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ABSTRACT 

Optimal as well as recursive parameter estimation for semimartingales had been studied in [1,2]. Recently, there has 
been a growing interest in modelling volatility of the observed process by nonlinear stochastic processes [3]. In this 
paper, we study the recursive estimates for various classes of discretely sampled continuous time stochastic volatility 
models using the Milstein approximation. We provide closed form expressions for the recursive estimates for recently 
proposed stochastic volatility models. We also give an example of computation of the term structure of zero rates in an 
incomplete information environment. In this case, learning about an unobserved state variable is done jointly with the 
valuation procedure. 
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1. Introduction 

In the last three decades, semimartingales have received 
considerable attention with the emphasis being placed on 
state space models. From an econometric standpoint, 
time-varying volatility models have been widely devel- 
oped, recognizing that the volatility and the correlation of 
assets change over time (see for example [4]). State 
space models in which the conditional mean of the ob- 
served process is modeled as a stochastic process are 
useful in parameter estimation. For example, stochastic 
volatility models are widely employed to estimate vola- 
tility parameters [3,5]. 

In [2], the estimating function approach was used for 
the recursive parameter estimation in models with semi- 
martingales. In [1,6,7], the estimating function method 
was used for the estimation of state space models in the 
Bayesian setup. Parameter estimates obtained in [2] in- 
volve the evaluation of the stochastic integrals based on 
the observation of the complete path of the observed 
process. However, for continuous time models, it is more 
appropriate to study parameter estimates based on dis- 
cretely observed data. In order to study the inference for 
diffusion processes based on discretely observed data, 
one has to approximate the continuous time diffusion by 
a discrete process. For some interest rate models (e.g. 
Vasicek, Cox-Ingersoll-Ross), discrete time approxima- 

tion has been used to study parameter estimation (see 
[8,9] and the references therein). 

Recursive estimation expresses the estimate of the pa- 
rameter at time 1t  in terms of the parameter at time 
t  and an adjustment based on the observation at time 

1t . Continuous time volatility models have been stud- 
ied in [10]. However, the recursive parameter estimation 
based on discrete approximation have not been studied in 
the literature. 

In most realistic situations, the diffusion cannot be 
observed continuously, so discrete time approximations 
to stochastic integrals or a direct approach using discrete 
time observations is required. For extended versions of 
the Cox-Ingersoll-Ross (CIR) model (see [11]), closed 
form expressions for the first four conditional moments 
cannot be obtained easily by using Ito’s formula, as was 
done for the non-extended CIR model (see [9]). Recently, 
[11] uses the Milstein approximation [12] to obtain the 
first two conditional moments of a diffusion. For dif- 
fusion models with a finite number of parameters, [9] 
uses the Milstein approximation to obtain the first four 
conditional moments and to construct the optimal esti- 
mating functions for the Vasicek model of the form 

 d d dt t t ,y t W t    

with  t ty    , t  , and > 0 . One of the 
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drawbacks of this one-factor model is that it is not in 
general possible to calibrate it so that it fits the presently 
observed term structure. For example, [13, p. 171] points 
out that for the above Vasicek model, which depends on 
three parameters,  ,  , and  , it is not possible to 
choose values of those parameters so that the entire ob- 
served term structure of interest rates is fitted exactly by 
the model. To solve the problem, Kennedy proposes to 
allow time-varying parameters in the drift term of the 
Vasicek model. 

Consider a diffusion process given by the time-ho- 
mogeneous stochastic differential equation of the form 

    d , dtd ,t ty a y

W t

t

t b W tα β y

d

 



d d

         (1) 

where  and  are the drift and diffusion functions, 
respectively, and  is the standard Brownian mo- 
tion. A special case of (1) is the Brownian motion with 
constant drift and diffusion coefficients: 

a b


  ,y t W t    

where > 0 . In this case, the conditional distribution of 

t  given  is a normal with mean y 0y y y t  and 
variance 2t . If we consider the geometric Brownian 
motion given by 

 d dt t d ,ty y t y W t    

with > 0 , then  t log y  becomes a Brownian motion 
with drift with 2    2  and  

 
. In this case, 

the conditional distribution of tlog y  given  0log y  
 log y  is also normal. The CIR process can be re- 

parameterized to the following form: 

   1 2t ty y 

1 2t ty y 

d d d .ty W t

dW t



t 



 

 

 

Extended versions of the CIR process model have 
been proposed for modelling interest rate processes. For 
example, some consider the constant elasticity of vari- 
ance process of the form 

   2
1d d tt y  

or the nonlinear drift diffusion process (see [14]) given 
by 


 4

3

3t ty y

2 1
4d d

d .

t ty y t

W t

   



1 2

1 2

t ty y 

 

 

 
 

For more general extended models, the diffusion is a 
function of the observation t  and hence, closed form 
expressions of the conditional distributions, as well as 
closed form expressions for the conditional moments 
cannot be easily obtained by solving differential equa- 
tions obtained by repeated application of Itô’s formula. 
However, the Milstein approximation can be used to ob- 
tain the first four conditional moments. 

y

If we consider a discretisation in small intervals of 

time 1i it t h  , then the Milstein approximation ap- 
plied to (1) produces 

   
    

1 1 1

1 1

2

, ,

1
, , 1

2

i i i i

i i i

t t t t

t y t t ,

it
y y a y h b y h

b y b y h





  

 

  

 

α β

β β
     (2) 

where y

b
b

y





  and , i.i.d. 0,1
it

N  

Unlike the Euler approximation for diffusion processes, 
the Milstein method in (2) gives a non-Gaussian time 
series model for 

1i it ty y


 . The distribution implied by 
the Milstein approximation is a mixture of a normal and 
chi-square distribution. Moreover, for the extended CIR 
model and for more general diffusion processes, Ito’s 
approximation cannot be used to obtain closed form ex- 
pressions for the first four conditional moments. In this 
paper, first we use the Milstein approximation to discre- 
tise the continuous time diffusion processes and then 
study the recursive estimates of latent state variables. We 
also show how the proposed method can be used to de- 
rive zero coupon bond prices in the incomplete informa- 
tion environment. In this case, the valuation exercise and 
the recursive estimation (learning) of the unobserved 
state variable are performed simultaneously by market 
participants. 

2. State Space Models 

In order to construct an optimal recursive estimate for 
non-normal stochastic volatility models, we start with the 
following discrete time example.Let the discrete-time 
state space model of the observed process  ty  and the 
state process  t  be given by: 

 
 

2
1 1 1

2
1 1

1

1

t t t t

t t t t

y A az b z

B c d



   

  

  1

   

   
        (3) 

where , , , ,A B a b c  and  are positive constants, and 
possibly measurable with respect to the 

d
 -field  

generated by the observations of 
y

t
sy  up to and in- 

cluding time t . In addition,  t  and z t  are two 
standard Gaussian sequences of identically distributed 
random variables with  ,t tz Corr   . The following 
lemma will be used to prove our main Theorem. 

Lemma 1 Assume that  1 0,1Z N  and  2 0,1Z N  

with  1 2Corr ,Z Z  . Then  2 2
1 2,Z Z  2Corr  . 

Proof 1 It follows from the theorem on Normal corre- 
lation that the conditional expectation and conditional 
variance of  given  are give by  1Z 2Z

1 2 2E Z Z Z     and  2
1 2Var 1Z Z      . 

Using the law of total expectation, we also have 
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 
 

2 2 2 2
1 2 2 1 2

2 2 2 4
2 2

2 2

1

1 3 1 2

E Z Z E Z E Z Z

E Z Z 

2.  

        
    

    

 

Hence, the correlation between 2
1Z  and 2

2Z  is given 
as 

 
2 2

1 22 2 2
1 2

1
Corr , .

4

E Z Z
Z Z 

      

The following theorem establishes the recursive esti- 
mation for the state space model (3). 

Theorem 1 Given the state space model (3), and the 
class of all estimators of the form: 

 1 1
ˆ ˆ ˆ ˆ ,t t t tB G y A t       

the , which minimizes the mean-square error,  tG

 2

1 1 1
ˆ y

t t tE    
    

t , 

is given by 

 
2 2 2

2ˆ .
2

t
t

t

AB ac bd
G

A a b

  

 


 

 

Moreover, the mean-square error is given as 

 
   

2
2 2

1

2 2 2

ˆ 2

ˆ ˆ2 2 2

t t t

t t

B AG c d

G a b G ac bd

 

 

    

    .

1

 

Proof 2 The difference 1
ˆ

t t   



2 .



 is given by 

   
 

  
  

2
1 1 1 1

2
1 1

1

2
1 1 1

ˆ ˆ 1

ˆ1

ˆ

1 1

t t t t t t

t t t t t

t t t t

t t t t t

B c d

G A az b z A

B AG c

d aG z bG z

     



  



   

 



  

     

    

   

    

 

Squaring the above expression, taking expectations, 
and using the results of Lemma 1 it follows that the con-
ditional mean-square error at 1t   is given by 

   
 

2 2 2 2 2 2
1 2 2

2 2 .

t t t t

t

B AG c d G a b

G ac bd

 

 
      

 
 

Differentiating 1t   with respect to  and setting 
the first derivative to zero, we have 

tG

   
 

2 22 2

2 2 0.

t t t 2A B AG G a b

ac bd



 

   

  
 

Solving for , we obtain tG

 
2 2 2

2 2ˆ
2 2

t
t

t

AB ac b
G

A a b

  

 


 

d

1

 

Corollary 1 Let the state space model be of the form 

1 1 1,   .t t t t t ty A z B           

where  tz  and  t  are two sequences of independ- 
ent and identically distributed random variables having 
mean zero and variance 2

z  and 2
 , respectively. In 

the class of estimates of the form: 

 1 1 1
ˆ ˆ ˆ ˆ ,t t t tB G y A t        

the  which minimizes the mean-square error  tG

 ˆ y
t t tE F   t

    
 

is given by 

2 2
ˆ .t

t
t z

BA
G

A


 




 

In addition, the mean-square error is given as 

 2
2 2 2

1
ˆ ˆ .t t tB G A G t z         

Proof 3 The result follows from Theorem 1 by setting 

za = , =b , , and 0== dc 0= . 

3. General Model 

In the continuous-time setting, consider the general state 
space model of the form 

     
     

1

2

d d d

d d , d

t t t t

t t t t t

y A y t y W t

B y t y W t

 

   

 

 

,
 

where  1W t  and  2W t  are two uncorrelated standard 
Brownian motions. If we consider a discretisation in 
small intervals of time 1i it t h  , , then the 
Milstein approximation gives a non-Gaussian discrete 
state-space model of the form: 

0,1,i  

   
    

   
    

1 1

1

1 1

1

2

2

1 ,
2

1

, ,
2

i i i i i i

i i i

i i i i

i i i i i

t t t t t t

t y t t

t t t t

t t t t t

y y A y h y hz

h
y y z

B y h y h

h
y y

 

 

  

    

 



 



  

 

    

1 ,

it


 





     (4) 

where y y

 



  and y








 , and   and it
z  it

   

are two independent standard Gaussian sequences of in- 
dependent and identically distributed random variables. 

We relate the discretised model (4) to the discrete-time 
model (3) by letting 

11 i it t ty y y
   , 

11 it t 
  ,  
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11 it tz z
  , and 

11 it t 
  . In addition, we have 

 it
A A y ,  it

a y h ,    
2 i it y t

h
b y y   , 

 it
y1B B  h ,  it

c y h ,  

  ,
i it ty ,

2 i it t

h
d y    , and 0  . It now follows  

from Theorem 1 that the recursive estimator is of the 
form 

 t tB y h  
 

 


  1 1
ˆ ˆ ˆ ˆ1 ,

i it t t tG y A y h     t  

where 

 
      2 2

i it t

A y

y 

 

2 2 2

1
ˆ ,

1

2

i i

i i

t t t

t

t t y t

B y h
G

A y h h y y



 

  
   
 


 

and the mean-square error is given as 

    
 
 

 
   

2
2

1

2

2 2 2

ˆ1

1 ˆ ˆ, ,
2

1ˆ .
2

i i i

i i

i i i

t t t t

t t

t y t

A y G y h

y

h h y y



  

 

  

   



 
 
 





2 2

2 2

i i

t t

t t

t t

B y h

h y

G y

 



 

 

Example 1 (Klebaner’s Model) [15] considers a state 
space model in which the conditional mean of the ob- 
served diffusion process is modeled by the Black-Scholes 
process (see [16]) and given by: 

 

 

1

2

2

d d d ,

d d d
2

t t

t t t

y t W t

t W



   

 

 
   
 

,t
 

where  and  are two independent standard 
Brownian motions. In this case, the Milstein approxima- 
tion leads to 

 1W t  2W t

 

1 1

1

1

2

2 2

,

2

1 .
2

i i i i

i i i i i

i i

t t t t

t t t t t

t t

y y h hz

h h

h




1

     

  

 





  

 
    

 

 


    (0.5) 

We relate (5) to the discrete-time model (3) by letting 

11 i it t ty y y
   , 

11 it t 
  , , and 

11 it tz z
 

11 it t 
  .  

Also, we put A h , a h , , 0b 
2

1
2

B h


  
    
   

, 
it

c h  and 2

2 it

h
d   . It  

now follows from Theorem 1 that the recursive estimator 
is of the form 

 
2

1 1
ˆ ˆ ˆ1 ,

2t t th G y h
 ˆ

t t   

  
      
   

  

where 

 

2

1
2ˆ ,

1

t

t
t

h

G
h

 



  
   
  


 

and the mean-square error is given as 
2

2

1

2 2 2 4 2 2

ˆ1
2

1ˆ ˆ ˆ .
2i i

t t

t t t

h hG

h h G h


t  

   



   
          

  

 

Example 2 (Hull and White Model) [17] proposed a 
stochastic volatility model in which the conditional va- 
riance of the observed diffusion process is modeled by a 
Black-Scholes process and given by: 

 
 

1

2 2 2
2

d d d

d d d

t t t t

t t t

y y t y W t

a t b W t

 

  

 

 

,

.
 

where  1W t  and  2W t  are two correlated standard  

Brownian motions with    1 2d dE W t W t td   . We  

use Ito’s formula to obtain d t : 

 
2

2d d
2 8 2t t t

a b b
t W



  
 

   
 

d t  

To simplify the Milstein approximation, we treat the 
coefficient on  dW t1  as a function of only . In this 
case, the Milstein approximation leads to 

ty
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1 1

1 1

2 2

2
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1
1 ,

2

1 1
2 8

i i i i i i i i i

i i i i i i

t t t t t t t t t

t t t t t t

y y y h y hz y h z
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  
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 

 

    

    

1

1
.





i

 (6) 

We relate (6) to the discrete-time model (3) by letting 

11 i it t t ty y y y h
    , 

11 it t 
  , 

1
, 1 it tz z

 
11 it t 
  .  

Also, we put 0A  , 
i it ta y h , 21

2 i it tb y h , 

 1B h  , 
2 it

b
c h  and 2

8 it

h
d b  . It now 

follows from Theorem 1 that the recursive estimator is of 
the form 

 1 1
ˆ ˆ1 ,t th G y   ˆ

t t     

where 
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b b

G
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  
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and the mean-square error is given as 
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2 2

2 2 4 2
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2 2 2 2 2
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4 32
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  
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4

 

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When correlation 0  , the model simplifies to 
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Example 3 (CIR Model) Consider the CIR model for 
observed process  given by ty

   1d d dt t t ty k y t y W t    ,  

and the state process t  follows a diffusion process of 
the form 

     2d d , dt t t t tB y t y W t ,      

   1 2d dE W t W t 0.    

In this case, the Milstein approximation for  and ty

t  leads to 
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      (7) 

respectively. 
We relate (7) to the discrete-time model (3) by letting 

i11 i it t t ty y y k
    y , 

11 it t 
  , , 

11 it tz z
 

11 it t 
  ,  

and 0  . Also, we put A kh , 
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a y h , 

21

4
b h , ,  1

it
B B y h    it

c y h  and 

   , ,
i it ty2 i it t

h
d y   

t

. It now follows from Theorem  

1 that the recursive estimator is of the form 

   1 1
ˆ ˆ ˆ ˆ1 ,

it t t t tB y h G y kh   
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and the mean-square error is given as 
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 



4. Bond Valuation with Recursive Learning 
under Milstein Approximation 

We now present the computation of a zero coupon bond 
price in the setting of a two-factor CIR model. In two- 
factor models, in general, bond yields are deterministic 
(and usually affine) functions of two factors. There are at 
least two reasons for why two-factor (or even multi-fac- 
tor) models are more preferable to single-factor models. 
First, the empirical difficulties of fitting the shape of the 
term structure of zero rates and their volatilities and the 
variation of interest rate spreads in single-factor models 
are well known. Second, there are institutional restric- 
tions on the behavior of interest rates that mandate more 
factors than one. Central banks tend to target certain lev- 
els (or ranges) of interest rates. These levels themselves 
may change over time as economic conditions change. 
As an example we consider a variant of the two-factor 
CIR model presented in [18]. The model defines the 
short rate as a CIR process with long-run mean (also 
known as central tendency) being itself a CIR process: 
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d d

d d

t r t t r t r
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where   0=dzdzE r . The Milstein approximation is 
readily available: 

   
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2
2

2
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1 ,
4

1 ,
4

r
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
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


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 (8) 

and 0rE      . Note that the new state variable 
processes are no longer normal. Rather, they are a mix- 
ture of normal and chi-squared random variables. 

Because investors do not observe t , the task of pric- 
ing a zero coupon bond is a two-stage exercise. First, 
investors estimate the latent central tendency process, t̂ . 
For that purpose, we assume they use the rule described 
in Theorem 1, so that 
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This last term simplifies to 

  2 2
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ˆ ˆ1 2 3
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 

where  is the time  price of a zero coupon bond 
with  periods remaining until maturity. The complete 
information version of this model is affine, and the solu- 
tion for a bond price in the complete information case is 
available in continuous time. Here, we can start with dis- 
crete-time SDF 

n
tB

n
t





 

  2
1 2ln .t h t t r rm r r hSecond, investors value the bond conditional on the 

pair  ˆ,t tr  . Thus, investors’ problem is the joint prob- 
lem of estimation of the latent state process and simulta- 
neous valuation of the bond. 

h              (10) 

Finding SDF parameter restrictions requires the knowl- 
edge of the following integral of an exponential-quadratic 
function of a standard normal variable,  : The fundamental valuation principle in asset pricing 

states that if there is no arbitrage, then there exists a posi- 
tive pricing kernel (also called stochastic discount factor 
(SDF)) such that the following condition is satisfied by 
any -period return on any asset at any time: h
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exp exp

2 1 21 2
t

t t t
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E


   

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  (11) 

with transversality condition < 1 2t . The condition that    1.t t h t hE m R                   (9) 
the expectation of an -period SDF has to give us the 

-period short rate allows us to find SDF coefficient 
restrictions: 

h
hIn our example we are interested in an -period re- 

turn on a zero coupon default-free bond, 
h

n n h
t h tBt hR B 
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Using the fundamental pricing Equation (9), the SDF 

expression (10), and the expression for the expectation of 
the exponential-quadratic function of the standard normal 
variable in (11), we have 

must have 
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Inserting SDF (10) into the pricing Equation (9), we 
obtain the following expression for the price of a zero- 
coupon bond maturing at time  (let T  T t h N  ): For SDF (10) to be consistent with restriction (12), we  
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By definition, the yield on this bond is given by 
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Unfortunately, the learning implications of the model 

render the final bond expression non-affine in the state 
variables. The expectation above, however, can be easily 
computed using Monte Carlo integration. 

When constructing the term structure of interest rates 
we make maturities, , range from one year to 10 years. 
The discretisation time step, , is kept constant at 

 of a year. As a base case for our simulations we 
take the following parameter values. We choose the 
speed of mean reversion in both the short rate and the 

central tendency to be 

T
h

1/500

2.0r    , so that they are 
consistent with high persistence of the state variables. 
E.g., for 2.0r  , the persistence of the non-Gaussian 
AR(1) short rate process in (8) is equal to  

r1 h 0.996  . Both r  and   have virtually iden- 
tical impact on the term structure of zero yields1. This 
influence, however, is strong as we might expect. Intui- 
tively, larger speed of mean reversion pulls the state 
variables faster to the long run mean,  . The result is 
1Due to this finding, we present simulations results only for r . 
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that all yields are larger with the intermediate yields be- 
ing affected the most, which increases the concavity of 
the term structure as represented in Figure 1. 

The shape of the term structure strongly depends on 
the relative position of the current short rate with respect 
to the long run mean of the central tendency,  2. Our 
model produces rich patterns of the term structure similar 
to non-discretised CIR models. If the short rate is below 
the mean, the term structure is upward-sloping, otherwise, 
it is inverted. For our numerical results we set the long 
run mean of the central tendency at  in the base 
case. The level of 

0.01
  has a strong effect on both the lev- 

els and the curvature of the term structure, with the latter 
being affected the most by   than any other parameter 
of the model (see Figure 2). 

Our numerical simulations show that, interestingly, the 
instantaneous volatilities of both the short rate and the 
central tendency are largely irrelevant for the shape and 
level of the term structure. We start with the base case 
values of the volatilities given by 0.01r   

0%

. As an 
example, the yields on a -year and 10 -year zeros in 
the base case are  and 3.9 , respectively. If 
we increase 

1
2.01%

r  substantially to, say, 0.1, the corre-  

sponding new yields are identical to those obtained with 
base case parameters. Likewise, if we increase   from 
0.01 to 0.1, we do not see any change in any of the 
yields3. 

The base case risk premiums are 1 0.02    and 

2 0.001  . Zero yields are largely insensitive to the 
value of 1 . However, the second risk premium, which 
is the loading on the non-Gaussian component in the 
SDF, has strong influence on the term structure. This 
non-Gaussian risk premium affects zero rates of all ma-
turities in the same way leading to parallel shifts in the 
yield curve. Even though the shape of the term structure 
is largely not affected, the yields are very sensitive to the 
level of the second risk premium. E.g., a change in 2  
from the base case level of 0.001 to 0.05 adds about 980 
basis points to yields of all maturities as shown in Figure 
3. 

5. Conclusion 

Recently, it has been demonstrated (see [19]) that the 
diffusion process can be well approximated by the Mil- 
stein approximation rather than the Euler approximation. 

 

 

Figure 1. Term structure as a function of the speed of mean reverison in the short rate. We use base parameters presented in 
the text to generate the term structure of zero rates. The underlying model is the discretized version of a continuous-time 
Cox-Ingersoll-Ross (CIR) model with central tendency of the short rate also following a CIR process. We use the Milstein 
discretization scheme. The curves represent the mean yields over 10,000 Monte Carlo iterations. The time step in the Milstein 
scheme is 1/500 of a year. The speed of mean reversion parameter,  ranges from 0.5 to 2. In our simulations, we assume 

that both the short rate and the central tendency start at 0.01. We also assume that the posterior variance of the central 
tendency estimate, λt, starts at the level of two instantaneous standard deviations of the central tendency, 

rκ

t η tγ = 2σ η  per 

year. 
 

2In our simulations, we assume that both the short rate and the central tendency start at 0.01. We also assume that the posterior variance of the central 

tendency estimate, t , starts at the level of two instantaneous standard deviations of the central tendency, t , i.e., 2t  t    per year. 
3Only if we increase these volatilities to unrealistic levels by a factor of 1000, do the yields decline. The decline, however, is minuscule, half a basis 
point or less. 

Copyright © 2013 SciRes.                                                                                 JMF 



T. KOULIS  ET  AL. 364 

 

Figure 2. Term structure as a function of the central tendency of the short rate. We use base parameters presented in the text 
to generate the term structure of zero rates. The underlying model is the discretized version of a continuous-time 
Cox-Ingersoll-Ross (CIR) model with central tendency of the short rate also following a CIR process. We use the Milstein 
discretization scheme. The curves represent the mean yields over 10,000 Monte Carlo iterations. The time step in the Milstein 
scheme is 1/500 of a year. The long run mean of the central tendency, θ, ranges from 0.1 to 0.4. In our simulations, we assume 
that both the short rate and the central tendency start at 0.01. We also assume that the posterior variance of the central 

tendency estimate, λt, starts at the level of two instantaneous standard deviations of the central tendency, t η tγ = 2σ η  per 

year. 
 

 

Figure 3. Term structure as a function of the second rsik premium, λ2. We use base parameters presented in the text to 
generate the term structure of zero rates. The underlying model is the discretized version of a continuous-time Cox-Ingersoll- 
Ross (CIR) model with central tendency of the short rate also following a CIR process. We use the Milstein discretization 
scheme. The curves represent the mean yields over 10,000 Monte Carlo iterations. The time step in the Milstein scheme is 
1/500 of a year. The non-Gaussian risk premium, λ2, ranges from 0.5 to 2. In our simulations, we assume that both the short 
rate and the central tendency start at 0.01. We also assume that the posterior variance of the central tendency estimate, λt, 

starts at the level of two instantaneous standard deviations of the central tendency, t η tγ = 2σ η  per year. 
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In this paper, we study the recursive estimates for various 
classes of discretely sampled continuous time stochastic 
volatility models using the Milstein approximation. We 
also provide an example of joint valuation of a zero- 
coupon bond and learning about an underlying state 
variable under incomplete information environment. 
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