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ABSTRACT 

We study a multispecies one-dimensional Calogero model with two- and three-body interactions. Here, we factorize the 

ground state 0  out of the Hamiltonian H in order to get the new operator H  which preserves some spaces of poly-

nomials  in the case of equal masses, i.e. nP im m  (the usual Calogero model) and in the case with different masses. 

The spectrum of these both cases is found easily. 
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1. Introduction 

The ordinary Cologero [1,2] model describes N indistin- 
guishable particles on the line which interact through an 
inverse-square two-body interaction. The model is com- 
pletely integrable in both the classical and quantum case 
[3]. The spectrum is known and the wave functions are 
given implicitly. In the present paper, which is in a sense 
a continuation of the investigation of the ordinary model 
[4], we use an algebraic method to find some of the sali- 
ent features of the multispecies Calogero model on the 
line with two- and three-body interactions. After perform- 
ing a certain transformation of the operator H, we get a 
new Hamiltonian H  for which we find its spectrum in 
the both cases with equal masses and different masses. 

2. Calogero Model with Different Masses 

In this section, we reconsider the “multispecies” Ca-
logero model considered in  5 . The Hamiltonian reads 
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where ij ji  . 
We factorize the full ground state 
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When factorizing the factor 0  out of H, we got the 
new operator 
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The operator H

P

 preserves some spaces of polyno- 
mials that we would like to study and compare with the 
invariant spaces n  available in the case of equal masses, 
i.e. im m  (the usual Calogero model). We first pro-
ceed with the 2N   i.e. two body case. Then it is easy 
to check that the following vector spaces are preserved 
by H : 
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It should be stressed that the combination 1 2x x  has 
to be eliminated from  because it is not preserved by 
the part 
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of the operator H . As a consequence the monomial 
 3

1 2 x x  has to be discarded from P3 since  3

1 2H x x  
i.e, the following part of the operator H  

 

 

   

22
3

1 22
1

2 2
3

1 22 2
1 21 2

1 2 1 2
1 2

1 1

2

1 1 1
,

2

3 3
. 

i i i

x x
m x

x x
m mx x

x x x x
m m




 



  
    

  

   



     (10) 

would naturally involve a term of the form  1 2x x

 repha
6

 in 
the first order monomial which is excluded by the above 
argument (i.e. 1 ). Proceeding along the same lines we 
conclude that the set of spaces n  can b sed in 
terms of the vector spaces  defined in   i.e. 
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with 1  is the center-of-mass coordinate 

and                2

2 1 2 x x                (12) 

in this respect, the operator H (and then also H ) is inte-
grable and solvable for N = 2. 

Notice that the space nP  is equivalent to the ones 
considered by [6], apart from the fact that the variable 
X  (the analogue of 1 ) is defined with the masses. 

Let us now investigate the case N = 3. Again we can 
show that the following vector spaces are preserved by 
the operator H , 
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Note that  above is the generalization of the vari- 
able 2

Q
  of [6]. However, it turns out to be impossible to 

construct a translation invariant-cubic polynomial of the 
form 
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which is preserved by the operator  H  if the masses mi 
are generic (i.e 1 2 3m m m  , etc). As a consequence, 
the dimension of the vector spaces of monomials pre- 

served by mi
H   is lower than the vector spaces pre-

served by mi
H   and the number of algebraic eigen- 

values is lower than the usual Calogero case. In the next, 
this can be demonstrated easily in the particular case N = 
2. 

2.1. Eigenvalues for the Case with Equal Masses 

We use the operator 
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The spectrum for the above case is 
0; 
1, 2; 
2, 3, 4. 

2.2. Eigenvalues for the Case with Different 
Masses 

In this case we apply the some procedure used in the 
previous case (i.e. we consider also N = 2) but the opera- 
tor D has the following form 
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The spectrum for the above case is 
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2, 2. 
More generally, the vector spaces preserved by H  

are of the form 
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as generic in [5]. In this way, we have redemonstrated 
the result of these authors by following the algebraic 
technique of operators preserving spaces of monomials 
as suggested by [6]. 

We have attempted to construct invariant spaces of 
polynomials involving the monomials 
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3. Conclusion 

Here we have constructed the operator H  which pre-
serves some spaces of polynomials and compared with 
the invariant spaces available in the usual Calogero 
model ( im m

 
i.e. the masses are equal). We have de- 

termined the real spectrum for the case with different 
masses and for the case for equal masses where 2N   
i.e. two body case. This extended Calogero model exhib-
its some remarkable properties which are absent in the 
case of usual Calogero model. For example, the number 
of eigenvalues in the case with different masses is lower 
than one of eigenvalues of the usual Calogero model. 
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