-1]=["(Y-1)/(Y)dY, (2.2)
where f(Y) is the probability density function of ¥
and E[-] is the expectation operator. It is well known
that markets with jump diffusions are not complete.
Hence, an equivalent martingale measure Q is not
unique. Nevertheless, if we assume that the jump risk is
diversifiable as has been done in [1] we can consider the
risk-neutral dynamics of §

ds(r)
S(7)

where 4 is replaced by the riskless interest rate 7.
The solution to the process above equals

=(r—q—Ak)dt+odW (¢)+(Y -1)dN (), (2.3)
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Standard arguments show that a European-style de-
rivative written on S and time ¢ with price
F=F (S ,t) must solve the backward in time PIDE:

E(S.0)+(r—q— k) SFy (S.1)
—rF(S,t)+%o-2S2FSS (5.1) (2.4)

+A[, (F(SY,t)=F(8,t)) f(Y)dY =0,

for all R, x[0,7) and where subscripts denote partial
derivatives. For a derivation see [1,18]. The terminal
value of the derivative equals F(S,7)=g(S), where
g() is the payoff function of the contract under con-
sideration. For a plain vanilla European put with price
PF(S,t) we have

g(S)=max (X -5(T),0),

where X is the strike price of the put and § (T ) de-

notes the terminal stock price'. For the jump size distri-

bution different distributions are commonly used in the

financial literature. Prominent candidates are among oth-

ers:

e Log-normally distributed jumps ([1]): The probability
density function of Y is given by

2.5)

(ln Y—y)z

2 (2.6)

1 1
Y — 2
f( ) YN2r5° )

where Y >0,and x4 and & are constants.
e Double exponentially distributed jumps ([7]): The
probability density function of Y is asymmetric and

equals
f(¥)= pﬂlY_m_ll{Ya} +q772Y’72_11{0<y<1}’ 2.7)

where Y>0, 7,>1,7n,>0,p,q>0 with p+g=1.
The restriction 7, >1 guarantees that E[S (t)} <o,

e Gamma distributed jumps: In this case [ (Y equals
Y
1 —

fY)=—— e/, (2.8)

where Y,a,>0 and I'(-) denotes the gamma func-
tion.

e One-sided exponentially distributed jumps® The
probability density function f(Y) may be seen as a
special case of the probability density function of gamma

'If F is a digital European put option, F(S,r)=P"(S,t) the pay-

off function equals g(S)=1-1 , where X is a prespecified

{sp=x}
level.

*This process was suggested in [19] to incorporate jumps into the sto-
chastic volatility process.
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distributed jumps with « =1. Therefore

1 71

Y)=—¢ ”. 2.9
F()=4 2.9)
The particular choice of the distribution of Y is cru-
cial in order to solve the problem analytically in the
(S,7)-domain. The only two models where Y is as-
sumed to be continuous and that have been solved ex-
plicitly in terms of an infinite series are to the best of our
knowledge the Merton (1976) model and the model of

Kou (2002).

3. Main Results

The following theorem characterizes the solution to (2.4).
The functional form of the solution is simple and is ex-
pressed as a single integral.

Theorem 3.1 The solution of the PIDE (2.4) is given

by

( ) :2_ c+1oo (a))eH(m)(T—t)S—mda)’ (31)
nl c— lw
), @=c+iy,0<c, i is the imaginary

with S = S(
unit, 6(w)= F"(a),T) and where

H(a))=%o-2a)(a)+l)—(r+/1)(a)+l)

(32)

+qo+ G (o),

with
G(o)=wE[Y]+E[Y]. (3.3)
In particular, for the European put 6(w) equals’
X(u+]

o = 34
(@) o(w+1) (34)

Proof: For a locally Lebesgue integrable function
f(x),x eR,, the Mellin transform M(f(x),a)) with
transformation variable w € C is defined by the rela-
tion

M(f(x),o) =f (o :I:f(x)x”_ldx.

Conversely, if f(@) is a continuous, integrable
function, then the inverse of the Mellin transform is
given by

/() =M (f (@)=

Let M(F(S,t),a)) = ﬁ(a),t) denote the Mellin trans-
form of a financial derivative with price F(S,7). Since
the Mellin transform is a linear integral operator it fol-
lows that the PIDE from (2.4) can be transformed into a

c+io

—(Ud .
27t1 e ‘xf( ) @

*For a digital put we have ()= X
o
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homogeneous ordinary differential equation (ODE) of
the form

F (o,t)+H(o)F(w,t)=0, 3.5)
where
H(a)):%oja)(a}+l)—r(a)+l) 36)
+(q+/1k)a)+/1E[Y‘” —1].

The solution to this ODE equals
ﬁ‘(a),t) = H(w)eH('”)(H),

with 9( ) (a) T) Recalling that k:E[Y—l] the
expression for H(w) follows immediately. The final
expression for the price follows from the inversion theo-
rem for Mellin transforms. [J

The previous theorem gives the analytic solution to
(2.4) in a general manner, i.e. without specifying the dis-
tribution of Y. The solution has a simple functional
form and prices are obtained very quickly using standard
quadrature routines. It is also flexible to account for dif-
ferent jump size distributions and types of derivatives by
specifying G(w) and @(w), respectively, for the con-
tract under consideration. To give explicit examples, we
state the expressions for G(a)) in the four special cases
for Y discussed above:
e Log-normally distributed jumps ([1]): Since for each

real or complex s we have

/m+l.$2(52
E[Y} =e 2, (3.7)
/_t+l(52
it follows that k=E[Y-1]=¢ 2 -1 and
+l 2 - m+l(uz 2
G(a))zwe” 2 (3.8)

e Double exponentially distributed jumps ([7]): We
have

E|:Y_w:| _ P, + a7, , (39)
h+o 1,-
with 0 <Re(®) <17, . Therefore

P771 + q’72 -1

k=E[Y—1]= -
n-1 n,+1

and

(3.10)

e Gamma distributed jumps: In this case E[Y ] =af
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and k= E[Y—l] =qaf —1. From the identity
[ e = biar(a), Re(a)> 0.Re(b)> 0
it follows that

G(w)=waf+p° M

F(a) -

(3.11)

with 0< Re(a—a)) .
e One-sided exponentially distributed jumps: Here
k=E[Y-1]=p-1,and

G(w)=wf+pT(1-w),

with 0< Re(a)) <lI.

In each of the above cases, the price F(S,7) can be
determined easily by a single integration. Another ad-
vantage of the approach is that hedging parameters,
commonly known as Greek letters, are easily determined
analytically. Popular Greeks widely used for risk man-
agement purposes are the delta, the gamma, and the vega
of a contract®. The results for Greeks are summarized in
the next proposition.

Proposition 3.2 Independently of the distribution of
the jump size Y , the analytical expressions for the delta,
gamma, and vega can be stated as follows:

(3.12)

AF _ _L' cfioca)e(a)) eH(w)(T_t)S_(w+l)dCl), (313)
2mqi Jeie
r = o0 )0(0) s e, 61
m
O'(T—t) ctioo H(o)(T-t) g-»
A, =Tj.c7ima)(a)+l)9(a))e S dw (3.15)
—o(T-1)S°T,,

where ¢>0 and H(w) is given in Equation (3.2). In
particular if F(S,t) is a European plain vanilla put
option the Greeks are determined as

1 resio @I  x\@H
=—— _— = do, 3.16
PP omidei il S 3.16)
R w+1
. :L' H,l leH(w)(T_t) X do, (3.17)
L 2mi Jei= § S

O-X(T—t) c+io H((z))(T*t) X @
A, =—"=" — . 1
v L <) oG9

Proof: The expressions follow directly for Theorem
3.1 since we can differentiate under the integral sign. For
the Greeks of a plain vanilla put one uses the Equation
for 6(w) from (3.4) and simplifies. (]

Similar to the derivative’s price the Greeks are char-

*Others are for instance the theta or the rho. They are determined in the
same manner as outlined in the text and therefore omitted.
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acterized as a single integral which may be evaluated
easily. Furthermore, hedge parameters for a range of dif-
ferent types of derivatives may be obtained by specifying
the functional form for 6(w).

We complete this section by showing explicitly that
Equation (3.1) with the special choices of F (S,t):
P®(S,t) and log-normally distributed jumps is equiva-
lent to Merton’s infinite series solution for a European
put.

Proposition 3.3 If F(S,t)=P"(S,t) and jumps are
distributed log-normally with parameters y and O,
Y~LN(,u,52 , then (3.1) is equivalent to Merton’s
solution which is formulated as an infinite series of BSM-
prices:

PE(S,t)= i—(l (r-0) ¢ (1)

n=0 n'

phM (S,X,r*,q,a*,T,t),

(3.19)

where P*V (S,X,r*,q,a*,T,t) denotes the European
put price due to Black, Scholes, and Merton and equals

PP (8, X,r,q,0,T,t)=Xe "IN (~d,)
~S(1)e "IN (~d,),
with
d, =d, (S,X,r,q,(f,T,t)

1nS)(;)+(r—q+;O'2j(T—t)
oNT -1t
d,=d, (S,X,r,q,O',T,t)zd1 —o~NT —t.

N(x) is the cumulative standard normal distribution
function and the adjusted parameters are given by
nin(1+k)

A :l(l+k), P =r—-Ak+——=,
T—t

>

no*

T-t
We will need the following Lemma. It gives the ana-
lytical expressions for two specific Mellin transforms.
Lemma 3.4 Let p(t) be a function of t (time) and
the functions f,(S,t) and f,(S,t) be defined as

*
and 0% =0+

(ins(1))*

£(Sit)= e 0 (3.20)
4mp(1)
and
e ((T-DA n 7l(lnS(t)+/m)2
fz(S,t):z(( A1 e? W (321)
aon oS
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Then

2

M(f,(S.t),0) =", (3.22)

and
- ;zw+la‘ 2w2

M(f,(S.t), @)= * 1.

Proof: Using the definition of Mellin transforms, we
have that

(3.23)

= w;e_
- '[0 ,I4np(t)
~E[s(1)" ],

where S(¢z) is a log-normally distributed random vari-
able with mean 0 and variance 2p(¢). The statement
follows directly from (3.7). Analogously we have for
5 (S,t) after interchanging summation and integration

M(fa(5.0).0) - Z((T t)ﬂ)

po e
27m§2 S )

S(¢)"dS(1),

and the integral can be viewed as the @ -th moment of a
log-normally distributed random variable with mean
—un and variance 18> . Therefore

i ((T—t)ﬂ,)n —ynaﬁlnb‘zmz

M(f,(S.1),0)=Y—e¢ 2

n=1 }’l'

and the assertion follows. [
Now we are going to prove Proposition 3.3.

Proof: Let g(w,t)= ") Then

g(,1) = e TN
4o AT M=) [ e(rft)ze‘”’”*%("z‘”z B 1], (3.24)
where
h(w) :%sz(aﬂf1)—r(a)+l)+(q+/1k)a).
Now,
h(w)=20* (0+a) ——0o*(a*+b),  (325)
with
“%(l‘w]» b=%. (3.26)
Therefore

Copyright © 2013 SciRes.

,[,H%gz(aerb))(T—t) b (7 t)(w+a)2

g(a),t) =e e
PR G ) L
1.
,[e(T-r)/le” i B 1]
=g (o,1)+g,(o,1).
Let g(S,t):M’l(g(a),t)). Then it follows from

Equations (3.20) and (3.22) that

o (5.0)=e T

“ R lnS(t) ’
) S(t) ez UZ(T—[) )

2no? (T —t)

(3.27)

For g,(S,t), we apply the convolution theorem for
Mellin transforms and (3.21) and (3.23) to get

- /1+10'2(az+b) (T-1) 1 cHioo lo‘z(T—t)(era)Z
g2 (S’t):e ( : ) %Jc—iocez

e -1(S(7) " de

_(’“'%0'2(02‘*’}’))(7-_1) ((T—t)/l)n

=e 3.28
; p (3.28)
1
\/2110' T—t \/271}152
2
;{ ;“f ] 71{ln§( ()+/.tn)]
x[Terte W) 2 et gg
The transformation & =e¢* gives
2
]
© al o? Tt \/E
¢ de
,1_12
—e 20 .[‘” e Py
with
A=InS(t)+ pun, (3.29)
5 207 (T—t)—i—2n52
P = > o (3.30)
20 (T—t)2n5
[12
=a+-+——, 3.31
0 5 (3.31)
where a is defined in (3.26). From [20] p. 337,
o
[ N Re(P?)>0.
—0 P
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Using this result and simplifying yields after some al-
gebra

(T ((T_t)/i)n
gz(S,t)—e ;—n!
1 lnS(t)f(aaz(Tft)f‘un) : (332)
1 675 o*(T~t)+ns*
\/27: T—t +n52)

One observes that the expression for the summands in
the Equation for g, (S,¢) is also valid for n=0. Since

1 S(t)—ao*z(T—t))z

20 o (T -1
_ 1, InS® Lo
2(\/m) +aln$() -~ a0’ (T 1),

We arrive at the more compact form

g(8,1)= e_(hr)(r_t)iM

n=0 n'

][lnS(t)(aaz(Tt)‘un)]z (333)

1 2 Jz(Tft)er')‘z

e
\/27: T—t +n52)

Merton’s solution follows now from the identity
PE(8.0) == ["0(0) 2 (w.) S (1) * do,

27-“ c—ioo
where ¢>0 and 6(w) is given in Equation (3.4).
Since we have been able to derive an analytical expres-
sion for the inverse Mellin transform of g(e,?), con-
volution allows to write for the European put price

(T-1)4) e—w»-)(r—z)

P(S,0)=3

n=0 n! \/27: T—t +n52)
_{msg)_(mz( )M)z (3.34)
2 52(T t)+n52 d
J, (x=¢) £
5

The integrals above can be evaluated straightforwardly.

Standard transformations convert both integrals into
normal integrals. We get

et ST

TR )T ) ()i(( _) ) ”"+%"62N(_d1’“)

n=0

with the temporary quantities

Copyright © 2013 SciRes.

dy =d; (S,X,r,q+2k,0,T,t,n)

lnS)((t)+(r—(q+ﬂk)+;azj(T—t)+,un+n52 (3.36)

5

\/0'2 (T—z‘)+n§2
and

d; :d;(S,X,r,q+/lk,O',T,t,n)
lnS)((t)+(r—(q+/lk)—

O'ZJ(T—I)+,un (3.37)

\/0'2 (T—t)+n§2

Finally, observing that

d; (S,X,r,q+/1k,0',T,t,n) =d, (S,X,r*,q,a*,T,t),
and

d; (S,X,r,q+/lk,0,T,t,n) =d, (S,X,r*,q,o*,T,t),

Merton’s solution follows immediately. (]
Corollary 3.5 The price of a European digital put
P” (S,t) in Merton’s model equals

T i ((T —1 ) ’1)”

n=0 }’l'

PP(S,1)=
N(—d2<S,X,r*,q,G*,T,t))

—(T-1) ((T _t)/l* )n

n=0 n!

e_/f(r_t)N(—af2 (S,X,r*,q,a*,T,t)),
where the modified parameters r,A°, and o are
defined in Proposition 3.3.
Proof: We have

D x [(§ 1d&
P Sa = b T
(50 L’g(«: t] :

with g(S,7) given in (3.33). The evaluation of the in-
tegral produces the result. [

4. Numerical Results

This section presents the numerical results from imple-
menting the analytical solutions derived in this paper. We
start with options in the log-normal model of Merton
(1976). The input parameters can be found in Table 1.
The parameters were found in [12] and are based on a
calibration using European options on the S&P 500 stock
index. Prices are determined for three different stock
price levels (in-, out-, and at-the-money options). The
solution based on Mellin transforms is given in Theorem
3.1. The integral is evaluated numerically using Gauss-
Lobatto quadrature. To get some information about the

JMF



372 R. FRONTCZAK

convergence of the results we truncate the limits of inte-
gration c=*ico gradually at c¢+i25, ¢+i50, ¢%il00,
and ¢£i200 and choose c=2. We also compute the
“exact” solution using the infinite series representation
with n=30. Tables 2 and 3 show the results for the
log-normal model.

The next table summarizes the results for a digital put.

Our first and most important finding is that the frame-
work proposed in this article is able to produce highly
accurate prices for both types of derivatives. Even if the
integration limits are truncated at +i50 the results are
correct up to the third/fourth position after decimal point

Table 1. Input parameters used for the numerical evalua-
tion of the integral for European options in Merton’s
model.

Input Parameters

X =100 1=0.10
r=10.05 7=0.00
0=0.15 T—1=025
1=-0.90 5=045

Table 2. Prices of European put options in Merton’s model
using the infinite series representation with n = 30 and the
integral solution from Theorem 3.1.

§=90 S§=100 S=110
Exact Solution
n=30 9.28541807 3.14902574 1.40118588
Equation (3.1)
y=25 9.24635615 3.18309453 1.37553078
y=50 9.28542920 3.14905225 1.40120467
y=100 9.28541807 3.14902574 1.40118588
y=200 9.28541807 3.14902574 1.40118588

Table 3. Prices of European digital put options in Merton’s
model using the infinite series representation with n = 30
and the integral solution from Theorem 3.1.

§=90 S§=100 S=110
Exact Solution
n=30 0.85489802 0.38715332 0.07792321
Equation (3.1)
y=25 0.85108779 0.39006445 0.07835271
y=50 0.85491701 0.38716273 0.07791555
y=100 0.85489802 0.38715332 0.07792321
y=200 0.85489802 0.38715332 0.07792321

Copyright © 2013 SciRes.

in each of the stock price scenarios. For y>100 the
prices coincide up to the eighth decimal place and there
are no noteworthy differences between the two frame-
works.

We conclude the numerical analysis by considering
put options in Kou’s double exponential model. The
“exact” solution in form of an infinite series can by
found in the original article of Kou. The input parameters
are the same as above except for the jump component:
1, =3.0465,77,=3.0775 and p=0.3445 . Table 4
shows the results for the double exponential model.

Similar to the log-normal model, the numerical appro-
ximation of the integral solution produces satisfactory
results. The convergence rate is comparable to the pre-
vious model.

In summary, the numerical experiments carried out
demonstrate that the new framework besides its theoreti-
cal insights produces prices with a convincing degree of
precision. The Mellin transform approach must be re-
garded as a capable alternative to existing methods.

5. Conclusions

The purpose of this paper is to explore the valuation of
options where the underlying follows a jump-diffusion.
The Mellin integral transform approach was applied to
solve the homogeneous PIDE analytically. The proposed
solution has a very compact form as one single integral
which may be evaluated easily and quickly by quadrature.
The final pricing formula offers a powerful and flexible
tool for handling a variety of jump size distributions and
payoff structures. For log-normally distributed jumps, it
was shown explicitly that in case plain vanilla puts our
integral expression equivalent to the infinite series solu-
tion of BSM-prices.

The numerical results are convincing and logically
consistent. They come along with the theoretical findings.

Future research projects are multifaceted. An exten-
sion of the proposed approach to American options

Table 4. Prices of European put options in Kou’s model
using the infinite series representation with n = 30 and the
integral solution from Theorem 3.1.

§=90 S§=100 §=110
Exact Solution
n=30 9.43045738 2.73125890 0.55236304
Equation (3.1)
y=25 9.38984781 2.76604378 0.52982866
y=50 9.43049005 2.73129034 0.55236644
y=100 9.43045738 2.73125890 0.55236304
»=200 9.43045738 2.73125890 0.55236304
JMF
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seems to be possible. Also multi-asset options in jump-
diffusions could be valued within this framework.

(1]
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