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ABSTRACT

In an earlier reading [1], we did demonstrate that one can write down a general spin Dirac equation by modifying the
usua Einstein energy-momentum equation via the insertion of the quantity “ s” which is identified with the spin of the

particle. That isto say, a Dirac equation that describes a particle of spin S = %sha where 7 isthe normalised Planck con-

stant, o arethePauli 2x2 matricesand s=(+1,+2,%3,---,etc.) . What is not clear in the reading [1] is how such a

modified energy-momentum relation would arise in Nature. At the end of the day, the insertion by the sleight of hand of
the quantity “ s” into the usual Einstein energy-momentum equation, would then appear to be nothing more than an
idea belonging to the domains of speculation. In the present reading—by making use of the curved spacetime Dirac
equations proposed in the work [2], we move the exercise of [1] from the realm of speculation to that of plausibility.

Keywords: Curved Spacetime Dirac Equation; General Spin Equation; Unified Field Theory

1. Introduction

In an earlier reading [1], it is argued without a proper
physical basis but more out of mathematical curiosity
that the modified dispersion relation or the modified
Einstein energy-momentum relation:

E? = s*p°c® + mic’, (D)

leads' to a General Spin Dirac Equation. That is to say,
the resulting Dirac eguation describes a particle of spin
S ==she Where 7 is the normalised Planck constant,
o=5%+0’j+c%k where o* are the usua 2x2
Pauli matrices and i, j, k are the three orthonormal basis
on the xyz grid. In the dispersion relation (1.1), E is
the total energy of the particle, p isits momentum, m,
its rest mass and c is the speed of light in vacuum.
What is not clear in this reading [i.e. in Ref. 1] is how
such an energy-momentum relation would arise in
Nature in a manner that can be justified without making
ad hoc and hand-waving arguments. At the end of the
day, the insertion by the sleight of hand of the quantity
“s” into the usual Einstein energy-momentum equation:

E? = p*c® + mjc’, %)

would then appear to be nothing more than a product of

INB: This modified Einstein energy-momentum relation (1.1) leads to
aLorentz invariant modified Dirac equation.
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agile mathematical curiosity, speculation and chicanery,
without anything to do with physical and natura reality
as we know it. Herein, by making use of the three curved
spacetime Dirac equations proposed in [2], we move the
exercise of [1] from the realm of curiosity, speculation
and chicanery to that of plausibility.

As already stated, in (1), it is not clear why the quantity
“s” has to take integral values s=(+1,£2,£3,--,etc.).
Because spin has to take integral and half integral values,
it was assumed without proof that this quantity “ s” has
to take integral values. This off cause is a hole in the
theory that needs to be filled. This reading will furnish
this missing part in the “General Spin Dirac Equation”
proposed in [1]. We not only demonstrate how “ s”
comes to be pat of the dispersion relation
E? = pc® +mic*, but how and why this quantity comes
to take only integer values.

In summary, the aim or envisaged achievement(s) of
the present work are threefold, i.e.:

1) We unambiguously demonstrate how the quantity
“s” becomes a part of the Einstein energy-momentum
dispersion relation.

2) We prove that “s” can only take integral values
s=(41,+2,43, - etc.) .

3) We generalise the notion of a “General Spin Dirac
Equation” to include al the three curved spacetime Dirac
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G. G.NYAMBUYA 1051

equations [proposed in 2].

Now, in-closing this section, let us give a brief
synopsis of the present reading. It is as follows. In the
next section, we are going to give a brief exposition of

the curved spacetime Dirac equation first presented in [2].

In the successive section, we are going to dwell on the
main thrust of the present reading by demonstrating how
“s” comes to be part of the dispersion relation
E? =s’p°c® +nfc’ and aswell how and why “ s
comes to take only integer values. Thereafter, we give a
genera discussion and the conclusions drawn thereof.
Lastly, we are of the very strong view that any reader
that wants or seeks to make sense of the present reading
must first go through the readings [1,2] as these are
minimum prerequisites. Otherwise, if they [the reader] do
not do so, they will miss the main content and morass
substance of the present reading.

2. Curved Spacetime Dirac Equations

Asiswell known, the Dirac equation is derived from the
fundamental equation 7,, p*p" =mjc*, where 7, is
the usua flat Minkowski metric with spacetime signature
[-1,+1,+1,+1] . We know that its equivalent in curved
spacetimeis given by:

g,,p"p" =mpc?, ®

where the four momentum p“ is given by

p" =(E/c,p) and g,, is the metric of spacetime. In
order to aid the reader in visualizing (3) in a way that
conforms to the end that we seek, we have to write this
equation in its equivalent matrix form, i.e.:

E/C) (O 9u 9 9w ) E/C

Py g a1 9 9 Py
rrﬁ o = o Y9 Y2 O3 . 4
Py O 9xu 92 Ox | Py

pz g30 921 g32 g33 pz

Abovein (4), the“ T " in the superscript of the column
vector denotes the transpose operation on that column
vector.

Now, in writing down the curved spacetime version of
the Dirac equation [in the reading 2], we made a novel
suggestion of writing down the spacetime metric tensor

gw as

o) = A A, ©)
where A, is some four vector and a=(1,2,3). In
general, the metric gEf‘V) is such that:

Ah ARA ARA  AAA
[g(ﬂ: AAA -AA AAA ﬂ'AiAs, ©)
T AR AR -AA AARA

ARA AAA AR —AA
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wherefor (a=1;4=0), (a=21=+1) and
(a=3;4=-1). In the case (a=1), there are no
off-diagonal terms in the metric, while for the cases

=(2,3), we have off diagonal terms [see 2]. As shown
there in [2], the resulting three curved spacetime Dirac
equations are given by:

198740, ~mie Jw =0, @)
wheré?:

l, 0
@_['2
7o (o —|2]’

8

@ 1 241, i*V1+ 426" ®
e =5 .

2\ if1+2%6¢  —241,

In the above (and hereafter), |, isthe 2x2 identity
matrix, o is the usual 2x2 Pauli matrices and the
O’'sare 2x2 null matrices. It is not a difficult exercise
to show that multiplication of (7) from the left handside
by the operator [ihA“ ”*a +moc} leads us to the
curved spacetime Klem Gordon equation
9,,0"0"y =(mc® /h) w , provided 9,A"=9"A, =0.
The condition 0,A“ =0"A, =0, should be taken as a
gauge condition restricti ng this four vector. In the next

section, we are going to demonstrate the Lorentz
invariance of the curved spacetime Dirac equation (7).

2.1. Lorentz Invariance

To prove Lorentz invariance®, two conditions must be
satisfied, these two conditions are:

1) Given any two inertid observers O and O’
anywhere in spacetime, if intheframe O we have

|:IhA” 0 m)c] (x)=0,
then
[inAy 40, —mye]y'(x)=0

is the equation describing the same state but in the frame

In Equation (1.8) above, the term A’y must be treated as a single
object with one index x. This is what this object is. One can set
T =AY, The problem with this setting is that we need to have to

object A“ and Y clearly visible in the equation.

*There is a difference between Lorentz invariance and Lorentz covari-
ance. In most cases as in the present, Lorentz invariance is used to
mean Lorentz covariance. We are not going to go onto explaining what
is the difference between the two. We sincerely believe that our target
readership knows this and if they do not, they have access to consult
any good textbook that deals with the theory of relativity (spe-
cial/general). The usua Dirac equation is Lorentz covariant and not
Lorentz invariant—this needs to be stated categorically clear. We have
chosen to use the term Lorentz invariance instead of Lorentz covari-
ance because the term Lorentz invariance is what is usualy used.
In-order that we are on the same level of understanding with the gen-
eral reader, we do not have to deviate from the standard terminology.

JMP



1052 G. G.NYAMBUYA

o'

2) Giventhat y(x) isthe wavefunction as measured
by observer O, there must be a prescription for observer
O’ to compute y'(x') from y(x) and this describes
to O’ thesame physica state asthat measuredby O.

Now, since A and 0, are both vectors, the
quantity A“0, is obviously a scalar. From this, it
follows that a Lorentz transformation is not going to
affect y and y(, i.e:

o (x), Case(l)
W(X):{g//(x), Case(l!)

The meaning of the above is that the matrices 7/(’;)
are constant matrices and the Dirac four component
is represented in Case (I) where it is a scalar. The Dirac
four component - isnot constrained to only be a scalar.
In Case (Il), we can have this transform under a
multiplication of y by some constant matrix S. If
S=S(r,t), then this matrix will have to be such that
A'y%0,S=0 in-order for Lorentz invariance to hold.

The present exercise to re-demonstrate the Lorentz
invariance of (7) has been conducted so as to demon-
strate the all-important difference that we must always
take note of, that is, in the bare Dirac theory, the -
matrices and as-well the four component function y , do
transform under a Lorentz transformation. Thisis not the
case here; y(, is a constant matrix and the Dirac four
component function  isscalar. In the reading [2], this
very important fact that 7/(‘;) is a constant matrix and
that the Dirac four component function  can be scalar,
was missed altogether, hence the need to make this clear
at the present moment in the further development of the
curved spacetime Dirac equation.

Additionally, we have shown here that Equation (7) is
not Lorentz covariant but Lorentz invariant. The orgina
Dirac equation is not Lorentz invariant but Lorentz con-
variant—this is something to be noted as it distinguishes
the present effort from that of [3,4].

, and y (':) =7 (;;)- 9

2.2. General Magnitude of a Four Vector

In this section, we are going to look into the issue of the
magnitude of a four vector. For example, the square of
the magnitude of the four momentum p“ is such that
g,, PP =njc’. I; we take a general four vector ;/‘; ,
th<:23n4 gWV”VV =« . Notice that in g, p“p" =myc",
nmpc” isaconstant, it has the same value everywhere all
the time; so that in general we can assume that the x in
9, V*V" =«?, isaconstant aswell. We ask, “In general,
does x have to be a constant?” The answer to this
question is a bold no! It only has to be a scalar since the
quantity g,,V*V" is a scalar. A constant is a special
kind of a scalar, it is a scalar that takes the same value
everywhere al the times. If x is ageneral scalar, then

Copyright © 2013 SciRes.

Kk =x(rt).

Given the above thesisi.e. « =x(r,t), what we seek
here is a function that gives the value of « at the
different (r,t)-points. Since g, =go(r.t) is itself a
scalar, we propose that, in general, the magnitude of all
four vectorsin spacetime be such that « oc g7 , so that:

gyVV”VV = K*Zg(())’ (10)

where x. is a constant which takes the same value
everywhere al the times for-all observers. The quantity
k. hasthedimensionsasthat of V*.

One may very well be tempted to ask the good
question “What is the motivation for (10)?" Well—as
will be seen in the next section; the motivation for the
proposal (10) is that if we do not have such a setting,
then contrary to experience, the rest mass of a particle in
a curved spacetime will have to depend on where the
particle is, and when it is at that place where it is—
simple, m, =m,(r,t). To avoid this, we have no choice
but to impose (10).

2.3. Energy Solutions

The energy-momentum equation for the particles descri-
bed by Equation (7) is:
(A°) B2 - (22 A  pc) E-(A) pic?
, 11
+A¢* (Al A p, pk)i¢j = m’c*,
where in line with (10), we will have méc* = nfc’AA°
=nyc’ge = rr1§c“(A°)2 , where m, is a congtant; and is
the rest mass of the particle in question. ,
Now, dividing (11) throughout by (AO) , we will

have:
AX A<Y?
el {f) v

—lcz{(ﬂj(ﬁj o} p{l =mjc*.
ANA) "

Noticethat if m were aconstant, then
m,=m /A (r,t)=my(r.t)

which goes against experience. It is for this reason that
we afore-proposed the condition (10).

Now, setting s* = A/A ; and inserting these settings
into the above, we will have:

(12)

E? —(2/.13“ p.C)E—(s* )2 p2c? 3
-Ac? [sjsI< p, pk] . =mct.

j#

Making E the subject of the formula, we will have:

JMP



G. G.NYAMBUYA 1053

E=As‘pc+ \/(sk )2 pic’ +(As* pkc)2 +Ac? [sj sp, pk:|j¢k +mct. (14)

From this, it is clear that we will have three negative
energy particles and three positive energy particles.

Now, in the next section, we are going to use (14) to
justify the insertion of “s” into the Einstein equation
E® = §’p*c® +mic*. Note that the equation
E? =’p*c® +nfc’ s in (14) the case for 1=0.
Demonstrating how the “ s” comes to be part of
E? =’ p*c® +mfc’, dso proves for the other cases
A=+1.

3. Justification

Let us consider the case A=0. Space is usualy
assumed to be isotropic. This assumption finds solid
justification form experience since observations reveal
no directional properties of space, the deeper meaning of
which is that space must have no preferential direction or
directional properties. In the case of the metric (5),
isotropy would mean that the space parts of the four
vector A, must al be equal or identical to each other,
that is A = A, for-all j—(l 2,3). If this were the
case that A = , then s“=s for-al k=(1,273).
From this, it foIIows that for the case 4=0, we will
have the energy-momentum equation:

E?=&’pc? + m@c“. (15)

Thus, the equation E®=s*p?c®+mic* finds its sort
for justification. What is left is to justify why and how
“s’ comesto take integral values s=(+1,+2,%3, - etc.)
i.e. why and how seN where N in the set of all
positive and negative integers.

Before we go on to supply the above mentioned proof,
let us write down the general spin dispersion relationship
for a particle whose spacetime is isotropic. This we are
going to do so that, we supply, not only the proof of why
and how seN for the case 4=0, but for the other
two cases aswell i.e. A =41. The genera dispersion
relationship of a particle whose spacetime is isotropic is
given by:

E:ﬂs(ipkjc
k=1
J_r\/szpzc2+/1$ CZZZ[D IOkJ +mgc’

j=1k=1

(16)

Now, (7) can be written in the general Schréodinger
formulation as HY =&Y where H and & are the
Hamiltonian and energy operators respectively. So doing,
i.e. writing (7) in the said form, we will have:

. .. 0
[my(’sky(ka)ak —)/On’bc](// = —|hEl//-‘P (17)

Copyright © 2013 SciRes.

From this, it follows that the new General Spin Dirac
Hamiltonian (s) isgivenby:

HY (s)= ih;/"sk;/(ka)ak -7’mec. (18)
This General Spin Dirac Hamiltonian commutes with
the total angular momentum operator 7 (s) i.e.
[7(9), 1 (s)]=0 for-all a=(1,2,3) and for-all
s=(11,+2,43,---,etc.) . The proof of this assertion is
supplied in the Appendix. Thisfact that
[J(s),Hé,a)(s)}:O is important as it tells us that
J (s) is the total angular momentum of the particle

since it commutes with the Hamiltonian. The operator
J (s) issuchthat:

T (s)=L(s)+S(s),

1 _ (19)
where, S(s)zzhzs and L(s)=-inrxVy,
and as-well:
L =s§i+58%j+5°S%k
20
and vs=isli+jszi+ks3ﬁ. (20)
OX oy oz
The S*'sare 4x4 matrices such that:
k
skz[“ Osts'z S (21)
0 o

where " isthe Kronecker-delta function which is such
that 6" =1 for i=j, and 6" =0 for i=j and I,
is (and hereafter) the 4x4 identity matrix. Clearly,
L‘(s) is the orbital angular momentum of the particle
and likewise, S(s) istheassociated spin matrix.

Now, to provethat se N, asafirst step, let us define
the 4x4 spin-operators:

S, =hS*
S, =ns? (22)
S, =hS®

_Further, let us define the 4x4 spin-ladder operators
S, which are such that:

>

Sr =8, +iS,
SY =8, +iS, (23)
S =8, i,

In the above (and hereafter), (X,y,z) represent
(k=1,2,3) respectively. NB: hereafter, we shall
without notice interchange the labels or indices i.e.,
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sometimes we shall use (k=1,2,3) and sometimes
k=(xY,2).

Now, these 4x4 spin-ladder operators are related to
the operators S by the commutator relationship:

[5' S ] = +ho"S). (24)
Now, we propose the following eigenvalue equation:
3kw =SS y, (25)

where s“aS* is the eigenvaue corresponding to the
operator Sk acting on w . How does such an
eigenvalue equation come about? Well, in-order to have
this eigenvalue equation, the operator S* should be
defined such that:

Sk =intSk —— 0 (26)

85(k

Where is the k™-component of the phase of the
particle. That is, if p, is the four momentum of a
particle and x* is its four position in spacetime, then,
the phase of this particle S is such that S=p,x*.
This phase can be split into four components as
S= X’ + pxXt+ pXo + pxC The components Su
then are such that § =px° and plxl

, _p3x so we can write )—pk
an& the k S are not summing up as is the case in the
usua Einstein summation convention. Now, the
wavefunction of any particle is a function of the phase,
that is, w €% . Further, the phase of a curved
spacetime Dirac particle is given by S=S(s p.p)

k

=5 PX° + S P X +S, X +S,p,X° SO that 0S/08,) =5,

With al this, it is now clear, how the e|genvaJue
Equation (25) arises or comes about.

Now, multlplylng (25) by S* from the left, we will
have S Sky/ s*ny . From this, it follows that we can
rewrite (1.17) as:

a(skéky/)

[17°887,0 — ' myc |y = -in (27)

Acting on this equation from the left by éj, one can
easily show by using the fact (24), namely
[Sz,iz]=ih§j, [&J’,é;]:o for j=(y,z) and as
well the fact that LSK,;/(‘;);: 0 and [ék,y(*‘a)} =0, one
arrives at the resulting equation:

[ih}/o {sxy(xa)éx + syy(ya)ay + (SZ irl) }/(Za)az}

_VOWBCJ Vs,m1= —in

(29)

0 l//szil

where . = S284S y ¢ in this equation i.e. (28) s¥
and s’ remam unchanged by the application of the
operation Sj, while s, changes by one unit. The

Copyright © 2013 SciRes.

above equation describes a particle of spin %ho-Sztl

where o-szﬂ_s c”i+s'c” j+(s" £1)o’k . The operator
SZ increases s* by one unit, while the operator S’
decreases this quantity by one unity. If we want to
simultaneously raise or lower the spin for-al the
s k=(x,,Z), then we have to act on (28) using all the
three operators i.e. S, S’ and S7. This means we
can define the operator:

ﬁ(é;) = 8887, (29)

which then acts on (28). That is, acting from the Ieft on
(28) using this new operator I1(S¥), and thereafter
performing the necessary algebralc operations, the
resulting equation is:

[ih}/o (Sk il) }/(ka)ak —;/Onbc} Vi, = —ih%, (30)

where y/SkH:fI(S‘:)Skéky/, that is, y, is the

wavefunction of the particle w  where the spin quantum
s of w has either been increased (+) or decreased
(=) by oneunit for-all the three directions xyz.

Now, to provethat “ s ” only takes integral values, we
simple have to prove that one of the values of “ 5 ” isan
integer. Since “s.” only changes by integral vaues, if
just one of the values of “ s, ” is an integer, then, al the
other values of this quantity must be integers too—surely,
this is not difficult to understand. To prove that just one
of thevalues of “ s, ” isan integer is not a difficult task to
perform either. We know that in Minkowski spacetime
where |Ay|51v: #=01,2,3, the energy-momentum
dispersion relation is given by the Einstein en-
ergy-momentum equation E® = p°c®+n¥c’ ; in this
equation s =1 for-al k=(1,23). If the Minkowski
spacetime is envisaged as the lowest energy state for any
quantum configuration, then s =1 for-al k=(1,2,3)
is one of the quantum mechanical states for any particle.
Clearly, this is sufficient proof that one of the values of
“s " foral k=(1,2,3), is an integer. From the
foregoing, it thus follows that “ s " will take only
integral values i.e. s =(+1,+2,+3,--,etc.). This com-
pletes the proof that s eN for-al k=(1,2,3). We
have not only proved that “ s.” is an integer, but in so
doing, we have also proved why spin is a quantised
physical quantity.

4. Metric of a General Spin Dirac Particle

From the above findings, we can compute the general
spacetime metric of a general spin Dirac particle. We
have argued that the four vector A, is such that
sc = A/ A - From this, we can write down a four spin
quantum number s, . To do this, we note that the four
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vector A, can be written with its components as
A, =(A.A) - Further, this can be written as
A =A(LA/A)=A(Ls). The quantity (1,5) is
the four spin quantum number that we seek i.e,
s, =(1,5,) where s,=1. For our convenience, let us
set A, = ®. From this, the four vector A, can now be
written as A, =®(1,5)=®s, . Now, substituting
A, = s, into (5), wewill have:

a 1 a
g =50 {77 s (31)

Writtenin full, g'® issuch that:

Wl s As, A4S
g ]=o

2|48 -S.  Ass, 1ss, _
s, A8 -S 1SS
s, 188 Ass,  -Si

From this, we see that the metric is controlled by one
variable function ® =®(r,t) since 4 and s areall
constants. Thus, (32) is the metric of a general spin
curved spacetime Dirac particle.

The usual metric of spacetime g,, hasten potentials.
This was reduced to four potential by the introduction of
the four vector A,. Now, these four potentials have
been reduced to just one potential. This is a tremendous
simplification—from ten potentials to just one potential!
At this point, the reader may legitimately want to ask if
g, hes the same meaning as in Einstein's General
Theory of Relativity (GTR)? To answer this question,
one has to visit the reading [5]. It is shown there in [5]
that the vector A, gives raise to the nuclear force non-
abelian gauge field. The details of the Unified Field
Theory presented in [5] are still being worked out. What
the reader can do for now is simple take A, as a four
vector and nothing else. As to whether this vector
represents a gravitational, electric or any force field for
that matter is of no consequence here since we are not
concerned with the force field which this four vector
represents.

(32)

5. Discussion and Conclusion

We strongly believe that this reading justifies the
assertion made in [1], namely that the modified Einstein
dispersion relation E® =s’p’c®*+nfc’ leads to a
general spin Dirac equation. When this assertion was
made in [1], it was not clear then, as to how such a
dispersion relation would arise in Nature. We have
shown that the curved spacetime Dirac equation
proposed in [2] can be used to justify the modified
Einstein dispersion relation E* =s’p®c® +nmic* . Not
only have we justified this, we have also argued that “ s”
must take integral values. This means that, the work
presented in [1] has been put on a much more acceptable

Copyright © 2013 SciRes.

pedestal. The reason we say this is because we believe
that despited the fact that the true meaning and
significance the curved spacetime Dirac equation derived
in [2] has not been found yet, these curved spacetime
Dirac equations are credible, mathematically and phy-
sically legitimate equations. Actually, it has been demon-
strated that these curved spacetime Dirac eguation are
key to the attainment of a general spin Dirac eguation.

Insofar as the unification programme of physics is
concerned, we believe that the writing down of an
acceptable general spin Dirac equation is a step in the
right direction. If discovered, the final unified theory is
expected to be such that a “single equation/principle
will explain about every observable phenomenon.
Amongst others, it is expected that a single equation
must be able to explain &l particles from a simple
unifying principle. In the light of the aforestated, it is
somewhat sad to say that the current state of physics vis
the equations purporting to explain particles—is very
“ugly”. For example, the Schrédinger equation describes
spin-0 atoms and molecules [6], the Klein-Gordon
equation describes spin-0 particles (that is carriers of
forces), while the Dirac equation describes spin-1/2
particles, and the Rarita-Schwinger equation describes
spin-3/2 particles [7]. From this rather “ugly” trend,
does it mean we have to look for another equation to
describe spin-2 particles, and then another for spin-5/2
particles etc? This does not look beautiful, simple, or at
the very least suggest at the far and deeper end, a
unification of the Natural Laws. It is on this note that we
feel the present endeavours are worthwhile.

Another interesting outcome is that (7) is no longer
restricted to the description of Fermions, but Bosons
aswell. If this equation proves successful as happened
with Dirac’s original eguation, then, it will perhaps be
the first equation in physics to describe both Fermions
and Bosons from a single unified principle or standpoint.
Further, this equation shares some common ground with
super-symmetry theories—that is, theories that try and
unify gquantum mechanics and gravitation; in that it
allows for the transmutation of a Fermion to a Boson and
vice-versa. We believe this equation might very well be
of interest to physicists working in this field. To
transform a Fermion to a Boson and vice-versa, one
simple acts on the wavefunction y with the operator
H(Sf). In physical terms, we have no idea what an
operation on y with TT1(S¥) is. For al we know is
that from an abstract mathematical standpoint, this is
what one must do. Our hope is that these and other
seemingly strange concepts and operations will become
clear as horizons of our insight deepens.

In-closing, we would like to point out something of
note that we have not made mention of, namely that, the
writing down of the general spin Dirac Equations (30)
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has brought about a great simplification of the three
curved spacetime Dirac Equations (7). When these
equations were first written down [in 2], we wondered if
they would be soluble at al. To dramatise and express
this feeling, this reading [2] was started with a quote
from Paul Dirac, namely:

“The underlying Physical Laws necessary for the
mathematical theory of a large part of physics and the
whole of chemistry are thus completely known, and the
difficulty is only that the exact application of these Laws
leads to equations much too complicated to be soluble”.

The apparent insolubility is because of the presence of
four vector A, in Equation (7). Our guess then was that
(7) would need to be solved numerically in-order to solve
for y, but the present effort has unequivocally shown
that this is not the case since A, /A, has been shown to
take integer values thus literally eliminating what ap-
peared to be a sure and impending mathematical night-
mare of anumerical solution of the y .

Conclusion

Assuming the acceptability (correctness) of the ideas
propagated herein, we hereby make the following con-
clusions:

1) We have demonstrated that the curved spacetime
Dirac equations [presented in Ref. 2] naturally lead to a
general spin Dirac equation.

2) The spin of these curved spacetime Dirac particles
is found to be naturally quantised i.e. it comes in integral
multiples of a fundamental basic unit of spin. This spin
quantization strongly appears to be wholly a part and
parcel of the fabric of spacetime itself.

3) The fact that the spin of a particle is measured to be
the same independent of the orientation; this fact sug-
gests very strongly that spacetime must be isotropic on a
quantum scale. If this were not the case that space is
isotropic on the quantum scale, then, according to the
ideas propagated herein, aparticles spin will be different

Copyright © 2013 SciRes.

when measured in different random directions.

4) It has been shown that the curved spacetime Dirac
equation leads to a Dirac wavefunction that can take a
scalar nature, i.e., the resulting four component wave-
function w , together with the y(’; matrices, there are
not affected by a Lorentz transformation. Effectively, the
resulting curved spacetime Dirac equation is not Lorentz
covariant, but truly Lorentz invariant in the true sense of
Lorentz invariance.
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Appendix

We are going to prove the crucial assertion that we stated
on page (2022) without any proof, namely that:

[7(9).15(s)] =0,
for-al a=1,2,3. To begin, we know that:
J(s)=L(s)+S5(s),
from this and as-well from the fact that:
[7(9).7(5)] =0,
it follows that:
[£(5).Ho ()] +[S().Ho (5)]= 0.
We also know that:
S(s)=S,(s)i+S,(s)j+S,(s)k
and
L(s)=L,(s)i+L,(s)j+L,(s)k;
combining these facts, one obtains that:
[7(9).75 (9)]=0,

where j=xy,z and J;=L;+S;. So, if we can
prove (A.1) for-all j=x,y,z andfor-al a=1,23,we
will have proved that [j(s),Héa)(s) =0 for-all
a=1,2,3. Weonly have to prove this for just one of the

(A.1)

1057

three cases j =X,Y,z, this prove is sufficient as prove
for the remaining two cases. We shall prove this for the
case j =Xx.Weknow that:

y z
L (s)=-inl,| o 0
Yoy Yo (A2)
. 0 0 .
=—ihl s, ——28,— |=-iAal,L (9),
4(y 252 yayj 4 x( )
0 0 . _
where L, =ys,—-zs — . Fromthis, it follows that:
oz oy
Ix(8)
1'h 21,L,(s)-s0, 0 (A.3)
2 0 2l,L (s)+s.0, )

0k, k

Now, since H () =iny°s V(O —-y°myc, (A.2) imp-
liesthat for thecase (a=2), wewill have:

[JX (s),i}‘zyosky("z)ak]—[JX (s),yom)c} =0.

In this way, our task is now much easier, if we can
show that

[Jx(s),yosky(kz)ak} =0 and [jx(s),yOJ =0,

we accomplish our mission. Let us start with the easier of
the two, that is, show that [jx (s),;/o] =0. Clearly:

(A.4)

21,L 0 I 0
T (s)7° =—2in=| 2 (S)+ s, 2 , (A.5)
2 0 21,L,(s)+so, L0 -1,
so that:
0 1. 21,L,(s)+s,0, 0
=—Zih , A.6
Tx(s)yme=—3i %C[ 0 “21,L,(s)- 5.0, (A.6)
and:
o 1. 21,1, (s)+s,0, 0
- _Zin . A7
e, (8)-- im0 0 A
Now, subtracting (A.7) from (A.6), one obtains the that:
desired result, namely [jx(s),yom)c}zo.Weare now 0gk, 5 1”_{ 1,80, iﬁsko—kak] A8)
VS V2% =—In| .
left with demonstrating that [jx(s),yosky(kz)ak]:o, B4 iV2de0, 1,80,
Clearly, upon correct algebraic operations, one canverify ~ sothat [ 7, (s)] [yos" y(';)ak] is such that:
1 ih(m L (s)+50, 0 j 1,50,  i25%c,0, AS)
4 0 “2L,L(s)-s0, ) \iv2s‘e,0, 1,80, )
which is equal to:
1 [21,L,(s)+s0,](s'0)  iV2[2,L,(s)+s0, (0o, ) A10)
—=in , A.10
4 |iV2[21,L, (s)+s0, |(s'a8)  -[21,L(s)+s0,](s,)
Copyright © 2013 SciRes. JMP
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so that [y°sky(k2)ak ] [7.(s)] issuchthat:

1. 1,80,

4 \ivas‘o 0, 1,8,

which invariably implies that:
[7.(5)] [},osk},(';)ak] - [yosky(kz)ak][jx (s)].

hence we arive a our desired result, namely,
[jx (s),yoskj,(kz)ad =0. Hence, according to our earlier

Copyright © 2013 SciRes.

i\/EskakakJ[leLx(s)+Sxax 0 J

21,1 (8) =S M

arguments, it follows that the main result
[j(s),?—[,(,a)(s)]zo for-all a=(1,2,3) and for-all
s=(+1,4+2,43,--,etc.) isthusattained.
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