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ABSTRACT 

In this paper we review some results obtained within the context of the predictive microbiology, which is a specific 
field of the population dynamics. In particular we discuss three models, which exploit tools of statistical mechanics, for 
bacterial dynamics in food of animal origin. In the first model, the random fluctuating behaviour, experimentally meas- 
ured, of the temperature is considered. In the second model stochastic differential equations are introduced to take into 
account the influence of physical and chemical variables, such as temperature, pH and activity water, subject to deter- 
ministic and random variations. The third model, which is an extended version of the second one, neglects the environ- 
mental fluctuations, and concentrates on the role of the interspecific bacterial interactions. The comparison between 
expected results and observed data indicates that the presence of noise sources and interspecific bacterial interactions 
improves the predictive features of the models analyzed. 
 
Keywords: Statistical Mechanics; Population Dynamics; Noise-Induced Effects; Stochastic Modeling; Noise in 
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1. Introduction 

Predictive microbiology exploits mathematical models to 
describe bacterial dynamics in different products of food 
industry. The models take into account the role played by 
environmental variables, whose variations can affect, 
sometimes dramatically, the quality and safety of the 
food products. Predictive models belong to three differ- 
ent types: primary, secondary and tertiary [1]. The first 
class of models allows to obtain the time evolution of 
microbial populations. The models belonging to the sec- 
ond type give information on the relationship between 
parameters which appear in primary models, and physi- 
cal and chemical variables such as T (temperature), pH 
(hydrogen ion concentration), and aw (activity water). 
The third class of models puts together the primary and 
secondary ones, letting the evolution of physical and 
chemical variables be considered, when analysis and 
prediction of the concentration of spoiling or pathogen 
bacteria of the food are performed [2]. 

A well-known method for the theoretical analysis of 

microbial growth exploits generalized Lotka-Volterra 
(LV) equations [3,4], which allow to describe the dy- 
namics of two competing bacterial populations in differ- 
ent food products. A prototype model structure for mixed 
microbial populations in food products was proposed by 
Dens et al. [5]. A similar approach indicated that ex- 
perimental data for Escherichia coli O157:H7 in ground 
beef could be well reproduced by an interspecific compe- 
tition model for two bacterial populations. In the same 
work the effects of random fluctuations were considered 
using growth rates whose values are obtained from uni- 
form random distributions [6]. An extensive review on 
predictive microbiology showed that in general a sto- 
chastic approach provides predictions which exclude the 
worst-case scenario [7]. In particular, stochastic terms 
were introduced to reproduce and predict bacterial dy- 
namics, exploiting an approach based on primary and 
secondary growth models [8]. Moreover other authors 
presented a stochastic model which interprets the bacte- 
rial growth as the average evolution of many cells: 
measured values of the growth rate for many different 
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cells allow to describe the theoretical growth rate used in 
the model as a stochastic variable with a corresponding 
probability distribution [9-11]. Finally, a stochastic eco- 
logical model, based on the Verhulst logistic differential 
equation, was devised [12]. 

The previous models however do not include explicitly 
stochastic terms in the equations of motion of the sys- 
tems analyzed. In other words, the models used in pre- 
dictive microbiology are not usually based on stochastic 
differential equations. 

Aim of this paper is to analyze how predictions for 
bacterial dynamics are affected by the three following 
features: 1) use of differential equations (dynamical ap- 
proach); 2) presence of interactions among bacterial 
populations; 3) introduction of stochastic terms, i.e. noise 
sources, which mimic the random fluctuations of envi- 
ronmental variables. In the following we present a gen- 
eral approach to model the bacterial dynamics in food 
products, taking into account three different situations of 
microbial growth in real food systems. 

2. The Model 

The theoretical approach is based on generalized Lotka- 
Volterra (LV) equations, in which the bacterial growth 
rates depend on environmental variables, such as tem- 
perature, pH, and activity water, whose randomly fluctu- 
ating behaviour can be modeled by inserting terms of 
additive white Gaussian noise. 

2.1. Bacterial Growth in Fish Products 

In this section we consider an interspecific competition 
model to describe the dynamics, during the refrigerated 
storage, of two bacterial populations, i.e. Aeromonas 
hydrophila and the aerobic mesophilic bacteria (AMB), 
located on gilthead seabream (Sparus aurata) surfaces. 
Aeromonas hydrophila is a foodborne disease agent bac- 
terium, present in water and many food products of ani- 
mal origin, such as seafood, shellfish, milk, meat-based 
products and in general raw foods [13-18], while AMB 
represents the count of total microflora normally distrib- 
uted on fish surfaces. The dynamics of the two popula- 
tions can be described by the following primary model 
based on generalized LV equations 
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for the dynamics of the two populations. In Equations 
(1)-(4) Ah  and ABM  are, respectively, the popula-
tion concentrations of A. hydrophila and AMB at time t, 

N N

max
Ah  and  are the maximum specific growth rates 

of the two bacterial populations,  and  are 
the theoretical maximum population concentrations un-
der monospecific growth conditions, /Ah AMB

max
AMB

max
AhN max

AMBN

  and 

/AMB Ah  are the interspecific competition parameters of 
AMB on A. hydrophila and vice-versa, respectively; 

Ah  and AMBQ  represent the physiological state of the 
two bacterial populations. Moreover, the behaviour of the 
growth rates is given by the following secondary model 

Q
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b pHT b O T

    
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0 1 2pHAMBLn c c c T                 (6) 

where 2  and 2  indicate the concentrations of 
oxygen and carbon dioxide, respectively. The values of 
the parameters in Equations (5) and (6) are 

O CO

0 4.5b   , 

1b 829  , 2 51b 0.01  , , 3 0.00122b   4 0.184b  , 

5b 0.00114  , and c0 2.5050  1c, , 0.2267 
2c 0.0072 . 
The whole dynamics of the system is described by a 

tertiary model, which combines the previous primary 
model for the time evolution of the microbial populations 
[19] with the secondary model [20,21] connecting the 
growth rates of A. hydrophila and AMB with physical 
and chemical variables. 

Equations (5), (6) are solved by numerical integration, 
setting pH 7.0 , 2CO % 1.0 ,  and letting 
the temperature vary. The growth rate curves are shown 
in Figure 1. The temperature values used in the model 
were obtained experimentally and are also shown in 
Figure 1 (gray line). 

O% 20

In the figure it is possible to observe that the theoreti-
cal results both for A. hydrophila (dashed black line) and 
AMB (full black line) are in a very good agreement with 
the corresponding experimental data (black squares for A. 
hydrophila, black circles for AMB). Specifically, the 
theoretical values are within the experimental errors 
(vertical bars) for both populations. Conversely, previous 
results showed a much worse agreement between ex- 
perimental and theoretical growth curves, when no inter- 
action terms between the two bacterial populations are  
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Figure 1. Theoretical growth curves for A. hydrophila 
(dashed black line) and AMB (full black line), and corre-
sponding experimental data (black squares for A. hydro- 
phila, black circles for AMB). Vertical bars indicate the 
experimental errors. The fluctuating temperature values 
(grey full line) used in the model were measured during the 
experimental analysis. 
 
included in the model [21]. This confirms the presence of 
interspecific interaction and the critical role played by 
the randomly fluctuating temperature in the dynamics of 
A. hydrophila and AMB. 

2.2. Bacterial Growth in Meat Products: Two 
Interacting Populations 

In this section we introduce a model for the dynamics of 
two competing bacterial populations, Listeria monocyto- 
genes and lactic acid bacteria (LAB), present in a meat 
product, i.e. a traditional Sicilian salami (Salame S. An- 
gelo PGI (Protected Geographical Indication)) very im- 
portant from the point of view of the Italian food industry. 
Specifically, L. monocytogenes is a microbial agent of 
foodborne disease, while LAB constitute the normal 
bacterial flora of the substrate. The primary model is 
based on the following system of generalized Lotka- 
Volterra equations [5,6] 
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Here, LmoN  and LABN  are the population concentra-

tions of L. monocytogenes and LAB, respectively; Lmo  
and LAB  represent the maximum specific growth rates 
of the two populations, and max

LmoN  and max
LABN  are the 

theoretical maximum population concentrations. The 
coefficients /Lmo LAB  and /LAB Lmo  are the interspecific 
competition parameters of LAB on L. monocytogenes 
and vice-versa. Lmo  and Q LAB  represent the physio- 
logical state of the two populations. 

Q

To solve Equations (7)-(10) it is necessary to set how 
max
Lmo  and max

LAB  vary. This can be done by introducing 
for the maximum growth rates the following secondary 
model 
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obtained by a phenomenological approach (see Ref. [22] 
and references therein). Here, NIT is nitrite concentration 
in  and LAC is lactic acid concentration in . 
The values 0.88, 41.4, 0.923, 4.97, and 350 represent 

min  (˚C), max  (˚C), min , min

ppm 1gl

T pH  and max , 
respectivley. Temperature, pH, and activity water are 
described as stochastic processes. In particular, their dy- 
namics is given by two different contributions: 1) a line- 
arly decreasing deterministic behaviour within a time 
interval of 168 h, according to the procedure followed 
in the production process (a fermentation period of 7 
days); 2) terms of additive white Gaussian noise, which 
account for the presence of random fluctuations due to 
environmental perturbations. By this way the following 
system of three stochastic differential equations is ob- 
tained [22] 
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where  i , with t , pi T H,aw , are statistically inde-
pendent Gaussian white noises with the following prop-
erties 

  0i t                     (16) 

    i i it t t      ,t        (17) 
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shown in Figure 3. Here, the histograms indicate that the 
best agreement between the theoretical distributions 
(white bars) and experimental one (black bars) is observed 
when the bacterial dynamics is obtained for values of the 
noise intensities different from zero (stochastic dynam-
ics), and in particular for , 12 10T

  4
pH 10  , 

41.5 10aw    (see panel c). This result accords with 
the complex nature of the system analyzed, in which 
random fluctuations of environmental variables such as 
temperature, pH and activity water, are present. 

and i  are the noise intensities. 
As a first step, Equations (7)-(15) have been solved 

numerically within the Ito scheme, performing 1000 re- 
alizations and obtaining the mean growth curves in ab- 
sence of noise ( 0T  , pH 0  , 0aw  ). The initial 
concentrations of the two populations, however, have 
been set randomly. Specifically, in each realization the 
initial values of Lmo  and N LAB  have been extracted 
from two Gaussian distributions, whose mean values and 
standard deviations were equal to those of the distribu- 
tions experimentally observed [23]. The results, obtained 
for suitable values of the interaction parameters 
( /

N

0.656Lmo LAB  , /LAB Lmo 0  ), are shown in Figure 2. 
Here we note that the theoretical curves of L. mono- 
cytogenes (dashed black line) and LAB (full black line) 
fit very well the corresponding experimental data (black 
squares for L. monocytogenes, black circles for LAB). 
This indicates that the interaction, present in the model, 
between the two bacterial populations reproduces a fea-
ture of the real biological system [24-26]. In particular, 
we note that the condition /LAB Lmo 0   implies the ab-
sence of any direct effects of L. monocytogenes on the 
dynamics of LAB. On the other side, the limiting effect 
of LAB on the growth of L. monocytogenes, obtained for 
a suitable positive value of the other interaction parame- 
ter ( /Lmo LAB 0.665  ), determines conditions for the 
coexistence of the two populations, according to empiri- 
cal data [23,27,28]

2.3. Bacterial Growth in Meat Products: Three 
Interacting Populations 

In the previous section we applied an interspecific com- 
petition model, based on Lotka-Volterra equations, to 
describe the time behaviour of L. monocytogenes and 
LAB during the fermentation step of S. Angelo salami. 
The aim of this section is to extend this approach, taking 
into account a third bacterial population, that is Entero- 
bacteria, whose role is critical for the safety and quality 
of several meat products, since this bacterial family con- 
tains many foodborne human disease agents as well as 
spoiling bacteria for salami. In particular, we analyze the 
effects due to the interaction among the three populations, 
in view of reproducing the biological competition and 
better simulating the real bacterial growth. The competi- 
tion among different bacterial populations can be ex- 
plained recalling that some species determine substrate 
modifications, which can favour or inhibit the growth of 
other populations. These effects can be modeled by in- 
teraction terms, each one reproducing the influence of a 
specific population on the dynamics of another bacterial 
group. To stress the importance of the interspecific com- 
petition in modeling bacterial dynamics, we consider 
temperature, pH and aw as deterministic variables, sub- 
ject to a decreasing time behaviour, without any random  

. 
As a second step, we analyzed the role of the random 

fluctuations on the dynamics of the system. For this pur- 
pose, we solved again Equations (7)-(15) both in deter- 
ministic regime and for three different values of the noise 
intensities T , pH  and aw , obtaining the theoretical 
probability distributions of L. monocytogenes concentra- 
tion at the end of the fermentation period (168 hours). 

Predicted results, together with observed data, are  
 

 

Figure 2. Theoretical growth curves for L. monocytogenes (dashed black line) and LAB (full black line), and corresponding 
experimental data (black squares for L. monocytogenes, black circles for LAB). Vertical bars indicate the experimental er-
rors. 
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Figure 3. Theoretical distributions (white bars) of the L. monocytogenes concentration at 168 hours for (a) 0T  , pH 0  , 

0aw  , (b) , , 210Tσ
 4

pH 5 10σ   510awσ  , (c) 12 10Tσ
  , 4

pH 10σ  , , (d) 41.5 10awσ   15 10Tσ
  , 

, . Black bars represent the corresponding experimental distribution. 410
pHσ   510awσ 

 
fluctuations. Specifically, the model is obtained starting 
from Equations (7)-(12) and introducing two additional 
equations, one for Ent  (Enterobacteria concentration), 
the other for 

N

Ent  (physiological state of Enterobacte-
ria). By this way, we obtain the primary model for the 
three populations [29] 
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where Ent , N max
Ent  and max

EntN , referring to Enterobac-
teria, are bacterial concentration, maximum specific 
growth rate and theoretical maximum population con-
centration, respectively. The coefficients /Lmo Ent  and 

/Ent Lmo  are the interspecific competition parameters of 
Enterobacteria on L. monocytogenes and vice-versa. 
Analogously /LAB Ent  and /Ent LAB  are the interspecific 
competition parameters of Enterobacteria on LAB and 
vice-versa. Finally, Ent  represents the physiological 
state of Enterobacteria. All other variables and parame-
ters are the same as defined is the previous section. 

Q

The secondary models for max
Lmo  and max

LAB  are the 
same as those used in the previous section (see Equations 
(11), (12)). The expression for max

Ent , here not given, is 
very similar to that for  (see Equation (6) in ma

AM x
B
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Section 2.1) and was devised by using 107 experimental 
growth curves (see Ref. [29] and references therein). The 
initial values were chosen according to values measured 
at time  for the three bacterial concentrations. The 
environmental conditions refer to the fermentation period 
(168 hours) with temperature decreasing from 20˚C to 
12˚C. Changes in other environmental variables followed 
the behaviour measured in experimental observations. 
Specifically, pH, aw and lactic acid concentrations were 
characterized by a decreasing behaviour from 5.8 to 5.6, 
from 0.972 to 0.946 and from 166 mM to 200 mM, re-
spectively. On the same basis, the sodium nitrite concen-
tration was set to the constant value of 90 ppm. The 
growth curves for the three populations were obtained 
both in no-interaction regime (

0t 

/ 0Lmo LAB  , / 0Lmo Ent  , 

/LAB Lmo 0  , / 0LAB Ent  , / 0Ent Lmo  , / 0Ent LAB  ), 
and in the presence of the following interaction effects: 
action of LAB and Enterobacteria on L. monocytogenes 
and action of LAB on Enterobacteria ( / 0.65o LABLm  , 

/Lmo Ent 0.18  , / Lmo 0LAB  , / 0LAB Ent  , / 0Ent Lmo  , 

/ 40Ent LAB 0. 

3. Conclusion 

). The result

ology is an

s, s

 interesting t

hown in Figure 4, indicate 
that neglecting the interspecific bacterial interactions 
causes the theoretical curves to overestimate the concen- 
trations of L. monocytogenes and Enterobacteria (see 
panel a), which play a crucial role from the point of view 
of the human health. Conversely, the presence of inter- 
specific bacterial interactions allow to obtain a very good 
agreement between expected and observed behaviour 
(see panel b), providing an improved model in view of 
possible applications within the production processes. 

Predictive microbi ool which al-
lows to describe microbial evolution in food products as 
a function of environmental conditions, especially when 
models take into account bacterial interactions and ran-
dom fluctuations of chemical and physical variables. In 
this perspective, the results presented here can be useful 
to better understand the role of the microbial interaction 
and environmental noise. Our findings, obtained in three 
different systems, indicate that interspecific bacterial 
interaction and environmental random fluctuations are 
essential for a more precise and reliable prediction of the 
bacterial dynamics. In particular we note that the time 
evolution of the microbial concentration both in fish and 
meat products shows the same characteristics: a slow 
increase is present during the first part (lag-time) of the 
dynamics; afterwards a rapid increase (log-phase) of the 
bacterial concentration takes place until the curve reaches 
a saturation value (stationary phase), which corresponds 
to the maximum bacterial concentration measured. In the 
case of L. monocytogenes behavior in meat products, the 
log and stationary phases are not evident since the  

 
 

 

Figure 4. Theoretical growth curves for L. monocytogenes 
(dotted black line), Enterobacteria (dashed black line), LAB 
(full black line), obtained (a) in absence of interspecific in-
teractions ( // /0, 0,  0,  Lmo LAB Lmo Ent LAB Lmo   / 0LAB Ent  , 

0Ent / Lmo  , 0Ent / LAB  ) and (b) considering

d Enterob

ia ( 0.40Ent / LAB

 interactions 

an acteria on L. monocytogenes 
( / 0.65Lmo LAB  , / 0.18Lmo Ent  ) as well as of LAB on En-

te

of LAB 

robacter   ).

t to zero. Cor

 The other interaction pa-

rameters are se responding experimental data 
are also shown (black triangles for L. monocytogenes, black 
squares for Enterobacteria, black circles for LAB). 
 
bacterial growth is affected by adverse environmental 
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