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ABSTRACT 

In this paper, Laplace decomposition method (LDM) and Pade approximant are employed to find approximate solutions 
for the Whitham-Broer-Kaup shallow water model, the coupled nonlinear reaction diffusion equations and the system of 
Hirota-Satsuma coupled KdV. In addition, the results obtained from Laplace decomposition method (LDM) and Pade 
approximant are compared with corresponding exact analytical solutions. 
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1. Introduction 

The Laplace decomposition method (LDM) is one of the 
efficient analytical techniques to solve linear and nonlin- 
ear equations [1-3]. LDM is free of any small or large 
parameters and has advantages over other approximation 
techniques like perturbation. Unlike other analytical tech- 
niques, LDM requires no discretization and linearization. 
Therefore, results obtained by LDM are more efficient 
and realistic. This method has been used to obtain ap- 
proximate solutions of a class of nonlinear ordinary and 
partial differential equations [1-4]. See for example, the 
Duffing equation [4] and the Klein-Gordon equation [3]. 
In this paper, the LDM is applied to, the Whitham-Broer- 
Kaup shallow water model [5] 
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with exact solution are given in [6] as 
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and thesystem of Hirota-Satsuma coupled KdV [7]. 
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with exact solution are given in [7] as  
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we discuss how to solve Numerical solution of nonlinear 
system of parial differential equations by using LDM. The 
results of the present technique have close agreement with 
approximate solutions obtained with the help of the 
Adomian decomposition method [8]. 

2. Laplace Decomposition Method 
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where  1 2, , , ,nU u u u   
with initial condition  
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the method consists of first applying the Laplace trans- 
formation to both sides of (7) 
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using the formulas of the Laplace transform, we get 
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in the Laplace decomposition method we assume the 
solution as an infinite series, given as follows 
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where the terms  are to be recursively computed.  n

Also the linear and nonlinear terms i  and  
 is decomposed as an infinite series of 

Adomian polynomials (see [8,9]). Applying the inverse 
Laplace transform, finally we get 
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3. The Pade Approximant 

Here we will investigate the construction of the Pade 
approximates [10] for the functions studied. The main 
advantage of Pade approximation over the Taylor series 
approximation is that the Taylor series approximation 
can exhibit oscillati which may produce an approxima- 
tion error bound. Moreover, Taylor series approxima- 
tions can never blow-up in a fin region. To overcome 
these demerits we use the Pade approximations. The  

Pade approximation of a function is given by ratio of two 
polynomials. The coefficients of the polynomial in both 
the numerator and the denominator are determined using 
the coefficients in the Taylor series expansion of the 
function. The Pade approximation of a function, symbol- 
ized by [m/n], is a rational function defined by 
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where we considered b0 = 1, and the numerator and de- 
nominator have no common factors. In the LD-PA method 
we use the method of Pade approximation as an after- 
treatment method to the solution obtained by the Laplace 
decomposition method. This after-treatment method im- 
proves the accuracy of the proposed method. 

4. Application 

In this section, we demonstrate the analysis of our nu- 
merical methods by applying methods to the system of 
partial differential Equations (1), (3) and (5). A com- 
parison of all methods is also given in the form of graphs 
and tables, presented here. 

4.1. The Laplace Decomposition Method 

Exampe 1. The Whitham-Broer-Kaup model [5] 
To solve the system of Equation (1) by means of 

Laplace decomposition method, and for simplicity, we  

take 1

1
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we can define the Adomian polynomial as follows: 
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terms as Equation (18), and Figures 1(a) and (b) show 
the exact and numerical solution of system (1) with 16th 
terms by (LDM). 

applying the inverse Laplace transform, finally we get 
Equations (17). Similarly, we can also find other com- 
ponents, and the approximate solution for calculating 16th  
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(b) 

Figure 1. (a) Exact and numerical solution of u(x, t), −10 ≤ x ≤ 10, -1 ≤ t ≤ 1; (b) Exact and numerical solution of v (x, t), −10 ≤ 
x ≤ 10, −1 ≤ t ≤ 1. 
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Example 2. coupled nonlinear RDEs [6] 
To solve the system of Equation (3) by means of 

Laplace decomposition method, and for simplicity, we 
take , we construct a correctional 
functional which reads 
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we can define the Adomian polynomial as follows: 
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we define an iterative scheme 
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applying the inverse Laplace transform, finally we get 
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similarly, we can also find other components, and the 
approximate solution for calculating 16th terms as fol- 
lows: 
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and Figures 2(a) and (b) show the exact and numerical 
solution of system (3) with 16th terms by (LDM). 

Example 3. Hirota-Satsuma coupled KdV System 
[7] 

To solve the system of Equation (5) by means of 
Laplace decomposition method, and for simplicity, we 
take  0 1 1k c c    , we construct a correctional 
functional which reads 
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we can define the Adomian polynomial as follows: 
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applying the inverse Laplace transform, finally we get 
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(a) 

      
(b) 

Figure 2. (a) Exact and numerical solution of u(x, t), −10 ≤ x ≤ 10, −1 ≤ t ≤ 1; (b) Exact and numerical solution of v(x, t), −10 ≤ 
x ≤ 10, −1 ≤ t ≤ 1. 

 
similarly, we can also find other components, and the ap- 
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and Figures 3(a)-(c) show the exact and numerical so- 
lution of system (5) with 16th terms by (LDM). 

4.2. The Pade Approximation 
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In this section we use Maple to calculate the [3/2] the Pade 
approximant of the infinite series solution (18), (23), and 
(28) which gives the rational fraction approximation to the 
solution, and Figures 4(a)-(c) show the results obtained 
by the Pade approximant (LD-PA) solution of systems (1), 
(3) and (5), and Figures 5(a)-(c) show comparison be- 
tween the exact solution, LDM solution and the Pade 
approximant (LD-PA) solution of systems (1), (3) and (5) 
at, x = 5, −1 ≤ t ≤ 1. Tables 1-3 show the absolute error 
between the exact solution and the results obtained from 
the, LDM solution and the Pade approximant (LD-PA) 
solution of systems (1)-(3). 

5. Conclusion 

The Laplace decomposition method is a powerful tool  
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(c) 

Figure 3. (a) Exact and numerical solution of u(x, t), −10 ≤ x ≤ 10, −1 ≤ t ≤ 1; (b) Exact and numerical solution of v(x, t), −10 ≤ 
x ≤ 10, −1 ≤ t ≤ 1; (c) Exact and numerical solution of w(x, t), −10 ≤ x ≤ 10, −1 ≤ t ≤ 1. 
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(a) 

      
(b) 

   
(c) 

Figure 4. (a) The Pade approximant (LD-PA) solution of u(x, t) and v(x, t) of example 1, −10 ≤ x ≤ 10, −1 ≤ t ≤ 1; (b) The Pade 
approximant (LD-PA) solution of u(x, t) and v(x, t) of example 2, −10 ≤ x ≤ 10, −1 ≤ t ≤ 1; (c) The Pade approximant (LD-PA) 
solution of u(x, t) and v(x, t) and w(x, t) of example 3, −10 ≤ x ≤ 10, −1 ≤ t ≤ 1. 
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(a) 

   
(b) 

     
(c) 

Figure 5. (a) The exact, (LDM)and the Pade approximant (LD-PA) solution of u(x, t) and v(x, t) of example 1, x = 5, −1 ≤ t ≤ 1; 
(b) The exact, (LDM)and the Pade approximant (LD-PA) solution of u(x, t) and v(x, t) of example 2, x = 5, −1 ≤ t ≤ 1; (c) The 
exact, (LDM)and the Pade approximant (LD-PA) solution of u(x, t), v(x, t) and w(x, t) of example 3, x = 5, −1 ≤ t ≤ 1. 

 
which is capable of handling nonlinear system of partial 
differential equations. In this paper the (LDM) and Pade 
approximant has been successfully applied to find ap- 

proximate solutions for,the Whitham-Broer-Kaup shal- 
low water model, the coupled nonlinear reaction diffu- 
sion equations and thesystem of Hirota-Satsuma coupled  
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Table 1. The absolute error of u(x, t) and v(x, t) of example 1, x = 40. 

t ex LDMu u  ex LDMv v  –ex LD PAu u  –ex LD PAv v  

0 
0.2 
0.4 
0.6 
0.8 
1.0 
1.2 
1.4 
1.6 
1.8 
2.0 

0 
2.56 × 10−69 

6.38 × 10−69 

1.20 × 10−68 

2.06 × 10−68 

3.32 × 10−68 

5.22 × 10−68 

8.05 × 10−68 

1.22 × 10−67 

1.85 × 10−67 

2.79 × 10−67 

0 
1.02 × 10−69 

2.55 × 10−69 

4.83 × 10−69 

8.24 × 10−69 

1.33 × 10−67 

2.08 × 10−67 

3.21 × 10−67 

4.90 × 10−67 

7.42 × 10−67 

1.11 × 10−66 

0 
4.16 × 10−75 

3.79 × 10−73 

6.24 × 10−72 

5.14 × 10−71 

2.90 × 10−70 

1.29 × 10−69 

4.81 × 10−69 

1.54 × 10−68 

4.33 × 10−68 

1.05 × 10−67 

0 
1.66 × 10−74 

1.51 × 10−72 

2.49 × 10−71 

2.05 × 10−70 

1.16 × 10−69 

5.16 × 10−69 

1.92 × 10−68 

6.19 × 10−68 

1.73 × 10−67 

4.22 × 10−67 

 
Table 2. The absolute error of u(x, t) and v(x, t) of example 2, x = 40. 

t ex LDMu u  ex LDMv v  –ex LD PAu u  –ex LD PAv v  

0 
0.2 
0.4 
0.6 
0.8 
1.0 
1.2 
1.4 
1.6 
1.8 
2.0 

0 
5.42 × 10−45 

3.96 × 10−45 

1.41 × 10−45 

5.95 × 10−45 

3.28 × 10−44 

6.81 × 10−43 

9.59 × 10−42 

9.52 × 10−41 

7.24 × 10−40 

4.46 × 10−39 

0 
5.42 × 10−45 

3.96 × 10−45 

1.41 × 10−45 

5.95 × 10−45 

3.28 × 10−44 

6.81 × 10−43 

9.59 × 10−42 

9.52 × 10−41 

7.24 × 10−40 

4.46 × 10−39 

0 
5.76 × 10−41 

5.25 × 10−39 

8.64 × 10−38 

7.12 × 10−37 

4.02 × 10−36 

1.78 × 10−35 

6.66 × 10−35 

2.14 × 10−34 

6.00 × 10−34 

1.46 × 10−33 

0 
5.76 × 10−41 

5.25 × 10−39 

8.64 × 10−38 

7.12 × 10−37 

4.02 × 10−36 

1.78 × 10−35 

6.66 × 10−35 

2.14 × 10−34 

6.00 × 10−34 

1.46 × 10−33 

 
Table 3. (a) The absolute error of u(x, t), v(x, t) and w(x, t) of example 3, x = 40; (b) The absolute error of u(x, t), v(x, t) and 
w(x, t) of example 3, x = 40. 

(a) 

t ex LDMu u  exact LDMv v  exact LDMw w  

0 

0.2 

0.4 

0.6 

0.8 

1.0 

1.2 

1.4 

1.6 

1.8 

2.0
 

0 
354.76 10  
357.95 10  
341.00 10  
341.15 10  
341.24 10  
341.31 10


 
341.35 10
34

 
1.38 10

34
 

1.40 10
34

 
1.41 10  

0 
353.17 10  
355.30 10  
356.72 10  
357.68 10  
358.32 10  
358.75 10


 
359.03 10
35

 
9.23 10

35
 

9.36 10
35

 
9.44 10  

0 
351.19 10  
351.98 10  
352.52 10  
352.88 10  
353.12 10  
353.28 10


 
353.39 10
35

 
3.46 10

35
 

3.50 10
35

 
3.54 10  

(b) 

t –ex LD PAu u  –e LD PAv v  –ex LD PAw w  

0 

0.2 

0.4 

0.6 

0.8 

1.0 

1.2 

1.4 

1.6 

1.8 

2.0
 

0 
415.93 10  
392.78 10  
382.35 10  
389.96 10  
372.89 10  
376.63 10


 
361.30 10
36

 
2.27 10

36
 

3.64 10
36

 
5.47 10  

0 
413.97 10  
391.85 10  
381.57 10  
386.64 10  
371.92 10  
374.42 10


 

378.66 10
36

 
1.51 10

36
 

2.43 10
36

 
3.65 10  

0 
411.20 10  
406.97 10  
395.89 10  
382.49 10  
387.22 10  
371.65 10


 
373.25 10
37

 
5.68 10

37
 

9.11 10
36

 
1.36 10  
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KdV. It was noted that the scheme found the solutions 
without any discretization or restrictive assumption, and 
it was free from round-off errors and therefore reduced 
the numerical computations to a great extent. 
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