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ABSTRACT 

Measurement of the nutrient concentrations in the stream is usually done on weekly, biweekly or monthly basis due to 
limited resources. There is need to estimate concentration and loads during the period when no data is available. The 
objectives of this study were to test the performance of a suite of regression models in predicting continuous water 
quality loading data and to determine systematic biases in the prediction. This study used the LOADEST model which 
includes several predefined regression models that specify the model form and complexity. Water quality data primarily 
nitrogen and phosphorus from five monitoring stations in the Neuse River Basin in North Carolina, USA were used in 
the development and analyses of rating curves. We found that LOADEST performed generally well in predicting loads 
and observation trends with general tendency/bias towards overestimation. Estimated Total Nitrogen (TN) varied from 
observation (“true” load) by −1% to 9%, but for the Total Phosphorus (TP) it ranged from −2% to 27%. Statistical 
evaluation using R2, Nash-Sutcliff Efficiency (NSE) and Partial Load Factor (PLF) showed a strong correlation in pre-
diction. 
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1. Introduction 

Accurate estimation of nutrient loads in the river and 
streams is very necessary for many applications, inclu- 
ding determining sources of nutrient loads in the water- 
sheds [1,2], calibrating and validating watershed models 
[3-6] and evaluating long-term trends in the loads [7,8]. 
The instantaneous load which can be found out by 
multiplying the nutrient concentration C(t) and discharge 
Q(t) for given time t and the load over an extended 
period of time T is given by 

   dt
T

T n
L C t Q t             (1) 

Limited resources prohibit the continuous measure- 
ment of water quality constituent concentration and dis- 
charge on long term basis. Even though daily discharge 
measurement is frequently available, concentrations of 
the nutrients are measured less frequently and gap be- 
tween measurements can be from weeks to months. For 
the estimation of load for extended period of time, 
continuous data is necessary. So, there is a need to 

convert the weekly or monthly data into daily data. It is 
well known that load estimation of nutrients is subjected 
to many potential sources of error and uncertainty [9] and 
rating curve generation is one of them.  

There are many methods of load estimation. Many 
studies have compared various methods for load estima- 
tion and various techniques were applied to measure the 
performances of the models [3,9-13]. In some studies, 
under-sampling against a true load to evaluate load un- 
certainty and model performance is used [9,12], while in 
others, different algorithm methods were applied to the 
same dataset [11,13]. These studies show that there are 
lots of variability in the nutrients load estimates. For 
example, error on the estimated annual phosphorus load 
using a regression model was found to be 30% in [14] 
and 34% in [11]. Annual nitrate loads have differed by as 
much as 64% depending on the sampling strategy, load 
estimation method and monitoring period used [3]. 

This study is attempted to evaluate multiple regression 
models [15] in predicting water quality loadings in the 
Neuse River Basin in North Carolina, USA (Figure 1). 
The model algorithms are incorporated in LOADEST, a  *Corresponding author.   
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Figure 1. Neuse River Basin in North Carolina, USA with locations of water quality monitoring stations. 
 
user friendly computer program for load estimation de-
veloped by the United States Geological Survey (USGS) 
[16]. It is widely used to estimate nitrogen and phos- 
phorus loads in the rivers [17-21]. The model has been 
utilized to estimate nutrient flux in the major rivers 
flowing to the Gulf of Mexico [22] and to calculate 
“observed” loads in the USGS SPARROW model [23]. 

Model performance was evaluated using statistical 
techniques by comparing model-predicted nutrient loads 
to actual measured loads. How well the regression model 
predicted nutrient loads to actual measured values is 
assumed to be indicative of how well the model might be 
expected to perform for days where no samples were 
collected. The objectives of this study were to test the 
performance of a suite of regression models in predicting 
continuous water quality loading data and to determine 
systematic bias in the prediction. 

2. Materials and Method 

2.1. LOADEST Description 

The LOADEST was developed by the USGS [16] to es-

timate constituent loads in streams and rivers through a 
set of regression models. It needs information on a time 
series of streamflow, additional data variables and con-
stituent concentrations. The simplest form of linear re-
gression equation consists of log of instantaneous load 
related with one or more explanatory variables: 

  0 1
ln

NV

i ii
L  


  X


          (2) 

where a0 and aj are model coefficients, NV is the number 
of explanatory variables, and Xj is an explanatory vari-
able. The number and form of explanatory variables is 
highly dependent on the system under study and the con-
stituent of study. For example, one variable (log of 
stream flow) was found sufficient for the prediction of 
suspended sediments [24] whereas a model with six ex-
planatory variables were found suitable for nutrient rat-
ing curve [15]. While the estimation method is very 
straightforward, the process is complicated due to several 
statistical complications including retransformation bias, 
data censoring and non-normality of the data. [25] noted 
that the model bias could lead as much as 50 percent 
from the true load. LOADEST used three methods to 
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deal with these issues namely maximum likelihood esti- 
mation (MLE), adjusted maximum likelihood estimation 
(AMLE) and least absolute deviation (LAD) methods. 

In this study, we used AMLE method [26], the primary 
load estimation method, which assumes that the model 
residuals are normally distributed with constant variance. 
A series of 9 predefined modeling options that vary with 
number of explanatory variables are provided within the 
framework of LOADEST. The selection of the prede-
fined model is based on user’s knowledge of the hydro-
logic and biogeochemical system or alternatively one can 
use model’s automated method of selection where it se-
lects the “best” model for which the lowest value for 
Akaike Information Criterion (AIC) and the highest 
value for Schwarz Posterior Probability Criterion (SPPC) 
are obtained. Details on other background information on 
LOADEST can be found in [16]. 

2.2. Study Area and Data Analysis 

This study performed statistical analyses to evaluate his- 
torical water quality and flow data collected from various 
water quality monitoring stations located throughout the 
Neuse River Basin, North Carolina, USA (Figure 1). It is 
located in the southeastern part of the country draining an 
area of over 15,540 km2 into the Atlantic Ocean. A big 
threat to water quality in the basin are large quantities of 
nutrients primarily nitrogen and phosphorus, contributed 
primarily through non-point sources. 

Water quality and flow data were obtained for five 
water quality monitoring stations across the watershed 
from USGS (www.nwis.waterdata.usgs.gov). A total of 
seven water quality parameters mainly nitrogen, phos- 
phorus and their variants were collected. Table 1 lists 
pertinent information on these sites. While total nitrogen 
(TN) and total phosphorus (TP) has significant amount of 
monitoring data, others (ammonia, nitrate, nitrite and 
ortho-phosphate) are limited and not-available in many 
cases. Data locations were selected in a way that the 
drainage area could vary for possible correlation analyses 
with the drainage area and model performance. 

The performance of the regression model was evalu- 
ated using three statistical evaluations. 

1) The partial load factor (PLF) was obtained by di- 
viding long term average estimated data by long-term 
average measured data. PLF of 1 means the perfect esti- 
mation. Less than 1 indicates under prediction while 
more than 1 indicates over prediction.  

2) The Nash-Sutcliffe Efficiency (NSE) coefficient 
can be defined as: 

 
 

2

01

2
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1

T t t
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T t
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




          (3) 

The value of NSE can range from –∞ to 1. An effi- 

ciency of 1 (E = 1) corresponds to a perfect match of 
modeled discharge to the observed data. An efficiency of 
0 (E = 0) indicates that the model predictions are as ac- 
curate as the mean of the observed data, whereas an effi- 
ciency less than zero (E < 0) occurs when the residual 
variance is larger than the data variance. 

3) The coefficient of determination (R2) describes the 
degree of collinearity between simulated and measured 
data. It ranges from 0 to 1, with higher values indicating 
less error variance, and typically values greater than 0.5 
are considered acceptable. 

3. Results and Discussion 

The collected water quality data from all five stations 
were tested for outliers and consistency, and finally re- 
formatted as per the requirements of LOADEST. The 
model was then executed for each parameter individually. 
Model’s in-built option for automatic selection of pre- 
defined regression model using the AIC statistics was 
chosen in all model executions. The model output related 
to the AMLE estimation method was selected for analy-
ses. 

3.1. LOADEST Prediction 

The model output for the average annual loading was 
compared with the “true” loading which was estimated 
by calculating instantaneous daily loading (multiplying 
concentration by daily flow volume) and multiplying the 
resulting load by 365 days to obtain the annual loading. 
Table 2 shows the percent difference in loading estima- 
tion predicted by LOADEST when compared with the 
true loading. It clearly indicates that the model over pre- 
dicted the loading most of the times except for few cases. 
TN was over predicted by an average of 5% from the true 
loading on four stations and under predicted the load by 
1% at one station. Ammonia and TP were found to be 
over predicted by 43 and 28% respectively. This is con- 
sistent with the outcome of [11,14] where the TP load 
was found to differ by 30 and 34%. 

Model estimated loads were compared with the meas- 
ured load and statistical indicators PLF, R2 and NSE 
were calculated. Table 3 lists all statistics for each of the 
seven parameters for each monitoring locations. 

R2 values for TN at all stations varied from 0.97 to 
0.99 indicating a very strong correlation between esti- 
mated and measured loads. NSE also showed strong cor- 
relation with values varied from 0.71 to 0.92. PLF indi- 
cated the variation in the range of prediction from −2% 
to +9% indicating positive bias with mild over predic-
tion. 

TP prediction showed similar results as that of TN ex- 
cept for station 02087500 where NSE resulted in −1.76. 
Negative efficiency indicated a bias in prediction with  
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Table 1. Monitoring stations and number of samples of water quality constituents in the Neuse River Basin. 

o TN Org N Ammonia Nitrite Nitrate Ortho P TP Area 

02085000 171 70 181 118 167 -- 171 171 

02085500 173 -- -- -- -- -- 173 149 

02086500 80 -- -- -- -- -- 80 168 

02087500 77 55 55 -- -- 61 79 1150 

02089500 294 132 132 279 279 315 294 6972 

Note: Area is drainage area in km2. 

 
Table 2. Percentage difference between model predicted loading and “true” loading. 

USGS Site # TN Org N Ammonia Nitrite Nitrate Ortho P TP 

02085000 8.2 1.8 5.8 15.6 4.0  6.0 

02085500 8.9      27.6 

02086500 6.7      16.0 

02087500 −1.1 12.2 43.1   −0.3 −1.5 

02089500 1.1 132 3.3 −3.2 2.7 2.6 3.6 

 
Table 3. Sumamry of statistical performance for all water quality parameters. 

Parameter TN Org N Ammonia Nitrate Nitrite Ortho P TP 

USGS Site # 02085000 (Drainage area = 171 km2) 

R2 0.98 0.96 0.79 0.92 0.94  0.93 

PLF 1.08 1.02 1.06 1.16 1.04  0.77 

NSE 0.71 0.99 0.25 0.82 0.98  0.77 

USGS Site # 02085500 (Drainage area = 149 km2) 

R2 0.97      0.96 

PLF 1.09      1.28 

NSE 0.76      0.89 

USGS Site # 02086500 (Drainage area = 168 km2) 

R2 0.99      0.97 

PLF 1.07      1.16 

NSE 0.82      0.70 

USGS Site # 02087500 (Drainage area = 1150 km2) 

R2 0.87 0.90 0.33   0.28 0.83 

PLF 0.98 1.12 1.43   0.997 0.98 

NSE 0.72 0.76 -0.63   0.27 −1.76 

USGS Site # 0209500 (Drainage area = 6972 km2) 

R2 0.94 0.95 0.75 0.75 0.78 0.83 0.86 

PLF 1.01 0.99 1.02 0.96 1.03 0.03 1.04 

NSE 0.92 0.94 0.60 0.28 0.75 0.40 0.70 

 
values accumulated well in one place (higher R2) but far 
from the 1:1 line of estimated vs. measured comparison. 
PLF data identified range of prediction from −23% to 
+28% indicating a balance in bias with a slight over pre-
diction. 

Org N estimation showed good correlation with bias 
toward over prediction that ranged from −1% to +12%. 

Ammonia was found to be over predicted significantly 
(43%) and the correlation was very poor to none. Nitrate, 
nitrite, and ortho-phosphate behaved similarly with good 
prediction correlation with slight to none over prediction. 
Figures 2 and 3 are example plots of the best and worst 
prediction of LOADEST as determined by R2. 

Analysis was also extended to examine whether the  



Rating Curve Estimation of Surface Water Quality Data Using LOADEST 853

 

Figure 2. The “best” case of correlation (TN at Eno River, 
Hillsboro, USGS site # 02085000). 
 

 

Figure 3. The “worst” case of correlation (Org N at Neuse 
River near Clayton, USGS Site # 02087500). 
 
sampling size has any impact on the model’s prediction 
accuracy. While it seemed like there might be a pattern 
of lower number of sample size causing over prediction, 
but it was not conclusive. For example, sample size of 77 
at site # 02087500 had an average annual loading of 
7394 kg/km2 whereas sample size of 294 at site # 
02089500 was found to have 3162 kg/km2.  

3.2. Time Series Analysis 

Time series graphs (Figure 4) were plotted for two pa- 
rameters, TN and TP, for all five monitoring sites for 
which complete datasets were available. It facilitated a 
visual inspection of the model performance and identi- 
fied possible model bias and trends both in model predic- 
tions as well as in observed (or measured) data. As indi- 
cated in Figure 4, LOADEST estimated loadings were 
extrapolated beyond the period for which the measured 
data were available. It was due to the fact that the flow 
data were available for longer duration and all was used 
in the LOADEST estimation.   

Load estimation pattern was found different for dif- 

ferent simulations (i.e. model executions). This may be 
due to the fact that each simulation chose a different re- 
gression model from a given set of 9 pre-defined models. 
LOADEST selects best model based on the minimum 
value of AIC which optimizes between goodness-of-fit 
and model complexity. For three sites, the model selected 
the same pre-defined model for both TN and TP but it 
was different for the other two sites. No conclusive idea 
could be formed on whether the model selection was 
adequate. More research is needed in this area. 

In general, the prediction and its trend seem to follow 
the observed data very well. Site-by-site analyses of 
model prediction are provided in Table 4. 

Overall, the LOADEST model was found to perform 
well in predicting loads. However, a clear understanding 
of the regression models is needed for better application 
of the model. Analyzing several regression models pro- 
vided within the LOADEST environment may provide 
enough evidence to select the best model for load estima- 
tion. Even though the statistical evaluator provides strong 
correlation, it may be misleading often times, so a visual 
inspection is necessary which complements the process 
of selecting the best regression model for the chosen pa- 
rameter and the study region. 

4. Conclusions 

Accurate estimation of nutrient loads in the river and  
 

Table 4. Analysis of rating curve. 

#  Analysis of Rating Curve 

TN
Prediction covered majority of observed data 

A decreasing trend with a very mild slope 

02
08

50
00

 

TP
Over prediction of low concentrations values 

Prediction may be biased due to extreme data point 

TN
Under predict the true nature of observation 

No apparent trend in observed or predicted data 

02
08

55
00

 

TP
Over prediction of low concentration values 

Prediction is too-amplified 
Not a good choice of model 

TN
Lack of good prediction 

Missed more than half of the observation points 
Decreasing trend in observation and prediction 

02
08

65
00

 

TP
Poor model selection 

Missed majority of observation data 

TN
Prediction covered majority of points 

No trend is visible 

02
08

95
00

 

TP
Prediction is misleading 

TP seems to follow TN closely (same pattern) 
No clear trend is expected 

TN
Prediction followed the trend of observation 
Lack to adopt the variation in observation 

Trend is not clear 

02
08

95
00

 

TP
An interesting and clear decreasing trend 

Good model selection and prediction 
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Figure 4. LOADEST derived rating curve estimation and comparison with the observed data. 
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streams is very necessary for many applications. There 
are many methods of load estimation which varies widely 
from the selection of the model to the ranges of errors it 
can produce. This study used the LOADEST model 
which includes several predefined regression models that 
specify the model form and complexity. Water quality 
data primarily nitrogen and phosphorus from five moni- 
toring stations in the Neuse River Basin in North Caro- 
lina, USA were used in the development and analyses of 
the rating curves. The AMLE option of the model de- 
velopment was used along with automatic option of se- 
lecting pre-defined set of regression models. The per- 
formance of the model was evaluated using three statis- 
tical indicators: R2, NSE and PLF. 

We can conclude that LOADEST performed well in 
predicting loading in the stream of varying sample sizes 
and drainage area with bias towards over estimation most 
of the time. TN was over predicted by an average of 5% 
from the true loading on five stations and under predicted 
the load by 1% at one station. Ammonia and TP were 
found to be over predicted by 43 and 28% respectively. 
Model performed very well statistically for TN as indi-
cated by R2 range from 0.97 to 0.99, NSE range from 
0.71 to 0.92, and PLF range from −2 to 9%. Time series 
analyses for examining trend of predicted loads produced 
mixed results with the selection of best models to poor 
fitting models. But in most cases, model selection did a 
good job in predicting loads and capturing the trend of 
observed data. 

Even though LOADEST seems to work well in-general 
and statistics seem to sought a strong correlation in pre- 
diction, a clear understanding of the regression model 
and its selection is important for its application. A time- 
series analysis is a must for detecting potential problems 
with the model selection and identifying possible trends 
in the observed data as well as in estimated rating curves. 
It is recommended to test multiple pre-defined regression 
models before concluding to a final and best model for 
rating curve development. Future study should also con- 
sider filtering observed data and exclude exogenous data 
from analysis which may potentially affect the model 
selection process leading to the erroneous prediction. 
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