
Journal of Modern Physics, 2013, 4, 1050-1058 
http://dx.doi.org/10.4236/jmp.2013.48141 Published Online August 2013 (http://www.scirp.org/journal/jmp) 

General Spin Dirac Equation (II) 

Golden Gadzirayi Nyambuya 
Department of Applied Physics, National University of Science and Technology, Bulawayo, Republic of Zimbabwe 

Email: physicist.ggn@gmail.com 
 

Received April 10, 2013; revised May 13, 2013; accepted June 27, 2013 
 

Copyright © 2013 Golden Gadzirayi Nyambuya. This is an open access article distributed under the Creative Commons Attribution 
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

ABSTRACT 

In an earlier reading [1], we did demonstrate that one can write down a general spin Dirac equation by modifying the 
usual Einstein energy-momentum equation via the insertion of the quantity “ s ” which is identified with the spin of the 

particle. That is to say, a Dirac equation that describes a particle of spin 
1

2
sS σ  where  is the normalised Planck con- 

stant,  are the Pauli  matrices and 



σ 2 2  1, 2, 3, ,etc.s      . What is not clear in the reading [1] is how such a 

modified energy-momentum relation would arise in Nature. At the end of the day, the insertion by the sleight of hand of 
the quantity “ s ” into the usual Einstein energy-momentum equation, would then appear to be nothing more than an 
idea belonging to the domains of speculation. In the present reading—by making use of the curved spacetime Dirac 
equations proposed in the work [2], we move the exercise of [1] from the realm of speculation to that of plausibility. 
 
Keywords: Curved Spacetime Dirac Equation; General Spin Equation; Unified Field Theory 

1. Introduction 

In an earlier reading [1], it is argued without a proper 
physical basis but more out of mathematical curiosity 
that the modified dispersion relation or the modified 
Einstein energy-momentum relation: 

2 2 2 2 2 4
0 ,E s c m c p             (1) 

leads1 to a General Spin Dirac Equation. That is to say, 
the resulting Dirac equation describes a particle of spin 

1

2
s S σ  where  is the normalised Planck constant,  
1 2 3   σ i j  k  where k  are the usual 2 2  

Pauli matrices and i, j, k are the three orthonormal basis 
on the xyz

c

 grid. In the dispersion relation (1.1),  is 
the total energy of the particle,  is its momentum, 0  
its rest mass and  is the speed of light in vacuum. 
What is not clear in this reading [i.e. in Ref. 1] is how 
such an energy-momentum relation would arise in 
Nature in a manner that can be justified without making 
ad hoc and hand-waving arguments. At the end of the 
day, the insertion by the sleight of hand of the quantity 
“

E
mp

s ” into the usual Einstein energy-momentum equation: 
2 2 2 2 4

0 ,E c m c p            (2) 

would then appear to be nothing more than a product of 

agile mathematical curiosity, speculation and chicanery, 
without anything to do with physical and natural reality 
as we know it. Herein, by making use of the three curved 
spacetime Dirac equations proposed in [2], we move the 
exercise of [1] from the realm of curiosity, speculation 
and chicanery to that of plausibility. 

As already stated, in (1), it is not clear why the quantity 
“ s ” has to take integral values  1, 2, 3, ,etc.s      . 
Because spin has to take integral and half integral values, 
it was assumed without proof that this quantity “ s ” has 
to take integral values. This off cause is a hole in the 
theory that needs to be filled. This reading will furnish 
this missing part in the “General Spin Dirac Equation” 
proposed in [1]. We not only demonstrate how “ s ” 
comes to be part of the dispersion relation 

, but how and why this quantity comes 
to take only integer values. 

2 2 2 2
0E c m p 4c

In summary, the aim or envisaged achievement(s) of 
the present work are threefold, i.e.: 

1) We unambiguously demonstrate how the quantity 
“ s ” becomes a part of the Einstein energy-momentum 
dispersion relation. 

2) We prove that “ s ” can only take integral values  

 1, 2, 3, ,etc.s      . 

3) We generalise the notion of a “General Spin Dirac 
Equation” to include all the three curved spacetime Dirac 

1NB: This modified Einstein energy-momentum relation (1.1) leads to 
a Lorentz invariant modified Dirac equation. 
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equations [proposed in 2]. 
Now, in-closing this section, let us give a brief 

synopsis of the present reading. It is as follows. In the 
next section, we are going to give a brief exposition of 
the curved spacetime Dirac equation first presented in [2]. 
In the successive section, we are going to dwell on the 
main thrust of the present reading by demonstrating how 
“ s ” comes to be part of the dispersion relation 

 and as-well how and why “2 2 2 2 2 4
0E s c m c p s ” 

comes to take only integer values. Thereafter, we give a 
general discussion and the conclusions drawn thereof. 
Lastly, we are of the very strong view that any reader 
that wants or seeks to make sense of the present reading 
must first go through the readings [1,2] as these are 
minimum prerequisites. Otherwise, if they [the reader] do 
not do so, they will miss the main content and morass 
substance of the present reading. 

2. Curved Spacetime Dirac Equations 

As is well known, the Dirac equation is derived from the 
fundamental equation , where 2 2

0p p m c 
    is 

the usual flat Minkowski metric with spacetime signature 
 1, 1, 1, 1    . We know that its equivalent in curved 
spacetime is given by: 

2 2
0 ,g p p m c 

                  (3) 

where the four momentum p  is given by 
 ,p E c  p  and g  is the metric of spacetime. In 

order to aid the reader in visualizing (3) in a way that 
conforms to the end that we seek, we have to write this 
equation in its equivalent matrix form, i.e.: 

T

00 01 02 03

10 11 12 132 2
0

20 21 22 23

30 21 32 33

.x x

y y

z z

g g g gE c E c

g g g gp
m c

g g g gp p

g g g gp p

    
    
    
    
    

    

p
    (4) 

Above in (4), the “T ” in the superscript of the column 
vector denotes the transpose operation on that column 
vector. 

Now, in writing down the curved spacetime version of 
the Dirac equation [in the reading 2], we made a novel 
suggestion of writing down the spacetime metric tensor 
g  as: 

      1
,

2
a a a ,g A A                  (5) 

where A  is some four vector and . In 
general, the metric 

1,2,3a  
 ag  is such that: 

 

0 0 0 1 0 2 0 3

1 0 1 1 1 2 1 3

2 0 2 1 2 2 2 3

3 0 3 1 3 2 3 3

,a

A A A A A A A A

A A A A A A A A
g

A A A A A A A A

A A A A A A A A



 
  

  


      















   (6) 

where for  1; 0a   ,  2; 1a     and  
 13;a    . In the case  , there are no 
off-diagonal terms in the metric, while for the cases 

1a 

 2,3a  , we have off diagonal terms [see 2]. As shown 
there in [2], the resulting three curved spacetime Dirac 
equations are given by: 

  0 0,ai A m c 
                      (7) 

where2: 

 

 

2
0

2

2
2

2
2

0
,

0

2 11
.

2 1 2

a

k
a

k
k

I

I

I i

i I







 


 

 
   

 
 
    

σ

σ

     (8) 

In the above (and hereafter), 2I  is the 2  identity 
matrix, 

2
k  is the usual  Pauli matrices and the 

’s are 
22

0 2 2  null matrices. It is not a difficult exercise 
to show that multiplication of (7) from the left handside  

by the operator  
†

0ai A m c 
     leads us to the  

curved spacetime Klein-Gordon equation  
 22

0g m c 
      , provided . 

The condition 
0A A 

    
0A A 

     , should be taken as a 
gauge condition restricting this four vector. In the next 
section, we are going to demonstrate the Lorentz 
invariance of the curved spacetime Dirac equation (7). 

2.1. Lorentz Invariance 

To prove Lorentz invariance3, two conditions must be 
satisfied, these two conditions are: 

1) Given any two inertial observers O  and O  
anywhere in spacetime, if in the frame  we have  O

   0 0ai A m c x 
      , 

then 

   0 0uai A m c x            

is the equation describing the same state but in the frame 
2In Equation (1.8) above, the term  a

A   must be treated as a single 

object with one index  . This is what this object is. One can set 

   a
A

a

    . The problem with this setting is that we need to have to 

object A  and  a

  clearly visible in the equation. 
3There is a difference between Lorentz invariance and Lorentz covari-
ance. In most cases as in the present, Lorentz invariance is used to 
mean Lorentz covariance. We are not going to go onto explaining what 
is the difference between the two. We sincerely believe that our target 
readership knows this and if they do not, they have access to consult 
any good textbook that deals with the theory of relativity (spe-
cial/general). The usual Dirac equation is Lorentz covariant and not
Lorentz invariant—this needs to be stated categorically clear. We have 
chosen to use the term Lorentz invariance instead of Lorentz covari-
ance because the term Lorentz invariance is what is usually used. 
In-order that we are on the same level of understanding with the gen-
eral reader, we do not have to deviate from the standard terminology. 
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O . 
2) Given that  x



 is the wavefunction as measured 
by observer , there must be a prescription for observer 

 to compute 
O

O x    from  x  and this describes 
to  the same physical state as that measured by . O O

Now, since A  and   are both vectors, the 
quantity A

  is obviously a scalar. From this, it 
follows that a Lorentz transformation is not going to 
affect   and  a

  i.e.: 

     ase

       
, C I

,  and .
, Case II a ax

S x

x  
  


   



     (9) 

The meaning of the above is that the matrices  a
  

are constant matrices and the Dirac four component   
is represented in Case (I) where it is a scalar. The Dirac 
four component   is not constrained to only be a scalar. 
In Case (II), we can have this transform under a 
multiplication of   by some constant matrix . If 

, then this matrix will have to be such that 
 in-order for Lorentz invariance to hold. 

S
 ,S S t r

aA 
  

The present exercise to re-demonstrate the Lorentz 
invariance of (7) has been conducted so as to demon- 
strate the all-important difference that we must always 
take note of, that is, in the bare Dirac theory, the 

0S 

 - 
matrices and as-well the four component function  , do 
transform under a Lorentz transformation. This is not the 
case here;  a

  is a constant matrix and the Dirac four 
component function   is scalar. In the reading [2], this 
very important fact that  a

  is a constant matrix and 
that the Dirac four component function   can be scalar, 
was missed altogether, hence the need to make this clear 
at the present moment in the further development of the 
curved spacetime Dirac equation.  

Additionally, we have shown here that Equation (7) is 
not Lorentz covariant but Lorentz invariant. The orginal 
Dirac equation is not Lorentz invariant but Lorentz con- 
variant—this is something to be noted as it distinguishes 
the present effort from that of [3,4]. 

2.2. General Magnitude of a Four Vector 

In this section, we are going to look into the issue of the 
magnitude of a four vector. For example, the square of 
the magnitude of the four momentum p  is such that 

2 4
0g p p m c 

  . If we take a general four vector V  , 
then . Notice that in 2g V V 

  2 4
0g p p   m c , 

 is a constant, it has the same value everywhere all 
the time; so that in general we can assume that the 

2 4
0m c

  in 
, is a constant aswell. We ask, “In general, 

does 

2g V V 
 

  have to be a constant?” The answer to this 
question is a bold no! It only has to be a scalar since the 
quantity g V V 

  is a scalar. A constant is a special 
kind of a scalar, it is a scalar that takes the same value 
everywhere all the times. If   is a general scalar, then 

 , t  r . 
Given the above thesis i.e. , what we seek 

here is a function that gives the value of 
 , t  r

  at the 
different  , tr -points. Since 0 0

0 0 , g g r t

0
0

 is itself a 
scalar, we propose that, in general, the magnitude of all 
four vectors in spacetime be such that g  , so that: 

2 0
* 0 ,g V V g 

                (10) 

where *  is a constant which takes the same value 
everywhere all the times for-all observers. The quantity 

*  has the dimensions as that of V  . 
One may very well be tempted to ask the good 

question “What is the motivation for (10)?” Well—as 
will be seen in the next section; the motivation for the 
proposal (10) is that if we do not have such a setting, 
then contrary to experience, the rest mass of a particle in 
a curved spacetime will have to depend on where the 
particle is, and when it is at that place where it is— 
simple,  0 0 ,m m t r . To avoid this, we have no choice 
but to impose (10). 

2.3. Energy Solutions 

The energy-momentum equation for the particles descri- 
bed by Equation (7) is: 

     
 

2 20 2 0 2

2 2 4
*

2

,

k k
k k

j k
j k i j

2A E A A p c E A p

c A A p p m c





 

 

c



2 4 0
0 0m c g 

    (11) 

where in line with (10), we will have   2 4 2 4 0
* 0 0m c m c A A

 22 4 0
0m c A , where  is a constant; and is  0m

the rest mass of the particle in question. 
Now, dividing (11) throughout by  20A , we will 

have: 

2

2 2

0 0

2 2
0

0 0

2

.

k k

k k

j k

j k

j k

A A
E p c E p

A A

A A
c p p

A A






   
    
   
   

    
    

2

4

c

m c

     (12) 

Notice that if  were a constant, then *m

   0
0 * 0, ,m m A t m t r r  

which goes against experience. It is for this reason that 
we afore-proposed the condition (10). 

Now, setting 0
k ks A A ; and inserting these settings 

into the above, we will have: 

   22 2

2 2
0

2

.

k k
k

j k
j k j k

E s p c E s p

c s s p p m c






 

   

2

4

k c

the subject of the formula, we will have: 

     (13) 

Making E  
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   2 2 2k kE s p c s p c s   
2 2 2 4

0 .k j k
k k k j k j k

p c c s s p p m c


                       (14) 

 
From this, it is clear that we will have three negative 

en
4) to 

ju

ergy particles and three positive energy particles. 
Now, in the next section, we are going to use (1
stify the insertion of “ s ” into the Einstein equation 
2 2 2 2 2 4

0 .E s c m c p Note t at the equation  
 is in (14) the case 

h
2 2 2 2 2 4

0E s c m c p for 0  . 
Demonstrating how the “ s ” comes to be p

2 2 2 2 2 4
0E s c m c p , also p ves for the other cases 

art of 
ro

1   . 

3. Justification 

e case Let us consider th 0 
is ass

. Space is usually 
assumed to be isotropic. Th umption finds solid 
justification form experience since observations reveal 
no directional properties of space, the deeper meaning of 
which is that space must have no preferential direction or 
directional properties. In the case of the metric (5), 
isotropy would mean that the space parts of the four 
vector A  must all be equal or identical to each other, 
that is spaceA  for-all kA  1, 2,3j  . If this were the 
case tha , thent spacekA A  ks s  for-all  1,2,3k  . 
From this,  that fo case it follows r the 0  l 
have the energy-momentum equation: 

2 2 2 2 2 4 .E s c m c p     

, we wil

0            (15) 

Thus, the equation 
fo

2 2 2
0E s c p

is left is to justify 

2 2 4m c  finds its sort 
r justification. What why and how 

“s” comes to take integral values  1, 2, 3, ,etc.s       
i.e. why and how s  where  
positive and negative ers. 

Before we go on to supply th

  in the set of all
 integ

e above mentioned proof, 
let us write down the general spin dispersion relationship 
for a particle whose spacetime is isotropic. This we are 
going to do so that, we supply, not only the proof of why 
and how s  for the case 0  , but for the other 
two cases ll i.e. 1as-we    . T general dispersion 
relationship of a particle e spacetime is isotropic is 
given by: 

he 
 whos

3

1

3 3
2 2 2 2 2 2 4

0
1 1

.

k
k

j k j k
j k

E s p c

s c s c p p m c








 

   
 

    



p
    (16) 

Now, (7) can be written in the general Schrödinger 
formulation as ˆ ˆ     where ̂  and ̂  are the 
Hamiltonian and rators res ctively o doing, 
i.e. writing (7) in the said form, we will have: 

energy ope pe . S

 
0 0

0
k k

kai s m c i
t

          
      (17) 

From this, it follows that the new General Spin Dirac 
Hamiltonian    a

D s  is given by: 

     
0 0

0 .a k k
D kas i s m c            

Spin 
lar mom  

   (18) 

This General Dirac Hamiltonian commutes with 
the total angu entum operator  s  i.e. 

     , 0a
Ds s     3  and for-all  1, 2,a  for-all 

 1, 2, 3, ,etc.     . The proof of this assertion is 
supplied in the Appendix. This fact th
s

at  

     , 0a
Ds s    tant as it  is impor tells us that  

 s  is the total an
. The operator 

gular momentum of the particle 
since it commutes with the Hamiltonian

 s  is such that: 

     

   

,

1
where, and ,

2 s s

s s s

s s i

 

   Σ r





 


 (19) 

and as-well: 
1 1 2 2 3 3

1 2 3and .

s

s

s s s

s s s
x y z

  

  
   

  

Σ   i j k

i j k
     (20) 

The ’s are k 4 4  matrices such that: 

ij
4

0
,

0

k
k i j

k
I





 

   
 

         (21) 

w ij  is the ecker-delta function whhere Kron ich is such 
that 1ij   for i j , and  for0ij   i j  and 4I  
is (an fd herea ter) the 4 4  identity matrix. Clearly, 
 s  is th

wis
e orb um paital angular moment  of the rticle 

and like e,  s  is the associated spin matrix. 
No prove t sw, to hat  , st step, let us defi  

the 44
as a fir ne

  spin-operators

1ˆ ˆ
x   

: 

2ˆ

ˆ
y 

 

                 (22) 

3

ˆ

ˆ
z









Further, let us define the  spin-ladder operators  44
̂  which are such that: 

ˆ ˆ ˆ

ˆ

ˆ ˆ

x
y z

ˆ ˆ

ˆ

y
z x

z
x y

i

i

i





   



  
  

 

                 (23) 

 , ,x y zIn the above (and hereafter),  represent 
 1,2,3k 
without no

 respectively. NB: ter, we shall 
tice interchange the lab dices i.e., 

 hereaf
els or in
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sometimes we shall use  and sometimes 

 spin-l
 the co r relationship: 

      

 1,2,3k 

adder o
mmutato

,k

 , ,k x y z . 
Now, these

the operators 
4 4  
ˆ kS  by

perators are related to 

ˆ ˆ ˆ, .i j ij jS 
             (24) 

Now, we propose the following eigenvalue equation: 

ˆ k ks                   (25) 

wh k kere s   e eigenvalue corresponding to the 
operator ˆ k  cting on 

is th
a  . How does such an 

eigenvalue equ ion come about? Well, in-order toat  have 
ue equation, 

 that: 
this eigenval
defined such

the opera

 

tor ˆ k  should be 

2ˆ k k

k

i
S

,





                (26) 

where    the thk -component of the phase of the 
particle. That is, if p

kS  is

  is the four momentum of a 
particle and x  is its four position in spacetime, then, 
the phase of this particle S  is such th  S p xat 

 . 
This phase can be s

2p x
hat 

3
3S p

t s
m

p
2

x

a

lit into four com  
3 . T

we can write 

ponents as

1
k

kS p

0 1p x
uch

 of

0 1S p x 
then are s

2
2S p x , 
 k

3x

 S 
p

 t 0

 , so, 

he components  kS  
0  and  

1
1S p x , 0p x

 2  3  k

and the ’s are no umming up as is the case in the 
usual Einstein sum tion convention. Now, the 
wavefunction  any particle is a function of the phase, 
that is, 

x  

eiS   . Further the phase of  
spacetime Dirac particle is given by 

, a curved
 0, ,S S s p p  

3
0 0 1 1 2 2 3

0 1 2
3s p x s  p x s p x s p x  so that   kkS S   . 

With all this, it is no ow the eig  
5) omes about. 

Now, multiplying (25) by k  from the left, we will 
have ˆk k ks

s
aluew ar, h cle env

Equation (2  arises or c

    . From this, it follows that we can 
rewrite (1.17) as: 


 


0 0

ˆ
ˆ

k k

k k ki m c i
t0 .ka


   


    





) 

Acting on this equation from the left by ˆ

 


   (27 

zS , one can 
ea



sily show by using the fact (24), namely 
ˆ ˆ ˆ,z z

  ˆ ˆ, 0j z

   for  ,j y z  and as- 

well the fact that 

z





k 

S , 
  

 , 0a     and  , 0a ˆ k    , one  
e resuarrives at th lting equation: 

        0

10
0 1 ,

1x x y y z z
x y za a as s        

  
sz

sz
m c i

t


  




   


    (28) 

i s
 

where 1sz
Ŝ ˆz k k   is equ  : in th ation i.e. (28) xs  

and ys  remain u  the a f the nchanged by
operation ˆ

pplication o
z
 , while zs  changes by one unit. T  

above equation describes a particle of spin

he 

 1

1

2 sz 
σ   

where  1 1x x y y z z
sz

s s s     σ i j k . The operator 
ˆ zS perator ˆ zS   increases zs  by one unit, while the o

decreas by one unity. If we want to 
simultaneously raise or lower the spin for-all the 

es this quantity 

 : , ,ks k x y z , then we have to act on (28) using all the 
three operators i.e. ˆ x

 , ˆ y
  and ˆ z

 . This means we 
can define the operator: 

 ˆ ˆ ˆ ˆˆ ,k x y z
              

in e

        (29) 

which then acts on (28). That is, acting from the left on 
(28) using this new operator  ˆˆ k

  , and thereafter 
perform g th  necessary algebraic operations, the 
resulting equation is: 

   
0 1 ,k ki s     0 1

0

ks
k ka s

m c i


  


     (30) 
1 t 

where  
1

ˆ ˆˆ k k k
ks

 
     , that is, 

1ks



 is the  

wavefunction of the particle   he spin quantum 
k

where t
s  of   has either been increased    or decreased 
   by one unit for-all the t directiohree ns xyz . 

No “ ksw,  prove that  to ” only take lues, we 
simple have to prove t e of the values of “

s integral va
hat on ks ” is an 

integer. Since “ ks ” on anges by integral v es, if 
of the es

ly ch
 of “

alu
just one  valu ks ”

tity m
 , th

lues of is qu u
an

of l

is an integer , all the 
other va st be integers too surely, 

en
— th an

this is not difficult to underst d. To prove that just one 
 the va ues of “ ks ” is an integer is no ifficult task to 

orm either. We know that in Minkows pacetim
t a d

perf ki e 
w

s
here 1 : 0 , 2,3A    , the energy-momentum 

dispersion relation is given by the Einstein en- 
ergy-momentum equation 2 2 2 2 4

0E c m c p ; in this 
equation 1ks

,1

  for-all  1,2,3k . If the Minkowski 
spacetime is envisaged as the lowest energy state for any 
quantum configuration, then 1ks   for-all 



 1,2,3k   
is one of the quan m mechanical states for any particle. 
Clearly, this is sufficient proof that one of the values of 
“ k

tu

s ” for-all   , 1,2,3k  is an integer. From the 
foregoing, it thus follows that “ ks ” will take only 
integral values i.e.  1ks   his com- 
pletes the f that ks

, 2, 3, ,etc. .    T
 proo   for-all  1,2,3k  . We 

have not only proved that “ ks ” is an integer, but in so 
doing, we have also proved spin is a  
physical quantity. 

4. Metric of a General Spin Dirac Particle 

From the above fin  the general 
spacetime metric of a l spin Di e. We 
have argued that the four vector 

why  quantised

dings, we can compute
genera rac particl

 A  is such that 

0k ks A A . From this, we can write down a four spin 
quantum number s . To do this, we note that the four 

Copyright © 2013 SciRes.                                                                                 JMP 
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vector A  can be written with its components as 
 0 k,A A A . Further, this can be written as  

   0 0 01, 1,k kA A A A A s   . The quantity  1, ks  is 
the four spin quantum number that we seek i.e., 

 1, ks s   where 0 1s  . For our convenience, let us 
set =0A . From this, the four vector A  can now be 
written as  1, kA s s     . Now, substituting 
A s    into (5), we will have: 

      21
, .

2
a a ag s s                  (31) 

Written in full,  ag  is such that: 

 

1 2 3
2

1 1 1 2 1 32
2

2 2 1 2 2 3

.a

s s s

2
3 3 1 3 2 3

1

s s s s s
g

s

s s s

s s

 
 s s s

s s s



  
 


 

 
   

  



   (32) 

s


 

see that th
   r




e metric is
on  since



From is, we 
variabl i

 th
e funct

 controlled by one 
  , t    and ks  are 

neral sp
all 
in 

acetime Dirac cle. 
e acetime 

co
curved

nstants. Thus, (32 is the metric) 
parti

tric of sp

 of a ge
 sp

The usual m g
tial by

 h tials. 
reduced to fou ten  th

as ten
e introd

 poten
uThis was 

the four vector 
r po ction of 

A . Now
st one p

, thes ur en ve 
o otenti s  t s 

ay 

e fo
al. Thi

 pot
 is a

tials ha
remendoubeen re d t

sim
duce  ju

plification—from ten potentials to just one potential! 
At this point, the reader m legitimately want to ask if 
g  has the same meaning as in Einstein’s General 
Theory of Relativity (GTR)? To answer this question, 
one has to visit the reading [5]. It shown there in [5] 
that the vector 

 is 
A  gives raise to the nuclear force non- 

abelian gauge field. The details of the Unified Field 
Theory presented in [5] are still being worked out. What 
the reader can do for now is simple take A  as a four 
vector and nothing else. As to whether this vector 
represents a gravitational, electric or any force field for 
that matter is of no consequence here since we are not 
concerned with the force field which this four vector 
represents. 

5. Discussion and Conclusion 

We strongly believe that this reading stifies the 
assertion made in [1], namely that the modified Einstein 
dispersion relation 2 2 2 2 2 4

0E s c m c p  leads to a 
general spin Dirac equation. When this assertion was 
made in [1], it was not clear then, as to how such a 
dispersion 

j

ture

fy t
2 2

u

tio  
the c

h ed 

rela
shown t at 

n would 
urved

arise in Na
 spacetim

sti

. We have
e Dirac equation 

e modifi
2 4

h
proposed in [2] can be used to ju

2 2Einstein dispersion relation 0E s c m c p . Not 
only have we justified this, we have also argued that “ s ” 
must take integral values. This means that, the work 
presented in [1] has be re acceptable 

pedestal. The reason we say this is because we believe 
that despited the fact that the true meaning and 
significance the curved spacetime Dirac equation derived 
in [2] has not been found yet, these curved spacetime 
Dirac equations are credible, mathematically and phy- 
sically legitimate equations. Ac emon- 
strated that these curved spacetime Dirac equation a e 
key to the attainment of a general spin Dirac equation. 

Insofar as the unification programme of physics is 
concerned, we believe that the writing down of an 
acceptable general spin Dirac equation is a step in the 
right direction. If discovered, the final unified theory is 
expected to be such that a “single  equation/principle 
will explain about every observable phenomenon. 
Amongst others, it is expected that a single equation 
must be able to explain all particles from a simple 
unifying principle. In the light of the aforestated, it i

 put on a mu

tually, it has been d
r

s 
so

ch moen

mewhat sad to say that the current state of physics vis 
the equations purporting to explain particles—is very 
“ugly”. For example, the Schrödinger equation describes 
spin-0 atoms and molecules [6], the Klein-Gordon 
equation describes spin- 0  particles (that is carriers of 
forces), while the Dirac equation describes spin- 1 2  
particles, and the Rarita-Schwinger equation describes 
spin- 3/2  particles [7]. From this rather “ugly”  trend, 
does it mean we have to look for another equation to 
describe spin- 2  particles, and then another for spin- 5 2  
particles etc? This does not look beautiful, simple, or at 
the very least suggest at the far and deeper end, a 
unification of the Natural Laws. It is on this note that we 
feel the present endeavour  are worthwhile. 

Another interesting outcome is that (7) is no lon r 
restricted to the description of Fermions, but Bosons 
aswel If this equation proves successful as h ppened 
with Dirac’s original equation, then, it will perhaps be 
the first equat n in physics to describe both Fermi  
and Bosons from a single unified principle or standpoint. 
Further, this equation shares some common ground with 
super-symmetry theories—that is, theories that try and 
unify quantum mechanics and gravitation

s
ge

l. a

io ons

; in that it 
allows for the transmutation of a Fermion to a Boson and 
vice-versa. We believe this equation might very well be 
of interest to physicists working in this field. To 
transform a Fermion to a Boson and vice-versa, one 
simple acts on the wavefunction   with the operator 

 ˆˆ k
  . In physical terms, we have no idea what an 

operation on   with  ˆˆ k
   is. For all we know is 

that from an abstract mathematical standpoint, this is 
what one must do. Our hope is that these and other 
seemingly strange concepts and operations will become 
clear as horizons of our insight deepens. 

In-closing, we would like to point out something of 
note that we have not made mention of, namely that, the 
writing down of the general spin Dirac Equations (30) 

Copyright © 2013 SciRes.                                                                                 JMP 
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has bro
im c Equ

ught about a great simplification of the three 
curved spacet e Dira ations (7). When these 
equations were first written down [in 2], we wondered if 
they would be soluble at all. To dramatise and express 
this feeling, this reading [2] was started with a quote 
from Paul Dirac, namely: 

when measured in different random directions. 
4) It has been shown that the curved spacetime Dirac 

equation leads to a Dirac wavefunction that can take a 
scalar nature, i.e., the resulting four component wave- 
function  , together with the  a

  matrices; there are 
no

v

reatly improved and refined the 
Further, I am grateful to the 
nce and Technology’s Re- 

[2] G. G. Nyambuya, Foundations of Physics, Vol. 38, 2008, 
pp. 665-677. 

[3] P. A. M. Dira yal Society B: Bio- 

, Vol. A118, 1928, pp. 351-361. 

T Aca-

926, pp. 

t affected by a Lorentz transformation. Effectively, the 
resulting curved spacetime Dirac equation is not Lorentz 
covariant, but truly Lorentz invariant in the true sense of 
Lorentz in ariance. 
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Appendix 

e are going to prove the crucial assertion that we stated 
 page (2022) without any proof, namely that:  

. To begin, we know that:  

W
on

     , 0a
Ds s     , 

for-all 1,a  2,3

     s s s    , 

from this and as-well from the fact that:  

     , 0a
Ds s     , 

it follows that:  

       , ,D Ds s s s         . 0

We also know that:  

       x y zs s s s    i j   k
and  

       x y zs s s s     i j k ; 

co ne obtains that: mbining these facts, o

     , 0a
Ds s     ,             (A.1) 

  and where , ,j x y z j j j   
, ,y z  and for-

 a

. So, if we can 
prove ( all , we 

all 
 the  

three cases

A.1) for-all j x 1, 2,3a
  0    for-

 just one of
will have proved that   , Ds s 

1,2,3a  . We only have to prove this for

 , ,j x y z , this prove is sufficient as prove 
for the rem We shall prove this for the 
case 

aining two cases. 
j x . We know that: 

 

 

4

4

z

z y

y z

I ys zs
z y

 

  
   

     (A.2) 

4 ,

x
y

x

y z

s i I
s s

i i I L s

   

   



 



where x z yL ys zs
z y

 
 

 
. From this, it follows that: 

 
 

 
2

2 x x x

0 0k k

2 01
.

0 22

x

x x x

s

I L s s
i

I L s s




 
    





  (A.3) 

Now, since       0
a

D kas i s m c     ,
e case 

 (A.1) imp- 
lies that for th  2a  , we will have: 

     0 0
02, ,k k

x k xs i s s m c     0.      

In this way, our task is now much easier, if we can 
show t

  (A.4) 

hat  

   
0

2, 0k k
x ks s      and   0,x s 0    , 

we accomplish our mission. Let us start with the
th

 

 easier of 
e two, that is, show that   , 0x s     . Clearly: 0
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Now, subtracting (A.7) from (A.6), one obtains the  

d result, namely . We are now  

left with demonstrating that 

desire   0
0, 0x s m c   

   
0

2, 0k k
x ks s     .  

Clearly, upon correct algebraic operations, one can verify 

that: 
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so that 
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which is equal to: 
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which invariably implies that:  
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ence we arrive at our desired result, namely, 
. Hence, according to our earlier 

arguments, it follows that the 
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h
   
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2, 0k k

x ks s    

main result 

     , 0a
Ds s      for-all  and for-all   1,2,3a 

 1, 2, 3, ,etc.s       is thus attained. 
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