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ABSTRACT 

In this paper, quadratic nonlinear oscillators under stochastic excitation are considered. The Wiener-Hermite expansion 
with perturbation (WHEP) method and the homotopy perturbation method (HPM) are used and compared. Different 
approximation orders are considered and statistical moments are computed in the two methods. The two methods show 
efficiency in estimating the stochastic response of the nonlinear differential equations. 
 
Keywords: Nonlinear Stochastic Differential Equations; Wiener-Hermite Expansion; WHEP Technique; Homotopy 

Perturbation Method 

1. Introduction 

Quadrate oscillation arises through many applied models 
in applied sciences and engineering when studying oscil- 
latory systems [1]. These systems can be exposed to a lot 
of uncertainties through the external forces, the damping 
coefficient, the frequency and/or the initial or boundary 
conditions. These input uncertainties cause the output 
solution process to be also uncertain. For most of the 
cases, getting the probability density function (p.d.f.) of 
the solution process may be impossible. So, developing 
approximate techniques through which approximate sta- 
tistical moments can be obtained, is an important and 
necessary work. 

Since Meecham and his co-workers [2] developed a 
theory of turbulence involving a truncated Wiener-Her- 
mite expansion (WHE) of the velocity field, many au- 
thors studied problems concerning turbulence [3-8]. A lot 
of general applications in fluid mechanics were also stud- 
ied in [9-11]. Scattering problems attracted the WHE 
applications through many authors [12-16]. The nonlin- 
ear oscillators were considered as an opened area for the 
applications of WHE as can be found in [17-23]. There 
are a lot of applications in boundary value problems [24, 
25] and generally in different mathematical studies [26- 
29]. The WHE properties and description of its usage are 
given in [30]. 

In HPM technique [31-34], the response of nonlinear 
differential equations can be obtained analytically as a 

series solution. The basic idea of the homotopy method is 
to deform continuously a simple problem (and easy to 
solve) into the difficult problem under study [35]. The 
HPM method is a special case of homotopy analysis 
method (HAM) propounded by Liao in 1992 [36]. The 
HAM was systematically described in Liao’s book in 
2003 [37] and was applied by many authors in [38-41]. 
The HAM method possesses auxiliary parameters and 
functions which can control the convergence of the ob- 
tained series solution. 

The stochastic oscillator with cubic nonlinearity (Duffing 
oscillator) was considered in [17,42]. The nonlinear term 
is due to the restoring nonlinear force. In some applica- 
tions, the restoring force is quadratic and it is required to 
estimate the response in this case. The main goal of this 
paper is to consider the quadratic nonlinear oscillator 
under stochastic excitation. The WHEP and HPM meth- 
ods are used and compared. 

This paper is organized as follows. The problem for- 
mulation is outlined in Section 2. The WHEP technique 
is described and applied to the stochastic quadratic oscil- 
lator in Section 3. The HPM is outlined in Section 4 and 
applied also to the quadratic oscillator. A comparison 
between the two methods is shown in Section 5. 

2. Problem Formulation 

In this section, the following quadratic nonlinear oscilla- 
tory equation is considered: 
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     2 2 2; 2 ; , 0,x t w x w x w x F t t         T  (1) 

under stochastic excitation  ;F t   with deterministic 
initial conditions 

   0 00 , 0x x x x   , 

where 
w: frequency of oscillation, 
 : damping coefficient, 
 : deterministic nonlinearity scale, 

 , , p    : a triple probability space with   as 
the sample space,   is a  -algebra on events in   
and P is a probability measure. 

3. WHEP Technique 

The application of the WHE aims at finding a truncated 
series solution to the solution process of differential equa- 
tions. The truncated series composes of two major parts; 
the first is the Gaussian part which consists of the first 
two terms, while the rest of the series constitute the non-  

Gaussian part. In nonlinear cases, there exists always dif- 
ficulties of solving the resultant set of deterministic inte- 
gro-differential equations got from the applications of a 
set of comprehensive averages on the stochastic integro- 
differential equation obtained after the direct application 
of WHE. Many authors introduced different methods to 
face these obstacles. Among them, the WHEP technique 
was introduced in [22] using the perturbation technique 
to solve perturbed nonlinear problems. 

The WHE method utilizes the Wiener-Hermite poly- 
nomials which are the elements of a complete set of sta- 
tistically orthogonal random functions [30]. The Wiener- 
Hermite polynomial    1 2, , ,i

i H t t t  satisfies the fol- 
lowing recurrence relation: 

           
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where 
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in which n(t) is the white noise with the following statis-
tical properties 

       1 2 1 20, ,En t En t n t t t          (4) 

where  .  is the Dirac delta function and E denotes 
the ensemble average operator. 

The Wiener-Hermite set is a statistically orthogonal set, 
i.e. 

    0i jEH H i j.             (5) 

The average of almost all H functions vanishes, par- 
ticularly, 

  0  for 1.iEH i               (6) 

Due to the completeness of the Wiener-Hermite set, 
any random function  ;G t   can be expanded as 
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            (7) 

 
where the first two terms are the Gaussian part of G(t; ω). 
The rest of the terms in the expansion represent the 
non-Gaussian part of G(t; ω). The average of G(t; ω) is 

     0;G EG t G t                (8) 

The covariance of  ;G t   is 
 

              
               

               

1 1 2 2
1 1 1 1 2 1 2 1 2

3 3 3 3
1 2 3 1 2 3 1 3 2 2 3 1 1 2 3

Cov ; , ; ; ;

; , d  +2 ; , , , d d

2 ; , , , , , , , , , , , d d d

G GG t G E G t t G

G t t G t t G t t t G t t t t

G t t t t G t t t G t t t G t t t t t t

        

 

  

  

  

  

  

  



    

  

   

 



    (9) 
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 ;G t The variance of  is 

d d     (10) 

 
The WHE method can be elementary used in solving 

stochastic differential equations by expanding the solu- 
tion process as well as the stochastic input processes via 
the WHE. The resultant equation is more complex than 
the original one due to being a stochastic integro-differ- 
ential equation. Taking a set of ensemble averages to- 
gether with using the statistical properties of the WH 
po
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 

lynomials, a set of deterministic integro-differential 
equations are obtained in the deterministic kernels 

   ; , 0,1, 2,iG t i   . To obtain an approximate solu- 
tions for these deterministic kernels, one can use pertur- 
bation theory in the case of having a perturbed system 
depending on, say,  . Expanding the kernels as a power 
series of  , another set of simpler iterative equations in 
the kernel series components are obtained. This is the 
main algorithm of the WHEP technique. The technique 

ied to several nonlinear stochastic 
equations; see [20,22,23,25]. 

The WHEP technique can be applied on linear or 
nonlinear perturbed systems described by ordinary or 
partial dif rential equations. The solution can be modi- 
fied in the sense that additional parts of the Wiener-  

was successfully appl

 
fe

Hermite expansion can always be taken into considera- 
tions and the required order of approximatio
ways be made. It can be even run through a package if it 
is coded in some sort of symbolic languages. 

Case-Study 

ns can al- 

The quadratic nonlinear oscillatory problem, Equation (1) 
under stochastic excitation  ;F t   with deterministic 
initial conditions is solved using WHEP technique. The 
solution process takes the following form: 
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Applying the WHEP technique, the following equa- 
tions in the deterministic kernels are obtained: 
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   t .     (16) 

In this case, the governing equations are 

0               
2 20 0 12

1 1; dLx t w x t x t t t G t
           
  


(17) 

            1,   (18) 

The ensemble average is 

             (19) 

an

t          (20

It has to be noticed that all the previous equations are 
deterministic linear ones in the general form  

 1 0 1 12
1 1, 2 ,Lx t t w x t x t t G   t t  

     0
x t x t   

d the variance is 

     
212

1 1; dx t x t t




     ) 

 2 2x w x w x F t    wit
ns    0 , 0


tio

h deterministic initial condi- 

0 0x x x x   . 

       0 1 0 2
0

d
t

x t x t x h t s F s      s     (21) 

In which we have 

 

 

 

2

2

2 2

1 2 2

2 2

1
e sin 1 ,

1

1 1
e e

2 1 2 1

1
e e

,

1

w t

mt qt

mt qt

h t w t
w

t

t

 


   


 




 


    
 

 

 


 

where 

,
2w

2 21, 1m w w q w w           . 

When adding the first term in the non-Gaussian part 
(the second approximation) of the solution pro

inly 
cess of the 

previous case study, ma

d             

       

0 1 1
1 1 1

2 2
1 2 1 2 1 2

; ;

; , , d d

x t x t x t t H t t

It has the general solution 
x t t t H t t t t






 

 

  
,   (22) 

  
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the governing equations become 

0

 (23) 

1,
  (24) 

         

       

2 20 0 12
1 1

222
1 2 1 2

( ) ; d

2 ; , d d

Lx t w x t x t t t

w x t t t t t G t









 

 

          

   



 

           

           

1 0 12
1 1

1 2 12
2 1 2 2

, 2 ,

4 ; ; , d

Lx t t w x t x t t

w x t t x t t t t G t t










 

   
    ,  

2
1 2

0 22

, ,

2 , ,

Lx t t t

w x t x t t t         

          

1 1
1 2 1 2

2 2 2
1 3 2 3 3 1

,

4 ; , ; , d , ,

x t t x t t

2x t t t x t t t t G t t







 


 t

 



 (25) 

The ensemble average is still got by Equation (19) 

2

while the variance is got as 

         
2 2

1 22
1 1 1 2 1; d 2 ; , d dx t x t t t x t t t t t

  

  

           

(26) 

The WHEP technique uses the following expansion for 
its deterministic kernels as corrections made under each 
approximation order.  

           2 3
0 1 2 3 , 0,1,2,3,.i i i i ix t x x x x i        . (27) 

Example: 

Let us take    ; e ; , 0.tF t q t     3   (28) 

in the previous case-study and then solving using the 
WHEP technique. The following results are obtained, see 
Figures 1-3. 

4. The Homotopy Perturbation Method 
(HPM) 

In this technique, a parameter  0,1p  is embedded in 
a homotopy function    , : 0,1 v r p 

 

 which sat- 
isfies 

  
(a) (b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 1. (a) The first order a ximation of the mean at ε correction for different correcti ; (b) The first order ap- 
proximation of the mean at ε2 correction for different correction levels; (c) The first order approximation of the mean at ε3 
correction; (d) The first order approximation of the mean at ε, ε2, ε3 correction; (e) The first order approximation of the 
mean at ε, ε2, ε3 correction; (f) The first order approximation of the mean at ε, ε2, ε3 correction. 

ppro on levels
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2. (a) The first order approximation of the variance at ε correction for different correction levels; (b) The first order 
approximation of the variance at ε2 Correction for different correction levels; (c) The first order approximation of the vari- 
ance at ε3 correction for different correction levels; (d) The first order approximation of the variance at. ε, ε2, ε3 correction. 

 

 
(a) 

 
(b) 

Figure 3. (a) The first order approximation of the variance at ε, ε2, ε3 correction; (b) The first order approximation of the 
variance at ε, ε2, ε3 correction. 

 

           0, 1H v p p L v L u p A v f r           0

(29) 

where is an initial approximation to the solution of 
the equ  

0u  
ation

    0,A u f r r               (30) 

with boundary conditions 

, 0,
u 

B u r
n

   
           (31) 

in which A is a nonlinear differential operator which can 
be decompose into a linear operator L and a nonlinear 
operator N, B is a boundary operator, f(r) is a known 
analytic function and  is the boundary of    . The 
homotopy introduces ontinuously deform ution 
for the case of p = 0, , to the case of p 
= 1, inal ation 
(30) motopy ethod 

which is to deform continuously a simple problem (and 
easy to solve) into the difficult problem under study [35]. 

The basic assumption of the HPM method is that the 
solution of the original Equation (29) can be expanded as 
a power series in p as: 

 a c
L v
, wh

sic id

ed sol

 Equ
 m

   0 0L u 
ich is the orig
ea  the ho

    0A v f r 
. This is the ba  of

2p v 3
0 1 2 3v v pv p v             (32) 

Now, setting p = 1, the approximate solution of Equa-
tion (23) is obtained as: 

0 1 2 3
1

lim
p

u v v v v v


               (33) 

The rate of convergence of the method depends greatly 
on the initial approximation 

The idea of the imbedded rameter can be utilized to 
solve nonlinear problems by imbedding this parameter to 
the problem and then forcing it to be unity in the ob- 
tained approximate solution if converge can be assured. 
A simple technique enables the extension of th  applica- 
bility of the perturbation ods from small valued ap- 

0u . 
 pa

e
meth
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plications to general ones. 

Example 

Considering the same previous example of Sub-Sect
3.1.1, one can get the following results w.r.t. homo

ati

ion 
topy 

perturb on: 

    2 2A x L x w x  , 

  22L x x w x w x    , 

  2N x x , 

   ;f r F t  . 

The homotopy function takes the following form: 

           0, 1 0H v p p L v L u p A v f r           

or equivalently, 

       2 2
0 ; 0L v L u p L t      . (34) 

Lett 2 3
0 1 2 3p v p v   , substituting in 

Equation (34) and equating the equal powers of p in both 
sides of the equation, one can get the following results: 

1)    L v L y , in which one may consider the fol- 

0u w v F 

ing 

lo

2) 

v v pv 

0 0

wing simple solution: 

   0 0 , 0 , 0 .v y y x y x     0 0 0 0

         2 2
1 0 0 1; , 0L v F t L v w v v   

      22 , 0 0, 0 0L v w v v v v    . 
10, 0 0v  . 

3) 2 0 1 2 2

4)        2 2
3 1 0 2 3 32 , 0 0, 0 0L v w v v v v v     . 

       4 1 0 3 1 2 4 42 , 0 0,L v v v v v v v 0 0     . 5) 
The approximate solution is 

  0 1 2 3; limx t v v v v v
1p

       

which can be considered to any approximation order. On
can notice that the algorithm of the solution is straigh

t a lot of flexibilities can be made. For 
any choices in guessing the initial 

approximation together with its initial condition
zero initial conditions, we can choose 

e 
t 

forward and tha
example, we have m

s. For 

0v  0  which leads 
to: 

  5 0 1 2 3 4 5;x t x v v v v v v       

   ; dh t s F s      

     

2 2
1

0 0

2
1 3

0

; d

2 ; ; d

t t

t

s w h t s v s s

w h t s v s v s s

  

  

 

 




 (35) 

Figures 4-7 are obtained for 0.5  : [42]. 

5. Comparisons between WHEP and HPM 
Methods 

Figure [8] shows comparisons between the WHEP and 
HPM methods for different values of the nonlinearity 
strength,  . As the nonlinearity strength increases, the 
deviation between the two methods is also increasing. 

 

 
(a) 

 
(b) 

e mean for different correction levels; (b) The first and second 
 levels. 
 

Figure 4. (a) The first and second order approximation of th
order approximation of the variance at for different correction

 
(a) 

 
(b) 

Figure 5. (a) The third order approximation of the mean for different correction levels; (b) The third order approximation of 
the variance for different correction levels. 
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(a) (b) 

Figure 6. (a) A comparison between first, second order and th
first, second order and the, third order o ariance at ε = 0

e n 
f the v .1. 

 

third order of the mean at ε = 0.1; (b) Comparison betwee

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 7. (a) A comparison between first, second order and the third order of the mean at ε = 0.3; (b) A comparison between 
first, second order and the, third order of the variance at ε = 0.3; (c) A comparison between first, second order and the o third 
order of the mean at ε = 0.7; (d) A comparison between first, second order and the third order of the variance at ε = 0.7. 

 

 
(a) 

 
(b) 

(c) 
 

(d) 
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(f) (e) 

Figure 8. (a) A comparison between homotopy perturbation and Wiener-Hermite of the mean at ε = 0.1; (b) A comparison 
between homotopy perturbation and Wiener-Hermite of the variance at ε = 0.1; (c) A comparison between homotopy per- 
turbation and Wiener-Hermite of the mean at ε = 0.3; (d) A comparison between homotopy perturbation and Wie- 
ner-Hermite of the variance at ε = 0.3; (e) A comparison between homotopy perturbation and Wiener-Hermite of the mean at 
ε = 0.7; (f) A comparison between homotopy perturbation and Wiener-Hermite of the variance at ε = 0.7. 

 
This is due to the convergence condition of the WHEP 
technique which depends on  . For small values of  , 

e the WHEP technique conver but after a certain val
of 

ges u
  it will diverge. The M is more accurate for HP

higher values of  . The HPM has advantages when used 
in solving differential equations with large nonlinearities. 

6. Conclusion 

The quadratic nonlinear oscillator with stochastic excita- 
tion is considered. The solution was obtained using the 
WHEP technique with different orders and different num- 
ber of corrections. The HPM is used also with different 
approximations. The WHEP technique is more efficient 
but it converges only for certain limit of the nonlinearity 
strength. The HPM is more difficult in the stochastic 
differential equations but it is more preferable for high  
values of the nonlinearity st th. The two methods are 
shown to be efficient in estimating the stochastic re- 
sponse of the quadratic nonlinear oscillators. 
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