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ABSTRACT 

We construct a new example of 2 × 2-matrix quasi-exactly solvable (QES) Hamiltonian which is associated to a poten- 
tial depending on the Jacobi elliptic functions. We establish three necessary and sufficient algebraic conditions for the 
previous operator to have an invariant vector space whose generic elements are polynomials. This operator is called 
quasi-exactly solvable. 
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1. Introduction 

In quantum physics, one of the main mathematical prob- 
lems consists in constructing the spectrum of a linear op- 
erator defined on a suitable domain of Hilbert space. In 
most cases, this type of problem cannot be explicitly 
solved, in other words the eigenvalues of the Hamilto- 
nian cannot be computed algebraically. However, in few 
cases, some of which turn out to be physically funda- 
mental, the spectrum can indeed be found explicitly. The 
two major examples of this kind are the celebrated har- 
monic quantum oscillator and the hydrogen atom (i.e. 3- 
dimensional Schrödinger equation coupled to an external 
Coulomb potential). These examples are called exactly 
solvable in the sense that the full spectrum of the Hamil- 
tonian is found explicitly. 

In the last few years, a new class of operators which is 
intermediate to exactly solvable and non solvable opera- 
tors has been discovered [1-4]: the quasi-exactly solvable 
(QES) operators, for which a finite part of the spectrum 
can computed algebraically. 

Although scalar QES operators have been classified in 
one variable [5] and in several variables [6], a classifica- 
tion of matrix QES operators is still missing. 

More recently, interesting tools for classification of 2 
× 2-matrix QES operators in one spatial dimensional [7- 
9] and in creation and annihilation operators [10] have 
been constructed. 

In the Ref. [9], PT-symmetric, QES 2 × 2-matrix Ham-
iltonians are analyzed with the emphasis set on the reality 
properties of the eigenvalues. The authors considered both 
trigonometric and hyperbolic 2 × 2-matrix Hamiltonians.  

A set of necessary and sufficient conditions (i.e. QES 
conditions) for 2 × 2-matrix operators to preserve a vec- 
tor space of polynomials have been proposed. These QES 
conditions constitute the so-called QES analytic method. 

This paper is organized as follows: In the Section 2, 
based on the Ref. [9], we briefly recall the QES analytic 
method used to investigate the quasi-exact solvability of 
2 × 2-matrix operators. In Section 3, along the same lines 
as in the Ref. [9], we apply the QES analytic method in 
order to construct a new 2 × 2-matrix QES Hamiltonian 
depending on Jacobi elliptic functions. We will consider 
two values of the constant δ: the case δ = 1 and the case δ 
= 2. The interesting results will be found. 

2. QES Analytic Method 

A general test to check whether a -matrix differen- 
tial operator H (in a variable 

2 2
x ) preserves a vector space 

whose components are polynomials is proposed [9]. After 
a gauge transformation and a change of variable on the 
operator H lead to a new operator H  which can be de- 
composed as follows 

1 0 1H H H H      ,             (1) 

with 
1

1
,  1,0, 1

s
s s

s s
s s

A C x
H s

D x B





 

 

 
   
 

 . 

Here ,s sA B  denote homogeneous differential opera- 
tors, Cs, Ds are arbitrary constant and ,    are integers. 
More precisely, the diagonal components of 1H  are 
differential operators and the off-diagonal components  
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 1 12
H  and are respectively proportional to  1 21

H x  
and x   with 0,1,2   and 2    . The operators 

0H  and 1H
  have lower degrees in all their components 

than the corresponding components in 1H . 
In order to obtain QES conditions for H , the generic 

vector of the vector space  is V
1

0 1
1

0 1

n n

n n

x x

x x

 


 



  

 
 

 
  ,             (2) 

Where ,i i   0,1i  
0

 are complex parameters. As a 
consequence the 2 × 2-matrices 1 1, ,M M M  are defined 
by 

 

 

 

01 20
1 11

00
1

111
1 1

11

010
0 1

00

diag , ,

diag , ,

diag , .

n
n n

n

n
n n

n

n
n n

n

x
H x x

x

x
H x x M

x

x
H x x M

x


















  
 


 



 
 

   
   

  
   

   
  

   
   

  



 


0

M

   (3) 

The three QES conditions for H  to have an invariant 
vector space are as follows [9] 

0
1

0

0
1

0

0 0 0

0 0

0
i) ,

0

0
ii) ,

0
1 1

iii) .

t

M

M

M






 
 

   
   
  

   
   
  

   
       
   
   

            (4) 

In the next step, we will apply in a systematic way the 
previous QES analytic method in order to construct a 2 × 
2-matrix QES Hamiltonian associated to a potential de- 
pending on the Jacobi elliptic functions [11,12]. 

3. QES Jacobi Hamiltonian 

3.1. Case δ = 1 

In this section we apply the QES analytic method estab- 
lished previously to check whether a particular 2 × 
2-matrix operator is QES. We consider Schrödinger N × 
N-matrix operator with potential depending on the Jacobi 
elliptic functions of the form [11]: 

 
2

2

d
1

d N D IH z V
z

   V



         (5) 

with 

  2
1 2 1 2diag , , , diag , , ,D N NV sn a a a b b b     (6) 

where aj, bj denote real constants (without loss of gener- 

ality we assume ) and VI is symmetric off-di-  
1

0
N

j
j

b



agonal matrix of the form 

 
 

1 2 3  if  

and 0 if .

ij ij ij
I ijij

I ij

V sn cn dn i

V i j

   

 

j
 

Note that the above Hamiltonian is to be considered on 
the Hilbert space of periodic functions on [0, 4 K(k)]. 

The properties of the Jacobi functions that are useful to 
make calculations are listed in the relations (12) and (13). 

The case 1N   corresponds to the Lamé equation 
[11]. We will treat in details the case 2N   which 
corresponds to the following operator 

 
2

22

d
1

d D IH z V
z

V              (7) 

with 
2

1
2

2

00
,  ,

00
D I

sncnsn a b
V V

sncnsn a b




   
       

 

2  is the matrix identity and1 1 2, , ,a a b   denote real 
constants. Note that the sum D IV V  is the potential 
associated to the Hamiltonian H(z). 

Using the following change of function (i.e. the gauge 
transformation), the gauge Hamiltonian is written as fol- 
lows 

     1 11 12

21 22

,  ,
H H

H z g H z g H z
H H

  
  

 

 
 

       (8) 

where 
2

2 21 1
11 1 122

1 1
2

2 22 2
21 22 22

2 2

d d
2 ,

dd
d d

,  2
dd

g g
 ,H a sn b H cn

g z gz
g g

H sn H a sn b
g z gz





 
      

 
      

 

 
 (9) 

and 

1

2

0 0
,  

0 0

g sn
g g

g cn

  
   

  


 ,          (10) 

Notice that two operators H and H  are called equiva- 
lent based on the Equation (8). 

The relevant change of variable consists in posing  

 2 ,t sn z k . In particular the differential symbol 
2

2

d

dz
  

is transformed into the following expression 

     
2 2

2 2 2 2
2 2

d d
4 1 1 2 3 2 1 1

dd d
t t k t k t k t

tz t
      

d

 (11) 

We recall that for generic values of , the Jacobi 
functions obey the following relations [11]: 

k

2 2 2 2 2

2 2 2 2

2

1,  1,
d

1,  2 ,
d

d d
,  .

d d

cn sn dn k sn

dn k sn sn sncndn
z

cn sndn dn k sncn
z z

   

  

   

    (12) 
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

tonian H  given by the Equation (9) by the expressions 
(11), (14)-(17) and considering the change of variable 

 2t s k ,n z , one can easily check the following com- 
ponents in variable : t

These identities as well as the following ones are use- 
ful to establish the gauge Hamiltonian (8) in the variable 

 after the prefactor including the Jacobi 
functions has been extracted [11]: 

2 ,t sn z k

Referring to the above relations (12) and (13), for 

1g sn , the second term and the third term of the op- 
erator 11H  of the Equation (9) are written as follows: 

 

 

1

1

2 2 21

1

d d
2 2 ,  

d d
d d

2 4 1 1
d d

g
sncndn

g z t
g

k t k t .
g z t




      

      (14) 

  

   
 

  

   

2
2

11 2

2 2 2 2 2
1

12 21

2
2

22 2

2 2 2 2
2

d
4 1 1

d
d

2 5 4 1 3 2 1,
d

1 ,  ,

d
4 1 1

d
d

2 5 2 2 1 2 1 .
d

H t t k t
t

k t k t a k t k b
t

H t H t

H t t k t
z

k t k t a k t b
t

 

   

          

  

   

         



 



. 

(18) 

2 21

1

2
g

k t k
g


   1 .              (15) 

Referring to the same relations used previously, for 

2g cn , the second term and the third term of the op- 
erator 22H  of the Equation (9) are of the following 
form: 

   2 22 2 2

2 2 2

d d d
2 2 2 ,  2 4

d

d d d d

g g g
sncndn k t t .

z g t g z t

  
   (16) 

The next step is to establish the conditions such that 
the gauge operator becomes quasi-exactly solvable. The 
so called QES conditions help to give the values of the 
real parameters 1  and ,a b   in terms of 2  and . 
Indeed  remain free parameters and  is an integer. 

,k a n

2

Let us decompose the operator 
,k a n

g H  given by its com- 
ponents (18) according to  

22

2

2
g

k t
g


 1 .               (17) 

1 0 1H H H H                  (19) 

where Replacing the terms of the components of the Hamil- 

 

   

   
   
   
   

2 2 2 2 2

2 2

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

1 0 0

2 1 1 1

2 1

2

6 1 2 1

6 1 4 2 1 2

6 4 2 2

12 4 1 3 2 1 1

g g g g g snc

sn k t k k t k t

cn k t k t t

dn k t k k t k t

cndn k t k k t k t

2

1

1

ndn

sndn k t k k t k t

sncn k t k k t k t

sncndn k t k k t k t

 

   

 
 

   



    

    

    

                  (13) 

 

 

   

   

2
2 3 2 2 2

12

1 2
2 3 2 2 2

22

2
2 2 2 2

2

0 2
2 2 2

2

2

2

1 2

2

d d
4 10 2

dd ,
d d

4 10 2
dd

d d
4 4 8 1 1

dd ,
d d

0 4 4 4 2
dd

d d
4 6 0

dd .
d d

0 4 2
dd

k t k t a k t t
ttH

t k t k t a k t
tt

k t k t k b
ttH

k t k t b
tt

t
ttH

t
tt









 
     
 
 

    
 
 

      
 
 

     
 
 
  
 
 

  
 







1

       (20) 
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The generic vector of the invariant vector space under 

the action of the Hamiltonian  H t  has the following 
form as it is given by the Equation (2)  

1
0 1

1
0 1

n n

n n

t t

t t 

 


 



  

  
  

  




 

as 1  , the above wave function   is written as fol-
lows 

1
0 1

1
0 1

n n

n n

t t

t t

 


 





  
 

  



            (21) 

1H  acting on the wave function  , he increases the 
degree by one unit, 

0H  doesn’t change the degree of the wave function 
 , and 1H

  reduces the degree of the wave function 
  by one unit. 

Let the operator H  acts on the above vector  , the 
components of the vector H  are then polynomials in 

 whose components are linear in the constants t ,j j  . 
As a consequence the vector H  can be decom- 

posed uniquely according to [9] 

   

 

0 11 1
1 1

0 1

0
0

0

diag , diag ,

diag ,

n n n n

n n

H t t M t t M

t t M

 


 




     
    

  

 
  

 

 

.  

(22) 

This above vector defines in particular the constant 2 × 
2-matrices 1, 1M M  and 0M  which are found as fol-
lows 

 

  

 
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1
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0 0
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diag , ,

diag , , ,

diag , .

n
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n

n
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n

n
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n

t
H t t M

t

t H t t M t t
t

t
H t t M

t










 





   
   

  

   
   

  

   
   

  



      (23) 

One can easily find 

The three necessary QES conditions for the operator 
H to have a finite dimensional invariant vector space are 
successively obtained [9]: 

1) The first QES condition is 

 

0
1

0

1

2 2 2 2 2 4
1 2 1 2

4 3 4 2 4 4

0
,

0

det 0,

4 6 2 16

48 52 24 4

M

M

k n k n k a a a a k n

k n k n k n k






   
   
  

 

        

   

4

4

 

(25) 

2) the second QES condition is as follows  

      

   

       
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0
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0

1
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2 22 4
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2 24 4

4 4

0
,

0

det 0,
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16 1 2
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16 1 2 4

tM

M
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a a k n n

k n n k n k n

k n n k






   
   
  

 

        

    

      

   





 

In this above equation replacing 2  by its value (25) 
and after some algebraic manipulations, the second QES 
condition is obtained 

 2 4 2 3 2 2 2 2
2

1

8 88 32 12 2 4

4 1

k n k n k n k n k a n
a

n

1      



 (26) 

3) finally the third QES condition for the operator H  
to have a finite dimensional invariant vector space (i.e. 
the operator H  is said quasi-exactly solvable) is ob- 
tained by the condition involving the matrix 0M  as 

0 0

0 0

1 1

M 0 
 

   
     
   
   




2

,             (27) 
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.
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







      
        
        

          
       
 
       

     (24) 
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where  is a constant and  

0
2 2 2 2

0 24 6 2k n k n a k

 



  

         (28) 

The above expression is given by the first QES condi- 

tion  0
1

0

0
.

0
M



   

   
  

After some algebraic manipulations, the Equations (27) 
and (28) lead to the third QES condition 

 
2 4 3 4 2 4 4 2 2

2

2 2 2 2
2

16 28 14 4 4

2 4 6 2

k n k n k n k k na k a
b

k n k n k a

      


  
2

 (29) 

Now, referring to the QES conditions given by the 
Equations (25), (26) and (29), we are allowed to con- 
clude that the operator H  (therefore H ) is quasi-ex- 
actly solvable [9]. In other words, a finite part of the ei- 
genvalues of the operator H  can be computed alge- 
braically. Note that the QES Hamiltonian constructed 
depends only on two free parameters  and on the 
non negative integer . 

2,k a
n

3.2. Case δ = 2 

Along the same lines applied for the previous case, i.e. 
for the case δ = 1, one has to perform a gauge transfor- 
mation according to  

     1 11 12

21 22

,
H H

H z f H z f H z
H H

  
  

 

 
 

   ,    (30) 

after some algebraic manipulations, the components of 
the above Hamiltonian are of the following form  

2
21 1

11 12
1 1

2 2
12 21

2
22 2

22 22
2 2

d d
2 ,

dd

,  ,

d d
2

dd

f f

with 

1

1
0

0
,  

0 1
0

dn dnf f
sncndn

sncndn



 
  
   
    
 

 

and the operator  H z  is given by the Equation (7). 
Referring to the relations (12) and to the table of iden- 

tities given by the Equation (13), the second term and the 
third term of the operator 11H  (31) are of the following 
form 

 

 

1 1

1 1

2 2 21

1

d d
2 4

d d

d d
2 4

d d

f f
sncndn ,  

,

f z f t

f
k t k t

f z t

 



 

        (32) 

21

1

2
f

k t k
f

2
                 (33) 

with 1f dn . 
For 2f sncndn , the same relations (12) and the 

same table of identities (13) lead to the following second 
term and the third term of the operator 22H  (31): 

 

 

2 2

2 2

2 2 21

1

d d
2 4 ,

d d

d d
2 12 8 1 4

d d

f f
sncndn

f z f t

f
k t k t ,

f z t

 


      

    (34) 

22

2

12 4 1
f

k t k
f

2
   .           (35) 

.

H a sn b
f z fz

H sn cn H

f f
H a sn b

f z fz

 

 
     

 

 
     



 



     (31) 

Referring to the relations (11), (32), (33), (34), (35) 
and after performing the change of variable  2 ,t sn k z , 
the different components of the Hamiltonian  H t  given 
by the Equation (31) take the following form 

Decomposing now the above operator  H t  accord- 
ing the Equation (11), we obtain 

 

    

 

       

2
2 2 2 2 2 2

11 12

12 21

2
2 2 2 2 2 2

22 22

d d
4 1 1 10 8 4 2 2 ,

dd

1 ,  ,

d d
4 1 1 18 12 1 6 12 4 1 .

dd

H t t k t k t k t t k t k a t b
tt

H t t H

H t t k t k t k t k t k a t b
tt

 

            

  

             



 



      (36) 
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 

 

   

     

2
2 3 2 2 2 2

12

1 2
2 3 2 2 2

22

2
2 2 2 2

2

0 2
2 2 2 2

2

2

2

1 2

2

d d
4 10 2

dd ,
d d

4 18 12
dd

d d
4 1 4 2 1

dd ,
d d

0 4 1 12 1 4 1
dd

d d
4 2 0

dd

d d
0 4 6

dd

k t k t a k t t
ttH

k t k t a k t
tt

k t k t b k t
ttH

k t k t k b
tt

t
ttH

t
tt









 
     
 
 

    
 
 

     
 
 

      
 
 
 



 






 .






    (37) 

 
The generic element of the invariant vector space  

under the action of the operator 
V

 H t  is given by the 
Equation (2) as in the QES analytic method 

1
0 1

1
0 1

n n

n n

t t

t t 

 


 



  

 
  

 
, 

the case 2   leads to 
1

0 1
1

0 1

n n

n n

t t

t t

 


 



 

 
 

 
2  .            (38) 

Notice that the above operators 1 0,H H   and 1H
  

given by the Equations (37) are respectively the matrix 
operators which increases, preserves and reduces the 
degree of the above generic vector   given by the  

Equation (38). As a consequence the vector H  can be 
decomposed as follows 

   

 

0 11 1
1 1

0 1

01
0

0

diag , diag ,

diag ,

n n n n

n n

H t t M t t M

t t M

 


 




 



   
    

  

 
  

 

 

(39) 

where the constant 2 × 2-matrices 1 1,M M  and 0M  
can be computed explicitly after a straightforward calcu- 
lation 

  010
1 11

00

diag ,
n

n n
n

t
H t t

t
M







   
   

  
 , 

 
where 

 
    

2 2 2
1

1 2 2
2

4 1 10 2

4 1 2 18 1 12

k n n k n a k
M

k n n k n a k




      
          

2
 

One can deduce the matrix 1M  from the following expression 

 
1

111
1 12

11

diag ,
n

n n
n

t
H t t

t
M









   
   

  
  , 

where 

    
    

2 2 2
1

1 2 2
2

4 1 2 10 1 2

4 2 3 18 2 12

k n n k n a k
M

k n n k n a k




        
          


2

 

finally the matrix 0M  is easily found by 

  010
0 01

00

diag ,
n

n n
n

t
H t t

t
M







   
   

  
 , 

where 

     
        

2 2 2

0 2 2

4 1 1 4 2 1

0 4 1 1 2 12 1 1 4 1

k n n k n b k
M

k n n k n k

      
 
 2 b         
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Along the same lines used in the QES analytic method, 

the three necessary conditions (4) for the operator H  
whose components are given by the Equation (36) to be 
quasi-exactly solvable are successively obtained: 

 
1) the first QES condition is as follows 

      2 4 4 3 2 2 2 2 2
1 2 1 2 14 4 8 73 34 1 4 6 2 19k n n n n k n k n a a k a a a             2a  

2) the second QES condition is easily checked 

 5 5 4 4 4 3 4 2 4 4 2 3 2 2 2 2
2

1 2 2

16 40 100 264 628 4 4 16 12 10

38 8

k n k n k n k n k n k k n k n k n k a
a

k k n

         



 

 
3) Finally the third QES condition is found 

2 2 2 2
14 10

2

k n k n k a
b

   
          (40) 

4. Conclusion 

In this paper, we have applied the QES analytic method 
established in the Ref. [9] in order to construct a 2 × 
2-matrix QES Hamiltonian which is associated to a po- 
tential depending on the Jacobi elliptic functions. We 
have considered two cases: 1   and 2  . More 
precisely, the three QES conditions for the Jacobi Ham-
iltonian to have an invariant vector space are computed 
algebraically. 
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