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ABSTRACT 

In this work we present the solution of the two-dimensional advection-diffusion equation by the GILTT method. The 
GILTT approach uses, in the series expansion, eigenfunctions given in terms of cosine functions. Here, a different ex- 
pansion for the solution of the advection-diffusion equation will be explored. In other words, a Sturm-Liouville problem 
carrying more information of the original problem is considered, given by Bessel functions. Numerical simulations and 
comparisons with experimental data are presented. 
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1. Introduction 

The advection-diffusion equation has long been used to 
describe the dispersion of contaminants in the atmos- 
phere [1]. Efforts have been made over the years to ob- 
tain analytical solutions of this equation in order to mod- 
eling air pollution. According to [2,3], these solutions are 
valid for very specialized practical situations, and in ma- 
jority with restrictions on wind and eddy diffusivities 
vertical profiles [4-18]. To solve the advection-diffusion 
equation for more realistic physical scenario appeared in 
the literature the ADMM (Advection Diffusion Multi- 
layer Method) approach [19,20], valid for any eddy dif- 
fusivity and wind profile depending on the height. The 
main idea relies on the discretization of the Atmospheric 
Boundary Layer (ABL) in a multilayer domain, assuming 
in each layer that the eddy diffusivity and wind profile 
take averaged values. The resulting advection-diffusion 
equation in each layer is then solved by the Laplace 
Transform technique. A more general methodology, which 
skips the multilayer discretisation of the height z appear- 
ing in the ADMM approach, is known in the literature as 
GILTT (Generalized Integral Laplace Transform Tech- 
nique) approach [2,3,21]. The main idea of this method- 
ology relies on the expansion of the pollutant concentra- 
tion in series of eigenfunctions attained from an auxiliary 
Sturm-Liouville problem, replacement of this equation in 

the advection-diffusion equation and taking moments. 
The procedure results a matrix ordinary differential equa- 
tion which is solved analytically by the Laplace Trans- 
form technique. Similar solutions were proposed by [22, 
23]. 

To reach our objective, we begin presenting the solu- 
tion of the two-dimensional advection-diffusion equation 
in Cartesian geometry by the GILTT approach [2], con- 
sidering that the eddy diffusivity and the vertical wind 
profile depend on the z variable. Traditionally, the 
GILTT approach uses as basis eigenfunctions given in 
terms of cosine functions. Here, another Sturm-Liouville 
problem will be considered, carrying more information 
of the original problem. In this case, the eigenfunctions 
are given by Bessel functions. Once we construct the 
general solution, numerical simulations and future per- 
spectives of this methodology are presented. 

2. The Advection-Diffusion Equation and the 
GILTT Method 

For a Cartesian coordinate system the advection-diffu- 
sion equation, using first order closure of turbulence, is 
written like [24]: 

x y z

c c c c
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t x y z

c c c
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where c  denotes the average concentration of a passive 
(g/m3), u , v , w  are the mean wind (m/s) components 
along the axis x, y and z, respectively and S is the source 
term. Kx, Ky, Kz are the Cartesian components of eddy 
diffusivity (m2/s) in the x, y and z directions, respectively. 
In the first order closure all the information on the turbu- 
lence complexity is contained in the eddy diffusivities.  

Problem (1) is solved analytically by the 3D-GILTT 
method [3,21,25]. Here, for comparison with experimen- 
tal data we will assume for the advection-diffusion Equa- 
tion (1): stationary conditions, crosswind integrated con- 
centrations and that the advection is much higher than the 
diffusion in the x-direction. After the simplifications, let 
us consider the problem: 

y
z

c c
u K y

x z z

 
    


              (2) 

for 0 < z < h and x > 0, subject to the boundary condi- 
tions of zero flux at the ground and ABL top and a source 
with emission Q at height Hs (    0,y suc z Q z H   at 
x = 0). Here yc  represents the crosswind integrated 
concentration, h is the ABL height, zK  is the eddy dif-
fusivity variable with the height z (  zK K z ), u  is 
the longitudinal wind speed (  zu u ), and δ is the Di- 
rac delta function. 

Problem (2) has a well-known solution by the GILTT 
method. Following the works of [2,25] we write the so- 
lution of problem (2) as: 

     
0

,
N

y n
n

c x z c x z


  n           (3) 

where  are the eigenfunctions of an associated 
Sturm-Liouville problem and 

 n z
 nc x  is the transformed 

concentration. 
Traditionally, in the application of the GILTT method, 

the following auxiliary Sturm-Liouville problem is cho- 
sen: 

   2 0n n nz z     at       (4a) 0 z h 

  0n z   at           (4b) 0, ,z h

which has the solution   cosn nz z  , where  n z  
are the eigenfunctions and πn n h    
are the respective eigenvalues. 

 0,n  1, 2,

Here, a different expansion for the solution of the ad- 
vection-diffusion equation will be explored. In other 
words, we propose another Sturm-Liouville problem as 
the basis generator. The idea of this proposal comes from 
the fact that the auxiliary problem (4) has the same shape 
of the ordinary differential equation (relative do z vari- 
able) that appears in the solution of Equation (2) by the 
method of separation of variables, when the vertical eddy 
diffusivity is considered constant. This suggests the pos- 
sibility of using an auxiliary problem that appears in the 

solution of Equation (2) by the method of separation of 
variables, considering linear vertical eddy diffusivity, 

zK z , given by: 

    2 0n n n nz z z       at 0      (5a) z h 

  0n z   at             (5b) 0,z  h

which has Bessel functions of first specie and order zero 
as solution    0n nz J z h  , where n   
 0,1,2,n    are the positive roots of the Bessel func- 
tion of first specie and order one, 1J . Problem (5) car- 
ries more information from the original problem than the 
previous one. 

To determine the unknown coefficient  nc x  we re- 
place Equation (3) in Equation (1). Applying the integral  

operator , we come out with the result:    
0

.
h

m z z d

   
0 00 0

d d
h hN N
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n n m n m z

n n

c x u z c x K z
z z 

   0       
    

(6) 

Using the integration parts technique, we can recast 
the second integral in Equation (6) as: 

0 0

d d
h h

n n
m z m z m z

nK z K K
z z z z

                 z (6a) 

and once 0n
m zK

z


 


, the Equation (6) is rewritten 

as: 

   
0 00 0

d d
h hN N

n
n n m n m z

n n

c x u z c x K z
z 
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    (7) 

which in matrix form reads like: 

    0FY x  Y x               (8) 

Here  Y x  is the vector whose components are  nc x  
and F = B−1. E;  ,n mB b  and  are the ma- 
trices whose entries are, respectively: 

 ,n mE e

0

d
h

n,m n mb u   z  and 
0

d
d

d

h
n

n,m m ze K
z

z
  . 

Equation (8) is subject to the initial condition Y(0), 
which is obtained from the source condition  
(    0,y suc z Q z H   at x = 0) by a similar proce- 
dure leading to       10 0n m sY c Q H B   , B−1 being 
the inverse of matrix B. 

The transformed problem represented by the Equation 
(8) is solved analytically following the work [2], by the 
combined Laplace transform technique and diagonaliza- 
tion of the matrix F  1F XDX  . By this procedure 
we come out with the result: 

    1 0Y x XG x X Y  ,           (9) 
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where  is the diagonal matrix with elements , 
D is the diagonal matrix of eigenvalues n  of the ma- 
trix F, X is the matrix of the respective eigenfunctions 
and X−1 it is the inverse. 

 G x e id x

d

Therefore, the solution for the concentration given by 
Equation (3) is now well determined once the vector 

 nc x  is known and given by Equation (9). 
The solution of the problem (2) using in the series ex- 

pansion (3) eigenfunctions given in terms of cosine and 
Bessel functions will be called here as GILTTC and 
GILTTB, respectively. 

3. Numerical Results 

The performance of the discussed solution was evaluated 
against experimental ground-level concentration using 
different dispersion experiments available in the litera- 
ture. Below we briefly discuss the Copenhagen, Prairie- 
Grass and Hanford dispersion experiments, which allow 
us to validate the results encountered by the mentioned 
solutions. 

The Copenhagen field campaign took place in the 
suburbs of Copenhagen in 1978, and is described by [26]. 
It consisted of tracer released without buoyancy from a 
tower at a height of 115 m, and collection of tracer sam- 
pling units at the ground-level positions at the maximum 
of three crosswind arcs. The sampling units were posi- 
tioned at two to six kilometers from the point of release. 
The site was mainly residential with a roughness length 
of the 0.6 m. The meteorological conditions during the 
dispersion experiments ranged from moderately unstable 
to convective. Table 1 shows a summary of meteoro- 
logical conditions during the Copenhagen experiments. 

In the Prairie-Grass experiment, according [27], the 
tracer SO2 was released without buoyancy at a height of 
0.46 m, and collected at a height of 1.5 m at five down- 
wind distances (50, 100, 200, 400 and 800 m) at O’Neill,  
 
Table 1. The meteorological data observed during the Co- 
penhagen experiment. 

Exp. 
u  (10 m) 

(ms−1) 
u* (ms−1) L (m) w* (ms−1) h (m) 

1 3.4 0.36 −37 1.8 1980 

2 10.6 0.73 −292 1.8 1920 

3 5.0 0.38 −71 1.3 1120 

4 4.6 0.38 −133 0.7 390 

5 6.7 0.45 −444 0.7 820 

6 13.2 1.05 −432 2.0 1300 

7 7.6 0.64 −104 2.2 1850 

8 9.4 0.69 −56 2.2 810 

9 10.5 0.75 −289 1.9 2090 

Nebraska in 1956. The Prairie Grass site was quite flat 
and much smooth with a roughness length of 0.6 cm. 
Here we consider the experimental data appearing in the 
paper [28]. Table 2 summaries the meteorological condi- 
tions during the Prairie-Grass experiments. 

The Hanford diffusion experiment was conducted in 
May-June, 1983, on a semi-arid region of south eastern 
Washington on generally flat terrain. The detailed de- 
scription of the experiment was provided by [29]. Data 
were obtained from six dual-tracer releases located at 
100, 200, 800, 1600 and 3200 m from the source during 
moderately stable to near-neutral conditions. The release 
height of SF6 was 2 m and average release rate was 
around 0.3 g/s. The pollutant was collected at a height of 
1.5 m. The terrain was considered as an urban terrain 
with roughness length of 3 cm. The values of ABL pa- 
rameters are given in Table 3.  

The choice of the turbulent parameterization repre- 
sents a fundamental aspect for pollutant dispersion mod- 
eling. In terms of the convective scaling parameters, the  
 
Table 2. The meteorological data observed during the Prai- 
rie-Grass experiment. 

Exp. L (m) h (m) w* (ms−1) 
u  (10 m)

(ms−1) 
Q (gs−1)

1 −9 260 0.84 3.2 82 

5 −28 780 1.64 7.0 78 

7 −10 1340 2.27 5.1 90 

8 −18 1380 1.87 5.4 91 

9 −31 550 1.70 8.4 92 

10 −11 950 2.01 5.4 92 

15 −8 80 0.70 3.8 96 

16 −5 1060 2.03 3.6 93 

19 −28 650 1.58 7.2 102 

20 −62 710 1.92 11.3 102 

25 −6 650 1.35 3.2 104 

26 −32 900 1.86 7.8 98 

27 −30 1280 2.08 7.6 99 

30 −39 1560 2.23 8.5 98 

43 −16 600 1.66 6.1 99 

44 −25 1450 2.20 7.2 101 

49 −28 550 1.73 8.0 102 

50 −26 750 1.91 8.0 103 

51 −40 1880 2.30 8.0 102 

61 −38 450 1.65 9.3 102 
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Table 3. The meteorological data observed during the Han- 
ford experiment. 

Exp. 
u  (2 m) 
(ms−1) 

u* (ms−1) L (m) h (m) 

1 3.63 0.40 166 325 

2 1.42 0.26 44 135 

3 2.02 0.27 77 182 

4 1.50 0.20 34 104 

5 1.41 0.26 59 157 

6 1.54 0.30 71 185 

 
vertical eddy diffusivity can be formulated as [30]: 

4 81/3 1/3

*

0.22 1 1 e 0.0003e
z

hzK z z

w h h h

      
   

         
    

z

h




(13) 

while for stable conditions [31]: 

 0.3 1

1 3.7z

z h u z
K

z



 

             (14) 

where z is height; h is the thickness of the ABL; *  is 
the convective velocity scale; 

w
 5 4
1L z h   ; L is the 

Monin-Obukhov length and  is the friction velocity. *

In our simulations, we use the wind speed profile de- 
scribed by a power law, according [32], 

u

1 1

zu z

u z


 

  
 

                (15) 

where zu  and 1u  are the mean wind velocity respec- 
tively at the heights z and 1 , while z   is an exponent 
that is related to the intensity of turbulence [33]. For the 
Copenhagen experiment 0.1   and for the Prairie- 
Grass experiment 0.07  . 

In Tables 4-6, we present some performances evalua- 
tions of the model for the Copenhagen and Prairie-Grass 
experiments, respectively, using the statistical evaluation 
procedure described by [34] and defined as: 



 


2

NMSE normalized mean square error

,o p p oC C C C 
 

 
 

FA2 fraction of data %,  normalized to 1 for

0.5 2,p oC C



 
 

 

  
COR correlation coefficient

,o o p p o pC C C C    
 

   FB fractional bias 0.5 ,o p o pC C C C    

 
   

FS fractional standard deviations

0.5 ,o p o p     
 

where the subscripts o and p refer to observed and pre- 
dicted quantities, respectively, and the over bar indicates 
an averaged value. The statistical index NMSE repre- 
sents the model values dispersion in respect to data dis- 
persion. The statistical index FB says if the predicted 
quantities underestimate or overestimate the observed 
ones. The best results are expected to have values near to 
zero for the indices NMSE, FB and FS, and near to 1 in 
the indices COR and FA2.  

For the Copenhagen experiment the statistical indices 
of Table 4 point out that a good agreement is obtained 
between experimental data and the GILTT method for 
both cosine and Bessel basis, regarding the NMSE, FB 
and FS values relatively near to zero and COR relatively 
near to 1. At this point, we can affirm that no significant 
difference between the models was observed for the high 
source of the Copenhagen experiment.  

Table 5 shows the performance of the solution for the 
Prairie-Grass experiment. The statistical indices of the 
table point out that a reasonable agreement is obtained 
between experimental data and the GILTT method. It is 
important to notice that the GILTTB numerically con- 
verges faster than GILTTC (while GILTTB needs 100 
eigenvalues, GILTTC needs 300 eigenvalues to reach a  
 
Table 4. Statistical indices evaluating the model perform- 
ance using the Copenhagen experiment. 

Model NMSE COR FA2 FB FS 

GILTTC N = 100 0.05 0.91 1.00 −0.01 0.14 

GILTTB N = 100 0.05 0.91 1.00 −0.04 0.13 

 
Table 5. Statistical indices evaluating the model perform- 
ance using the Prairie-Grass experiment. 

Model NMSE COR FA2 FB FS 

GILTTC N = 100 0.80 0.83 0.64 0.39 0.56 

GILTTC N = 200 0.23 0.92 0.71 0.06 0.33 

GILTTC N = 300 0.15 0.95 0.72 −0.01 0.28 

GILTTB N = 100 0.11 0.97 0.71 −0.1 0.23 

 
Table 6. Statistical indices evaluating the model perform- 
ance using the Hanford experiment. 

Model NMSE COR FA2 FB FS 

GILTTC N = 30 0.21 0.91 0.83 −0.16 −0.01

GILTTC N = 60 0.23 0.91 0.80 −0.20 −0.03

GILTTB N = 30 0.24 0.91 0.77 −0.20 −0.03
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similar numerical result). 
For the Hanford experiment were used the eddy diffu- 

sivity Equation (14) and power wind profile Equation (15) 
with 0.6  . The statistical indices of Table 6 point 
out that a good agreement is obtained between experi- 
mental data and models. Again, the GILTTC need more 
eigenvalues to reach a similar numerical result obtained 
with the GILTTB. 

In the following are presented in Tables 7-9 the nu- 
merical comparisons of the GILTT method results against 
the experimental data of Copenhagen, Prairie-Grass and 
Hanford experiments. 

Furthermore, Figures 1-3 show the observed and pre- 
dicted scatter diagram of crosswind ground-level con- 
centrations for the three experiments considered in this 
work. In the graphics the symbol represents the GILTTC,  
 
Table 7. Observed and predicted crosswind-integrated con- 
centrations C/Q (10−4 sm−2) at the Copenhagen experiment. 

Run 
Distance 

(m) 
OBS 

(10−4 sm−2) 
GILTTC 

(10−4 sm−2) 
GILTTB 

 (10−4 sm−2)

1 1900 6.48 6.86 7.27 

1 3700 2.31 3.98 4.11 

2 2100 5.38 4.64 4.87 

2 4200 2.95 3.06 3.24 

3 1900 8.20 8.15 8.45 

3 3700 6.22 5.20 5.32 

3 5400 4.30 3.99 4.05 

4 4000 11.66 9.25 9.30 

5 2100 6.72 8.54 8.53 

5 4200 5.84 6.73 6.90 

5 6100 4.97 5.40 5.51 

6 2000 3.96 3.50 3.52 

6 4200 2.22 2.51 2.62 

6 5900 1.83 1.98 2.05 

7 2000 6.70 4.67 4.97 

7 4100 3.25 2.76 2.88 

7 5300 2.23 2.24 2.31 

8 1900 4.16 4.84 4.96 

8 3600 2.02 3.28 3.33 

8 5300 1.52 2.63 2.65 

9 2100 4.58 4.44 4.67 

9 4200 3.11 2.92 3.11 

9 6000 2.59 2.20 2.31 

Table 8. Ground-level crosswind integrated concentrations 
(gm−2) measured during the Prairie Grass experiment (first 
line) and simulated by the GILTTC and GILTTB methods 
(second and third lines, respectively). 

Run No.
50 m 

(gm−2) 
100 m 
(gm−2) 

200 m 
(gm−2) 

400 m 
(gm−2) 

800 m 
(gm−2) 

1 
7.00 
5.73 
5.62 

2.30 
3.67 
3.62 

0.51 
1.93 
1.93 

0.16 
0.90 
0.90 

0.06 
0.41 
0.41 

5 
3.30 
3.07 
2.99 

1.80 
2.07 
2.17 

0.81 
1.21 
1.30 

0.29 
0.61 
0.66 

0.09 
0.27 
0.29 

7 
4.00 
3.02 
4.12 

2.20 
1.93 
2.47 

1.00 
1.07 
1.28 

0.40 
0.52 
0.59 

0.18 
0.23 
0.25 

8 
5.10 
3.25 
4.46 

2.60 
2.19 
2.92 

1.10 
1.29 
1.59 

0.19 
0.66 
0.77 

0.14 
0.30 
0.33 

9 
3.70 
3.27 
2.90 

2.20 
2.24 
2.17 

1.00 
1.30 
1.33 

0.41 
0.65 
0.67 

0.13 
0.29 
0.30 

10 
4.50 
3.56 
4.08 

1.90 
2.23 
2.51 

0.71 
1.21 
1.33 

0.20 
0.58 
0.62 

0.03 
0.25 
0.26 

15 
7.10 
5.60 
5.59 

3.40 
3.66 
3.66 

1.35 
2.01 
2.01 

0.37 
1.02 
1.02 

0.11 
0.53 
0.53 

16 
5.00 
4.08 
4.93 

1.80 
2.39 
2.73 

0.48 
1.22 
1.34 

0.10 
0.55 
0.59 

0.02 
0.23 
0.24 

19 
4.50 
4.09 
3.74 

2.20 
2.77 
2.79 

0.86 
1.60 
1.70 

0.27 
0.80 
0.85 

0.06 
0.36 
0.37 

20 
3.40 
2.89 
2.55 

1.80 
2.07 
2.05 

0.85 
1.28 
1.35 

0.34 
0.68 
0.73 

0.13 
0.32 
0.33 

25 
7.90 
6.52 
6.54 

2.70 
3.80 
4.02 

0.75 
1.91 
2.04 

0.30 
0.86 
0.89 

0.06 
0.37 
0.37 

26 
3.90 
3.33 
3.57 

2.20 
2.28 
2.53 

1.04 
1.35 
1.48 

0.39 
0.69 
0.75 

0.13 
0.31 
0.33 

27 
4.30 
2.88 
3.80 

2.30 
2.01 
2.66 

1.16 
1.22 
1.50 

0.46 
0.65 
0.75 

0.18 
0.30 
0.33 

30 
4.20 
2.37 
3.27 

2.30 
1.71 
2.46 

1.11 
1.09 
1.46 

0.40 
0.60 
0.75 

0.10 
0.29 
0.34 

43 
5.00 
4.22 
3.95 

2.40 
2.70 
2.75 

1.09 
1.48 
1.56 

0.37 
0.70 
0.74 

0.12 
0.31 
0.31 

44 
4.50 
2.80 
3.87 

2.30 
1.95 
2.68 

1.09 
1.19 
1.51 

0.43 
0.63 
0.75 

0.14 
0.29 
0.33 

49 
4.30 
3.69 
3.31 

2.40 
2.49 
2.44 

1.16 
1.42 
1.47 

0.45 
0.70 
0.73 

0.15 
0.31 
0.32 
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Continued  

50 
4.20 
3.53 
3.39 

2.30 
2.37 
2.46 

0.91 
1.37 
1.47 

0.39 
0.68 
0.73 

0.11 
0.31 
0.32 

51 
4.70 
2.28 
3.61 

2.40 
1.67 
2.68 

1.00 
1.08 
1.60 

0.38 
0.61 
0.83 

0.08 
0.30 
0.37 

61 
3.50 
3.33 
3.00 

2.10 
2.37 
2.25 

1.14 
1.40 
1.39 

0.53 
0.71 
0.72 

0.20 
0.32 
0.32 

 
Table 9. Observed and predicted crosswind-integrated con- 
centrations C/Q (10−3 sm−2) at Hanford experiment. 

Run No. 
Distance 

(m) 
OBS 

(10−3 sm−2) 
GILTTC 

(10−3 sm−2) 
GILTTB 

(10−3 sm−2)

1 100 19.5 36.28 38.92 

1 200 11.7 22.86 23.65 

1 800 3.7 7.43 7.48 

1 1600 2.1 4.14 4.15 

1 3200 1.3 2.34 2.34 

2 100 51.9 82.08 81.74 

2 200 36.7 50.11 50.02 

2 800 12.9 17.96 17.95 

2 1600 9.1 11.00 11.00 

2 3200 7.2 6.94 6.93 

3 100 27.1 65.82 65.49 

3 200 18.1 40.04 39.96 

3 800 5.9 13.46 13.46 

3 1600 3.3 7.87 7.87 

3 3200 1.8 4.73 4.73 

4 100 91.8 99.91 99.60 

4 200 48.6 63.56 63.47 

4 800 20.1 23.70 23.69 

4 1600 13.1 14.66 14.66 

4 3200 9.2 9.31 9.31 

5 100 83.9 78.41 78.06 

5 200 42.4 47.09 47.00 

5 800 10.5 16.28 16.27 

5 1600 8.6 9.79 9.79 

5 3200 6.6 6.07 6.07 

6 100 88.4 67.05 66.86 

6 200 61.1 39.77 39.72 

6 800 13.4 13.43 13.42 

6 1600 6.2 7.98 7.98 

6 3200 3.1 4.89 4.89 

 

Figure 1. Comparison between observed (Co) and predicted 
(Cp) concentrations (normalized by Q) for the Copenhagen 

experiment. Lines indicate a factor of two   0 0.5;2pC C . 

 

 

Figure 2. Comparison between observed (Co) and predicted 
(Cp) concentrations for the Prairie-Grass experiment. Lines 

indicate a factor of two   0 0.5;2pC C . 

 
and lines the GILTTB solution. 

In all the tables and figures, we considered the data 
numerically converged for both bases. In this respect, it 
is important to note that the model simulates quite well 
the observed concentration for all the cases. The greatest 
difference between the models is seen for the Prairie- 
Grass experiment. 
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Figure 3. Comparison between observed (Co) and predicted 
(Cp) concentrations (normalized by Q) for the Hanford ex- 

periment. Lines indicate a factor of two   0 0.5;2pC C . 

4. Conclusions 

Focusing our attention on the pollution dispersion simu- 
lation in atmosphere, we present an analytical solution in 
series expansion given by the well-known GILTT meth- 
od to solve the two-dimensional advection-diffusion 
equation by the GILTT approach. A Sturm-Liouville 
problem carrying more information of the original prob- 
lem, given by Bessel functions, was considered, 

For the problems discussed, we promptly realize the 
very good results achieved, under statistical point of view, 
by the GILTT method when compared with the experi- 
mental data for both cosine and Bessel basis used. For 
the case of high source no significant difference was ob- 
served between GILTTC and GILTTB. However, for the 
low source, GILTTB numerically converges faster than 
GILTTC. We focus our future attention on the direction 
of the generalization of this solution considering an infi- 
nite boundary layer. 

5. Acknowledgements 

The authors thank CNPq (Conselho Nacional de Desen- 
volvimento Científico e Tecnológico) and FAPERGS 
(Fundação de Amparo à Pesquisa do Estado do Rio 
Grande do Sul) for the partial financial support of this 
work. 

REFERENCES 
[1] J. H. Seinfeld and S. N. Pandis, “Atmospheric chemistry 

and physics,” John Wiley & Sons, New York, 1998. 

[2] D. M. Moreira, M. T. Vilhena, D. Buske and T. Tirabassi, 

“The State-of-Art of the GILTT Method to Simulate Pol- 
lutant Dispersion in the Atmosphere,” Atmospheric Re- 
search, Vol. 92, No. 1, 2009, pp. 1-17.  
doi:10.1016/j.atmosres.2008.07.004 

[3] D. Buske, M. T. Vilhena, T. Tirabassi and B. Bodmann, 
“Air Pollution Steady-State Advection Diffusion Equa- 
tion: The General Three-Dimensional Solution,” Journal 
of Environmental Protection, Vol. 3, No. 2, 2012, pp. 
1124-1134. doi:10.4236/jep.2012.329131 

[4] W. Rounds, “Solutions of the Two-Dimensional Diffu- 
sion Equation,” Transactions of American Geophysical 
Union, Vol. 36, 1955, pp. 395-405.  
doi:10.1029/TR036i003p00395 

[5] F. B. Smith, “The Diffusion of Smoke from a Continuous 
Elevated Point Source into a Turbulent Atmosphere,” 
Journal of Fluid Mechanics, Vol. 2, No. 1, 1957, pp. 49- 
76. doi:10.1017/S0022112057000737 

[6] R. A. Scriven and B. A. Fisher, “The Long Range Trans- 
port of Airborne Material and Its Removal by Deposition 
and Washout-II. The Effect of Turbulent Diffusion,” At- 
mospheric Environment, Vol. 9, No. 1, 1975, pp. 59-69.  
doi:10.1016/0004-6981(75)90054-2 

[7] C. Demuth, “A Contribution to the Analytical Steady 
Solution of the Diffusion Equation for Line Sources,” 
Atmospheric Environment, Vol. 12, No. 5, 1978, pp. 
1255-1258. doi:10.1016/0004-6981(78)90399-2 

[8] A. P. van Ulden, “Simple Estimates for Vertical Diffusion 
from Sources near the Ground,” Atmospheric Environ- 
ment, Vol. 12, No. 11, 1978, pp. 2125-2129.  
doi:10.1016/0004-6981(78)90167-1 

[9] F. T. M. Nieuwstadt, “An Analytical Solution of the 
Time-Dependent, One-Dimensional Diffusion Equation 
in the Atmospheric Boundary Layer,” Atmospheric En- 
vironment, Vol. 14, No. 12, 1980, pp. 1361-1364.  
doi:10.1016/0004-6981(80)90154-7 

[10] F. T. M. Nieuwstadt and B. J. de Haan, “An Analytical 
Solution of One-Dimensional Diffusion Equation in a 
Non-Stationary Boundary Layer with an Application to 
Inversion Rise Fumigation,” Atmospheric Environment, 
Vol. 15, No. 5, 1981, pp. 845-851.  
doi:10.1016/0004-6981(81)90289-4 

[11] M. Tagliazucca, T. Nanni and T. Tirabassi, “An Analyti- 
cal Dispersion Model for Sources in the Surface Layer,” 
Novembre-Dicembre, Vol. 8, No. 6, 1985, pp. 771-781. 

[12] T. Tirabassi, “Analytical Air Pollution and Diffusion 
Models,” Water, Air and Soil Pollution, Vol. 47, No. 1-2, 
1989, pp. 19-24. doi:10.1007/BF00468993 

[13] W. Koch, “A Solution of the Two-Dimensional Atmos- 
pheric Diffusion Equation with Height-Dependent Diffu- 
sion-Coefficient Including Ground-Level Absorption,” 
Atmospheric Environment, Vol. 23, No. 8, 1989, pp. 
1729-1732. doi:10.1016/0004-6981(89)90057-7 

[14] T. Tirabassi and U. Rizza, “Applied Dispersion Modelling 
for Ground-Level Concentrations from Elevated Sources,” 
Atmospheric Environment, Vol. 28, No. 4, 1994, pp. 611- 
615. doi:10.1016/1352-2310(94)90037-X 

[15] M. Sharan, M. P. Singh and A. K. Yadav, “A Mathe- 
matical Model for the Atmospheric Dispersion in Low 

Copyright © 2013 SciRes.                                                                                  JEP 

http://dx.doi.org/10.1016/j.atmosres.2008.07.004
http://dx.doi.org/10.4236/jep.2012.329131
http://dx.doi.org/10.1029/TR036i003p00395
http://dx.doi.org/10.1017/S0022112057000737
http://dx.doi.org/10.1016/0004-6981(75)90054-2
http://dx.doi.org/10.1016/0004-6981(78)90399-2
http://dx.doi.org/10.1016/0004-6981(78)90167-1
http://dx.doi.org/10.1016/0004-6981(80)90154-7
http://dx.doi.org/10.1016/0004-6981(81)90289-4
http://dx.doi.org/10.1007/BF00468993
http://dx.doi.org/10.1016/0004-6981(89)90057-7
http://dx.doi.org/10.1016/1352-2310(94)90037-X


An Analytical Formulation for Pollutant Dispersion Simulation in the Atmospheric Boundary Layer 

Copyright © 2013 SciRes.                                                                                  JEP 

64 

Winds with Eddy Diffusivities as Linear Function of 
Downwind Distance,” Atmospheric Environment, Vol. 30, 
No. 7, 1996, pp. 1137-1145.  
doi:10.1016/1352-2310(95)00368-1 

[16] J. S. Lin and L. M. Hildemann, “A Generalised Mathe- 
matical Scheme to Analytically Solve the Atmospheric 
Diffusion Equation with Dry Deposition,” Atmospheric 
Environment, Vol. 31, No. 1, 1997, pp. 59-71.  
doi:10.1016/S1352-2310(96)00148-3 

[17] M. Sharan and M. Modani, “An Analytical Study for the 
Dispersion of Pollutants in a Finite Layer under Low 
Wind Conditions,” Pure and Applied Geophysics, Vol. 
162, No. 10, 2005, pp. 1861-1892.  
doi:10.1007/s00024-005-2696-5 

[18] M. Sharan and M. Modani, “A Two-Dimensional Ana- 
lytical Model for the Dispersion of Air-Pollutants in the 
Atmosphere with a Capping Inversion,” Atmospheric En- 
vironment, Vol. 40, No. 19, 2006, pp. 3469-3489.  
doi:10.1016/j.atmosenv.2006.01.051 

[19] D. M. Moreira, M. T. Vilhena, T. Tirabassi, C. Costa and 
B. Bodmann, “Simulation of Pollutant Dispersion in At- 
mosphere by the Laplace Transform: The ADMM Ap- 
proach,” Water, Air and Soil Pollution, Vol. 177, No. 1-4, 
2006, pp. 411-439. doi:10.1007/s11270-006-9182-2 

[20] C. P. Costa, M. T. Vilhena, D. M. Moreira and T. Tira-
bassi, “Semi-Analytical Solution of the Steady Three- 
Dimensional Advection-Diffusion Equation in the Plane- 
tary Boundary Layer,” Atmospheric Environment, Vol. 40, 
No. 29, 2006, pp. 5659-5669.  
doi:10.1016/j.atmosenv.2006.04.054 

[21] D. Buske, M. T. Vilhena, C. F. Segatto and R. S. Quadros, 
“A General Analytical Solution of the Advection-Diffu- 
sion Equation for Fickian Closure,” In: Integral Methods 
in Science and Engineering: Computational and Analytic 
Aspects, Birkhäuser, Boston, 2011, pp. 25-34.  
doi:10.1007/978-0-8176-8238-5_4 

[22] P. Kumar and M. Sharan, “An Analytical Model for Dis- 
persion of Pollutants from a Continuous Source in the 
Atmospheric Boundary Layer,” Proceedings of the Royal 
Society A: Mathematical, Physical and Engineering Sci- 
ences, Vol. 466, No. 2144, 2010, pp. 383-406.  
doi:10.1098/rspa.2009.0394 

[23] J. S. Perez Guerrero, L. C. G. Pimentel, J. F. Oliveira Jr., 
P. F. L. Heilbron Filho and A. G. Ulke, “A Unified Ana- 
lytical Solution of the Steady-State Atmospheric Diffu- 
sion Equation,” Atmospheric Environment, Vol. 55, 2012, 
pp. 201-212. doi:10.1016/j.atmosenv.2012.03.015 

[24] A. K. Blackadar, “Turbulence and Diffusion in the Atmos- 
phere: Lectures in Environmental Sciences,” Springer- 
Verlag, Berlin, 1997, 185p.  

doi:10.1007/978-3-642-60481-2 

[25] M. T. Vilhena, D. Buske, G. A. Degrazia and R. S. Qua- 
dros, “An Analytical Model with Temporal Variable 
Eddy Diffusivity Applied to Contaminant Dispersion in 
the Atmospheric Boundary Layer,” Physica A: Statistical 
Mechanics and Its Applications, Vol. 391, No. 8, 2012, 
pp. 2576-2584. doi:10.1016/j.physa.2011.11.001 

[26] S. E. Gryning and E. Lyck, “Atmospheric Dispersion from 
Elevated Source in an Urban Area: Comparison between 
Tracer Experiments and Model Calculations,” Journal of 
Climate and Applied Meteorology, Vol. 23, No. 4, 1984, 
pp. 651-654. 

[27] M. L. Barad, “Project Prairie Grass: A Field Program in 
Diffusion,” Geophysical Research Paper No. 59, Vols. I 
and II, AFCRL-TR-58-235 (ASTIA Document No. AF- 
152572), Air Force Cambridge Research Laboratories, 
Bedford, 1958. 

[28] F. T. M. Nieuwstadt, “An Analytical Solution of the 
Time-Dependent, One-Dimensional Diffusion Equation 
in the Atmospheric Boundary Layer,” Atmospheric En- 
vironment, Vol. 14, No. 12, 1980, pp. 1361-1364.  
doi:10.1016/0004-6981(80)90154-7 

[29] J. C. Doran and T. W. Horst, “An Evaluation of Gaussian 
Plume-Depletion Models with Dual-Tracer Field Meas- 
urements,” Atmospheric Environment, Vol. 19, No. 6, 
1985, pp. 939-951. doi:10.1016/0004-6981(85)90239-2 

[30] G. A. Degrazia, H. F. Campos Velho and J. C. Carvalho, 
“Nonlocal Exchange Coefficients for the Convective 
Boundary Layer Derived from Spectral Properties,” Con- 
tributions to Atmospheric Physics, Vol. 70, No. 1, 1997, 
pp. 57-64. 

[31] G. A. Degrazia, D. Anfossi, J. C. Carvalho, C. Mangia, T. 
Tirabassi and H. F. Campos Velho, “Turbulence Parame- 
terization for PBL Dispersion Models in All Stability 
Conditions,” Atmospheric Environment, Vol. 34, No. 21, 
2000, pp. 3575-3583.  
doi:10.1016/S1352-2310(00)00116-3 

[32] H. A. Panofsky and J. A. Dutton, “Atmospheric Turbu- 
lence,” John Wiley & Sons, New York, 1984. 

[33] J. S. Irwin, “A Theoretical Variation of the Wind Profile 
Power-Low Exponent as a Function of Surface Rough- 
ness and Stability,” Atmospheric Environment, Vol. 13, 
No. 1, 1979, pp. 191-194.  
doi:10.1016/0004-6981(79)90260-9 

[34] S. R. Hanna, “Confidence Limit for Air Quality Models 
as Estimated by Bootstrap and Jacknife Resampling 
Methods,” Atmospheric Environment, Vol. 23, No. 6, 
1989, pp. 1385-1395. doi:10.1016/0004-6981(89)90161-3 

 

 

 

http://dx.doi.org/10.1016/S1352-2310(96)00148-3
http://dx.doi.org/10.1007/s00024-005-2696-5
http://dx.doi.org/10.1016/j.atmosenv.2006.01.051
http://dx.doi.org/10.1007/s11270-006-9182-2
http://dx.doi.org/10.1016/j.atmosenv.2006.04.054
http://dx.doi.org/10.1007/978-0-8176-8238-5_4
http://dx.doi.org/10.1098/rspa.2009.0394
http://dx.doi.org/10.1016/j.atmosenv.2012.03.015
http://dx.doi.org/10.1007/978-3-642-60481-2
http://dx.doi.org/10.1016/j.physa.2011.11.001
http://dx.doi.org/10.1016/0004-6981(80)90154-7
http://dx.doi.org/10.1016/0004-6981(85)90239-2
http://dx.doi.org/10.1016/S1352-2310(00)00116-3
http://dx.doi.org/10.1016/0004-6981(79)90260-9
http://dx.doi.org/10.1016/0004-6981(89)90161-3

